1
|
Liu D, Sun W, Han J, Wang C, Chen D, Wu Y, Chang Y, Yang B. Proto-oncogene DEK binds to pre-mRNAs and regulates the alternative splicing of Hippo signaling genes in HeLa cells. Mol Genet Genomics 2025; 300:31. [PMID: 40075046 PMCID: PMC11903584 DOI: 10.1007/s00438-025-02226-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/06/2025] [Indexed: 03/14/2025]
Abstract
Our study aimed to explore how DEK, a carcinogenic protein with chromatin architectural function, genome-widely binds to RNA and affects the alternative splicing in cancer cells to decipher its molecular functions. To achieve this goal, cell phenotype experiments, RNA sequencing (RNA-seq), and improved RNA immunoprecipitation sequencing (iRIP-seq) were conducted to identify the function and regulated targets of DEK in HeLa cells. The results showed DEK overexpression promoted cell proliferation and invasion of HeLa cells. Meanwhile, DEK hardly affected transcript level expression of those high expressed genes, but splicing pattern of 411 genes was regulated by DEK in HeLa cells, which were enriched in Hippo signaling pathway. Moreover, DEK broadly bind the RNA of a total of 11, 112 genes, with a biased binding the 5' splice site (5'SS) consensus GGUAA motifs at the CDS and intronic regions. In addition, 297 DEK-binding genes showed different splicing pattern after DEK overexpression in HeLa cells. These genes were enriched in Hippo signaling pathway including CSNK1D. The RT-qPCR and RIP-PCR confirmed that DEK can bind to CSNK1D to regulate its alternative splicing in HeLa cells. In summary, our results indicated DEK could broadly bind and regulate the pre-mRNA splicing process, which provide new insights of mechanisms that DEK functions in various biological processes including cancer.
Collapse
Affiliation(s)
- Dongbo Liu
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Wei Sun
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jing Han
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Cong Wang
- Science Department, Wuhan Ruixing Biotechnology Co. Ltd., Wuhan, Hubei, 430075, China
| | - Dong Chen
- Science Department, Wuhan Ruixing Biotechnology Co. Ltd., Wuhan, Hubei, 430075, China
| | - Yunfei Wu
- Center for Genome Analysis, Wuhan Ruixing Biotechnology Co. Ltd., Wuhan, Hubei, 430075, China
| | - Yongjie Chang
- Center for Genome Analysis, Wuhan Ruixing Biotechnology Co. Ltd., Wuhan, Hubei, 430075, China
| | - Bin Yang
- Department of Thoracic Oncology, Tongji Medical College, Hubei Cancer Hospital, Huazhong University of Science and Technology, No. 116 Zhuodaoquan South Rd, Wuhan, Hubei, 430079, China.
| |
Collapse
|
2
|
Gimeno-Valiente F, López-Rodas G, Castillo J, Franco L. The Many Roads from Alternative Splicing to Cancer: Molecular Mechanisms Involving Driver Genes. Cancers (Basel) 2024; 16:2123. [PMID: 38893242 PMCID: PMC11171328 DOI: 10.3390/cancers16112123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer driver genes are either oncogenes or tumour suppressor genes that are classically activated or inactivated, respectively, by driver mutations. Alternative splicing-which produces various mature mRNAs and, eventually, protein variants from a single gene-may also result in driving neoplastic transformation because of the different and often opposed functions of the variants of driver genes. The present review analyses the different alternative splicing events that result in driving neoplastic transformation, with an emphasis on their molecular mechanisms. To do this, we collected a list of 568 gene drivers of cancer and revised the literature to select those involved in the alternative splicing of other genes as well as those in which its pre-mRNA is subject to alternative splicing, with the result, in both cases, of producing an oncogenic isoform. Thirty-one genes fall into the first category, which includes splicing factors and components of the spliceosome and splicing regulators. In the second category, namely that comprising driver genes in which alternative splicing produces the oncogenic isoform, 168 genes were found. Then, we grouped them according to the molecular mechanisms responsible for alternative splicing yielding oncogenic isoforms, namely, mutations in cis splicing-determining elements, other causes involving non-mutated cis elements, changes in splicing factors, and epigenetic and chromatin-related changes. The data given in the present review substantiate the idea that aberrant splicing may regulate the activation of proto-oncogenes or inactivation of tumour suppressor genes and details on the mechanisms involved are given for more than 40 driver genes.
Collapse
Affiliation(s)
- Francisco Gimeno-Valiente
- Cancer Evolution and Genome Instability Laboratory, University College London Cancer Institute, London WC1E 6DD, UK;
| | - Gerardo López-Rodas
- Department of Oncology, Institute of Health Research INCLIVA, 46010 Valencia, Spain; (G.L.-R.); (J.C.)
- Department of Biochemistry and Molecular Biology, Universitat de València, 46010 Valencia, Spain
| | - Josefa Castillo
- Department of Oncology, Institute of Health Research INCLIVA, 46010 Valencia, Spain; (G.L.-R.); (J.C.)
- Department of Biochemistry and Molecular Biology, Universitat de València, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Luis Franco
- Department of Oncology, Institute of Health Research INCLIVA, 46010 Valencia, Spain; (G.L.-R.); (J.C.)
- Department of Biochemistry and Molecular Biology, Universitat de València, 46010 Valencia, Spain
| |
Collapse
|
3
|
Temaj G, Chichiarelli S, Saha S, Telkoparan-Akillilar P, Nuhii N, Hadziselimovic R, Saso L. An intricate rewiring of cancer metabolism via alternative splicing. Biochem Pharmacol 2023; 217:115848. [PMID: 37813165 DOI: 10.1016/j.bcp.2023.115848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
All human genes undergo alternative splicing leading to the diversity of the proteins. However, in some cases, abnormal regulation of alternative splicing can result in diseases that trigger defects in metabolism, reduced apoptosis, increased proliferation, and progression in almost all tumor types. Metabolic dysregulations and immune dysfunctions are crucial factors in cancer. In this respect, alternative splicing in tumors could be a potential target for therapeutic cancer strategies. Dysregulation of alternative splicing during mRNA maturation promotes carcinogenesis and drug resistance in many cancer types. Alternative splicing (changing the target mRNA 3'UTR binding site) can result in a protein with altered drug affinity, ultimately leading to drug resistance.. Here, we will highlight the function of various alternative splicing factors, how it regulates the reprogramming of cancer cell metabolism, and their contribution to tumor initiation and proliferation. Also, we will discuss emerging therapeutics for treating tumors via abnormal alternative splicing. Finally, we will discuss the challenges associated with these therapeutic strategies for clinical applications.
Collapse
Affiliation(s)
- Gazmend Temaj
- Faculty of Pharmacy, College UBT, 10000 Prishtina, Kosovo
| | - Silvia Chichiarelli
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, 00185 Rome, Italy.
| | - Sarmistha Saha
- Department of Biotechnology, GLA University, Mathura 00185, Uttar Pradesh, India
| | | | - Nexhibe Nuhii
- Department of Pharmacy, Faculty of Medical Sciences, State University of Tetovo, 1200 Tetovo, Macedonia
| | - Rifat Hadziselimovic
- Faculty of Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", La Sapienza University, 00185 Rome, Italy.
| |
Collapse
|
4
|
Zhong FM, Yao FY, Liu J, Li MY, Jiang JY, Cheng Y, Xu S, Li SQ, Zhang N, Huang B, Wang XZ. Splicing factor-mediated regulation patterns reveals biological characteristics and aid in predicting prognosis in acute myeloid leukemia. J Transl Med 2023; 21:6. [PMID: 36611187 PMCID: PMC9824960 DOI: 10.1186/s12967-022-03868-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Alternative splicing (AS) of RNA is a fundamental biological process that shapes protein diversity. Many non-characteristic AS events are involved in the onset and development of acute myeloid leukemia (AML). Abnormal alterations in splicing factors (SFs), which regulate the onset of AS events, affect the process of splicing regulation. Hence, it is important to explore the relationship between SFs and the clinical features and biological processes of patients with AML. METHODS This study focused on SFs of the classical heterogeneous nuclear ribonucleoprotein (hnRNP) family and arginine and serine/arginine-rich (SR) splicing factor family. We explored the relationship between the regulation patterns associated with the expression of SFs and clinicopathological factors and biological behaviors of AML based on a multi-omics approach. The biological functions of SRSF10 in AML were further analyzed using clinical samples and in vitro experiments. RESULTS Most SFs were upregulated in AML samples and were associated with poor prognosis. The four splicing regulation patterns were characterized by differences in immune function, tumor mutation, signaling pathway activity, prognosis, and predicted response to chemotherapy and immunotherapy. A risk score model was constructed and validated as an independent prognostic factor for AML. Overall survival was significantly shorter in the high-risk score group. In addition, we confirmed that SRSF10 expression was significantly up-regulated in clinical samples of AML, and knockdown of SRSF10 inhibited the proliferation of AML cells and promoted apoptosis and G1 phase arrest during the cell cycle. CONCLUSION The analysis of splicing regulation patterns can help us better understand the differences in the tumor microenvironment of patients with AML and guide clinical decision-making and prognosis prediction. SRSF10 can be a potential therapeutic target and biomarker for AML.
Collapse
Affiliation(s)
- Fang-Min Zhong
- grid.412455.30000 0004 1756 5980Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi China ,grid.260463.50000 0001 2182 8825School of Public Health, Nanchang University, No. 461 BaYi Boulevard, Nanchang, 330006 Jiangxi China
| | - Fang-Yi Yao
- grid.412455.30000 0004 1756 5980Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi China
| | - Jing Liu
- grid.412455.30000 0004 1756 5980Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi China
| | - Mei-Yong Li
- grid.412455.30000 0004 1756 5980Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi China
| | - Jun-Yao Jiang
- grid.412455.30000 0004 1756 5980Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi China
| | - Ying Cheng
- grid.412455.30000 0004 1756 5980Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi China ,grid.260463.50000 0001 2182 8825School of Public Health, Nanchang University, No. 461 BaYi Boulevard, Nanchang, 330006 Jiangxi China
| | - Shuai Xu
- grid.412455.30000 0004 1756 5980Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi China ,grid.260463.50000 0001 2182 8825School of Public Health, Nanchang University, No. 461 BaYi Boulevard, Nanchang, 330006 Jiangxi China
| | - Shu-Qi Li
- grid.412455.30000 0004 1756 5980Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi China
| | - Nan Zhang
- grid.412455.30000 0004 1756 5980Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi China
| | - Bo Huang
- grid.412455.30000 0004 1756 5980Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi China
| | - Xiao-Zhong Wang
- grid.412455.30000 0004 1756 5980Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi China ,grid.260463.50000 0001 2182 8825School of Public Health, Nanchang University, No. 461 BaYi Boulevard, Nanchang, 330006 Jiangxi China
| |
Collapse
|
5
|
Prognostic impact of ABCA3 expression in adult and pediatric acute myeloid leukemia: an ALFA-ELAM02 joint study. Blood Adv 2022; 6:2773-2777. [PMID: 35008099 PMCID: PMC9092411 DOI: 10.1182/bloodadvances.2021006040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/01/2021] [Indexed: 11/20/2022] Open
|
6
|
Impact of alternative splicing on mechanisms of resistance to anticancer drugs. Biochem Pharmacol 2021; 193:114810. [PMID: 34673012 DOI: 10.1016/j.bcp.2021.114810] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022]
Abstract
A shared characteristic of many tumors is the lack of response to anticancer drugs. Multiple mechanisms of pharmacoresistance (MPRs) are involved in permitting cancer cells to overcome the effect of these agents. Pharmacoresistance can be primary (intrinsic) or secondary (acquired), i.e., triggered or enhanced in response to the treatment. Moreover, MPRs usually result in the lack of sensitivity to several agents, which accounts for diverse multidrug-resistant (MDR) phenotypes. MPRs are based on the dynamic expression of more than one hundred genes, constituting the so-called resistome. Alternative splicing (AS) during pre-mRNA maturation results in changes affecting proteins involved in the resistome. The resulting splicing variants (SVs) reduce the efficacy of anticancer drugs by lowering the intracellular levels of active agents, altering molecular targets, enhancing both DNA repair ability and defensive mechanism of tumors, inducing changes in the balance between pro-survival and pro-apoptosis signals, modifying interactions with the tumor microenvironment, and favoring malignant phenotypic transitions. Reasons accounting for cancer-associated aberrant splicing include mutations that create or disrupt splicing sites or splicing enhancers or silencers, abnormal expression of splicing factors, and impaired signaling pathways affecting the activity of the splicing machinery. Here we have reviewed the impact of AS on MPR in cancer cells.
Collapse
|
7
|
Mehterov N, Kazakova M, Sbirkov Y, Vladimirov B, Belev N, Yaneva G, Todorova K, Hayrabedyan S, Sarafian V. Alternative RNA Splicing-The Trojan Horse of Cancer Cells in Chemotherapy. Genes (Basel) 2021; 12:genes12071085. [PMID: 34356101 PMCID: PMC8306420 DOI: 10.3390/genes12071085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Almost all transcribed human genes undergo alternative RNA splicing, which increases the diversity of the coding and non-coding cellular landscape. The resultant gene products might have distinctly different and, in some cases, even opposite functions. Therefore, the abnormal regulation of alternative splicing plays a crucial role in malignant transformation, development, and progression, a fact supported by the distinct splicing profiles identified in both healthy and tumor cells. Drug resistance, resulting in treatment failure, still remains a major challenge for current cancer therapy. Furthermore, tumor cells often take advantage of aberrant RNA splicing to overcome the toxicity of the administered chemotherapeutic agents. Thus, deciphering the alternative RNA splicing variants in tumor cells would provide opportunities for designing novel therapeutics combating cancer more efficiently. In the present review, we provide a comprehensive outline of the recent findings in alternative splicing in the most common neoplasms, including lung, breast, prostate, head and neck, glioma, colon, and blood malignancies. Molecular mechanisms developed by cancer cells to promote oncogenesis as well as to evade anticancer drug treatment and the subsequent chemotherapy failure are also discussed. Taken together, these findings offer novel opportunities for future studies and the development of targeted therapy for cancer-specific splicing variants.
Collapse
Affiliation(s)
- Nikolay Mehterov
- Department of Medical Biology, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (N.M.); (M.K.); (Y.S.)
- Research Institute, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Maria Kazakova
- Department of Medical Biology, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (N.M.); (M.K.); (Y.S.)
- Research Institute, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Yordan Sbirkov
- Department of Medical Biology, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (N.M.); (M.K.); (Y.S.)
- Research Institute, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Boyan Vladimirov
- Department of Maxillofacial Surgery, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Nikolay Belev
- Medical Simulation and Training Center, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Galina Yaneva
- Department of Biology, Faculty of Pharmacy, Medical University of Varna, 9002 Varna, Bulgaria;
| | - Krassimira Todorova
- Laboratory of Reproductive OMICs Technologies, Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (K.T.); (S.H.)
| | - Soren Hayrabedyan
- Laboratory of Reproductive OMICs Technologies, Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (K.T.); (S.H.)
| | - Victoria Sarafian
- Department of Medical Biology, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (N.M.); (M.K.); (Y.S.)
- Research Institute, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
- Correspondence: ; Tel.: +359-882-512-952
| |
Collapse
|
8
|
Dlamini Z, Shoba B, Hull R. Splicing machinery genomics events in acute myeloid leukaemia (AML): in search for therapeutic targets, diagnostic and prognostic biomarkers. Am J Cancer Res 2020; 10:2690-2704. [PMID: 33042611 PMCID: PMC7539770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common form of acute leukaemia and has the highest mortality rate. Screening for mutations in patients with AML has shown that in many cases genes carrying mutations are involved in the alternate splicing of mRNA. These include members of the Serine Arginine (SR) family of splicing factors, as well as components of the spliceosome. Mutations in associated genes also affect the function of members of the heterogeneous nuclear ribonucleoproteins (hnRNPs). These mutations in splicing factors can lead to changes in the expression of different isoforms whose splicing is controlled by these splicing factors. These different isoforms may have completely different functions, for example, members of the BCl-2 family are alternately spliced to give rise to pro and anti-apoptotic members. Mutations in the splicing factors that control the splicing of these mRNAs can lead to changes in the expression level of these isoforms. In this review we will examine the mechanics of the regulation of the various splice isoforms and how this drives the development of tumors. This information is pertinent for drug discovery, and the splicing factors with the most promise for pharmacological control will be discussed.
Collapse
Affiliation(s)
- Zodwa Dlamini
- SAMRC/UP Precision Prevention and Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, University of Pretoria, Faculty of Health SciencesHatfield 0028, South Africa
| | - Bonginkosi Shoba
- Department of Medical Oncology, University of Pretoria, Faculty of Health SciencesHatfield 0028, South Africa
| | - Rodney Hull
- SAMRC/UP Precision Prevention and Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, University of Pretoria, Faculty of Health SciencesHatfield 0028, South Africa
| |
Collapse
|
9
|
Yang W, Liu S, Li Y, Wang Y, Deng Y, Sun W, Huang H, Xie J, He A, Chen H, Tao A, Yan J. Pyridoxine induces monocyte-macrophages death as specific treatment of acute myeloid leukemia. Cancer Lett 2020; 492:96-105. [PMID: 32860849 DOI: 10.1016/j.canlet.2020.08.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/15/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023]
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological malignancy that gradually develops resistance to current chemotherapy treatments. The available chemotherapy drugs show serious non-specific cytotoxicity to healthy normal cells, resulting in relapse and low survival rates. Natural small molecules with less toxicity and high selectivity for AML are urgently needed. In this study, we confirmed that pyridoxine (vitamin B6) selectively induces monocyte macrophages to undergo programmed cell death in two different modes: caspase-3-dependent apoptosis in U937 cells or GSDME-mediated pyroptosis in THP-1 cells. Further molecular analysis indicated that blocking the caspase pathway could switch the death to MLKL-dependent necroptosis and subsequent extensive inflammatory response. Pyridoxine also delayed the disease progression in a THP-1 leukemia mouse model. In addition, it induced the death of primary AML cells from AML patients by activating caspase-8/3. Overall, our results identify pyridoxine, a low-toxicity natural small molecule, as a potential therapeutic drug for AML treatment.
Collapse
Affiliation(s)
- Wei Yang
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Shuai Liu
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Yunlei Li
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Yujie Wang
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Yao Deng
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Weimin Sun
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Hualan Huang
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Junmou Xie
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Andong He
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Honglv Chen
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Ailin Tao
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, 510260, PR China.
| | - Jie Yan
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, 510260, PR China.
| |
Collapse
|
10
|
Itskovich SS, Gurunathan A, Clark J, Burwinkel M, Wunderlich M, Berger MR, Kulkarni A, Chetal K, Venkatasubramanian M, Salomonis N, Kumar AR, Lee LH. MBNL1 regulates essential alternative RNA splicing patterns in MLL-rearranged leukemia. Nat Commun 2020; 11:2369. [PMID: 32398749 PMCID: PMC7217953 DOI: 10.1038/s41467-020-15733-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
Despite growing awareness of the biologic features underlying MLL-rearranged leukemia, targeted therapies for this leukemia have remained elusive and clinical outcomes remain dismal. MBNL1, a protein involved in alternative splicing, is consistently overexpressed in MLL-rearranged leukemias. We found that MBNL1 loss significantly impairs propagation of murine and human MLL-rearranged leukemia in vitro and in vivo. Through transcriptomic profiling of our experimental systems, we show that in leukemic cells, MBNL1 regulates alternative splicing (predominantly intron exclusion) of several genes including those essential for MLL-rearranged leukemogenesis, such as DOT1L and SETD1A. We finally show that selective leukemic cell death is achievable with a small molecule inhibitor of MBNL1. These findings provide the basis for a new therapeutic target in MLL-rearranged leukemia and act as further validation of a burgeoning paradigm in targeted therapy, namely the disruption of cancer-specific splicing programs through the targeting of selectively essential RNA binding proteins.
Collapse
Affiliation(s)
- Svetlana S Itskovich
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Arun Gurunathan
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Jason Clark
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Matthew Burwinkel
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Mikaela R Berger
- College of Medicine, University of Cincinnati School of Medicine, Cincinnati, OH, 45267, USA
| | - Aishwarya Kulkarni
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, 45221, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Kashish Chetal
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Meenakshi Venkatasubramanian
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, 45221, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, 45229, USA
| | - Ashish R Kumar
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, 45229, USA
| | - Lynn H Lee
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, 45229, USA.
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
11
|
Tanaka I, Chakraborty A, Saulnier O, Benoit-Pilven C, Vacher S, Labiod D, Lam EWF, Bièche I, Delattre O, Pouzoulet F, Auboeuf D, Vagner S, Dutertre M. ZRANB2 and SYF2-mediated splicing programs converging on ECT2 are involved in breast cancer cell resistance to doxorubicin. Nucleic Acids Res 2020; 48:2676-2693. [PMID: 31943118 PMCID: PMC7049692 DOI: 10.1093/nar/gkz1213] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 12/09/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022] Open
Abstract
Besides analyses of specific alternative splicing (AS) variants, little is known about AS regulatory pathways and programs involved in anticancer drug resistance. Doxorubicin is widely used in breast cancer chemotherapy. Here, we identified 1723 AS events and 41 splicing factors regulated in a breast cancer cell model of acquired resistance to doxorubicin. An RNAi screen on splicing factors identified the little studied ZRANB2 and SYF2, whose depletion partially reversed doxorubicin resistance. By RNAi and RNA-seq in resistant cells, we found that the AS programs controlled by ZRANB2 and SYF2 were enriched in resistance-associated AS events, and converged on the ECT2 splice variant including exon 5 (ECT2-Ex5+). Both ZRANB2 and SYF2 were found associated with ECT2 pre-messenger RNA, and ECT2-Ex5+ isoform depletion reduced doxorubicin resistance. Following doxorubicin treatment, resistant cells accumulated in S phase, which partially depended on ZRANB2, SYF2 and the ECT2-Ex5+ isoform. Finally, doxorubicin combination with an oligonucleotide inhibiting ECT2-Ex5 inclusion reduced doxorubicin-resistant tumor growth in mouse xenografts, and high ECT2-Ex5 inclusion levels were associated with bad prognosis in breast cancer treated with chemotherapy. Altogether, our data identify AS programs controlled by ZRANB2 and SYF2 and converging on ECT2, that participate to breast cancer cell resistance to doxorubicin.
Collapse
Affiliation(s)
- Iris Tanaka
- Institut Curie, PSL Research University, CNRS UMR 3348, F-91405 Orsay, France
- Paris Sud University, Paris-Saclay University, CNRS UMR 3348, F-91405 Orsay, France
- Equipe Labellisée Ligue Contre le Cancer
| | - Alina Chakraborty
- Institut Curie, PSL Research University, CNRS UMR 3348, F-91405 Orsay, France
- Paris Sud University, Paris-Saclay University, CNRS UMR 3348, F-91405 Orsay, France
- Equipe Labellisée Ligue Contre le Cancer
| | - Olivier Saulnier
- Institut Curie Research Center, SIREDO Oncology Center, Paris-Sciences-Lettres Research University, INSERM U830, Laboratory of Biology and Genetics of Cancers, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, France
| | | | - Sophie Vacher
- Unité de Pharmacogénomique, Service de génétique, Institut Curie, Paris, France; Université Paris Descartes, Paris, France
| | - Dalila Labiod
- Paris Sud University, Paris-Saclay University, CNRS UMR 3348, F-91405 Orsay, France
- Institut Curie, PSL Research University, Translational Research Department, Experimental Radiotherapy Platform, Orsay, France
| | | | - Ivan Bièche
- Unité de Pharmacogénomique, Service de génétique, Institut Curie, Paris, France; Université Paris Descartes, Paris, France
| | - Olivier Delattre
- Institut Curie Research Center, SIREDO Oncology Center, Paris-Sciences-Lettres Research University, INSERM U830, Laboratory of Biology and Genetics of Cancers, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, France
| | - Frédéric Pouzoulet
- Paris Sud University, Paris-Saclay University, CNRS UMR 3348, F-91405 Orsay, France
- Institut Curie, PSL Research University, Translational Research Department, Experimental Radiotherapy Platform, Orsay, France
| | - Didier Auboeuf
- CNRS UMR 5239, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Stéphan Vagner
- Institut Curie, PSL Research University, CNRS UMR 3348, F-91405 Orsay, France
- Paris Sud University, Paris-Saclay University, CNRS UMR 3348, F-91405 Orsay, France
- Equipe Labellisée Ligue Contre le Cancer
| | - Martin Dutertre
- Institut Curie, PSL Research University, CNRS UMR 3348, F-91405 Orsay, France
- Paris Sud University, Paris-Saclay University, CNRS UMR 3348, F-91405 Orsay, France
- Equipe Labellisée Ligue Contre le Cancer
| |
Collapse
|
12
|
Mesbahi Y, Zekri A, Ghaffari SH, Tabatabaie PS, Ahmadian S, Ghavamzadeh A. Blockade of JAK2/STAT3 intensifies the anti-tumor activity of arsenic trioxide in acute myeloid leukemia cells: Novel synergistic mechanism via the mediation of reactive oxygen species. Eur J Pharmacol 2018; 834:65-76. [PMID: 30012499 DOI: 10.1016/j.ejphar.2018.07.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/02/2018] [Accepted: 07/12/2018] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species (ROS) are essential mediators of crucial cellular processes including apoptosis, proliferation, survival and cell cycle. Their regulatory role in cancer progression has seen in different human malignancies such as acute myeloid leukemia (AML). AML patients suffer from high resistance of the tumors against routine therapeutics including ATO. ATO enhance reactive oxygen species levels and induce apoptosis and suppresses proliferation in AML cells. However, some pathways such as JAK2/STAT3 ease anti-tumor activity of ATO by reducing reactive oxygen species amount and protecting the cell from apoptosis. In the present study, we use ruxolitinib (potent JAK2 inhibitor) to increase the sensitivity of AML cells to ATO treatment. We test, the effect of this combination on metabolic activity, proliferation, colony formation, cell cycle distribution, apoptosis, oxidative stress and DNA damage. Our results showed that combination of ATO with ruxolitinib synergistically reduced metabolic activity, proliferation and survival of AML cell lines. This combination induced G1/S cell cycle arrest because of reactive oxygen species elevation and GSH reduction. Besides, enhancement of reactive oxygen species increased apoptosis rate in combination samples. We uncovered that the synergistic anti-tumor effect of ATO and ruxolitinib in AML cells mediates via reactive oxygen species elevation and DNA damage. Overall, our results show that the combinatorial therapy of AML cells is more effective than solo-targeted therapy.
Collapse
Affiliation(s)
- Yashar Mesbahi
- Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran; Institute of Biochemistry and Biophysics, University of Tehran, P.O. Box 13145-1384, Tehran, Iran
| | - Ali Zekri
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Seyed H Ghaffari
- Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran; Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran; Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran, Iran.
| | | | - Shahin Ahmadian
- Institute of Biochemistry and Biophysics, University of Tehran, P.O. Box 13145-1384, Tehran, Iran
| | - Ardeshir Ghavamzadeh
- Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran; Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran; Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran, Iran
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Hematopoietic stem/progenitor cell fate decision during hematopoiesis is regulated by intracellular and extracellular signals such as transcription factors, growth factors, and cell-to-cell interactions. In this review, we explore the function of DEK, a nuclear phosphoprotein, on gene regulation. We also examine how DEK is secreted and internalized by cells, and discuss how both endogenous and extracellular DEK regulates hematopoiesis. Finally, we explore what currently is known about the regulation of DEK during inflammation. RECENT FINDINGS DEK negatively regulates the proliferation of early myeloid progenitor cells but has a positive effect on the differentiation of mature myeloid cells. Inflammation regulates intracellular DEK concentrations with inflammatory stimuli enhancing DEK expression. Inflammation-induced nuclear factor-kappa B activation is regulated by DEK, resulting in changes in the production of other inflammatory molecules such as IL-8. Inflammatory stimuli in turn regulates DEK secretion by cells of hematopoietic origin. However, how inflammation-induced expression and secretion of DEK regulates hematopoiesis remains unknown. SUMMARY Understanding how DEK regulates hematopoiesis under both homeostatic and inflammatory conditions may lead to a better understanding of the biology of HSCs and HPCs. Furthering our knowledge of the regulation of hematopoiesis will ultimately lead to new therapeutics that may increase the efficacy of hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Maegan L Capitano
- Indiana University School of Medicine, Department of Microbiology and Immunology, Indianapolis, Indiana, USA
| | | |
Collapse
|
14
|
Mohamed AM, Balsat M, Koering C, Maucort-Boulch D, Boissel N, Payen-Gay L, Cheok M, Mortada H, Auboeuf D, Pinatel C, El-Hamri M, Tigaud I, Hayette S, Dumontet C, Cros E, Flandrin-Gresta P, Nibourel O, Preudhomme C, Thomas X, Nicolini FE, Solly F, Guyotat D, Campos L, Michallet M, Ceraulo A, Mortreux F, Wattel E. TET2 exon 2 skipping is an independent favorable prognostic factor for cytogenetically normal acute myelogenous leukemia (AML): TET2 exon 2 skipping in AML. Leuk Res 2017; 56:21-28. [PMID: 28167452 DOI: 10.1016/j.leukres.2017.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 01/03/2017] [Accepted: 01/05/2017] [Indexed: 01/21/2023]
Abstract
In AML, approximately one-third of expressed genes are abnormally spliced, including aberrant TET2 exon 2 expression. In a discovery cohort (n=99), TET2 exon 2 skipping (TET2E2S) was found positively associated with a significant reduction in the cumulative incidence of relapse (CIR). Age, cytogenetics, and TET2E2S were independent prognostic factors for disease-free survival (DFS), and favorable effects on outcomes predominated in cytogenetic normal (CN)-AML and younger patients. Using the same cutoff in a validation cohort of 86 CN-AML patients, TET2E2Shigh patients were found to be younger than TET2low patients without a difference in the rate of complete remission. However, TET2E2Shigh patients exhibited a significantly lower CIR (p<10-4). TET2E2S and FLT3-ITD, but not age or NPM1 mutation status were independent prognostic factors for DFS and event-free survival (EFS), while TET2E2S was the sole prognostic factor that we identified for overall survival (OS). In both the intermediate-1 and favorable ELN genetic categories, TET2E2S remained significantly associated with prolonged survival. There was no correlation between TET2E2S status and outcomes in 34 additional AML patients who were unfit for IC. Therefore our results suggest that assessments of TET2 exon 2 splicing status might improve risk stratification in CN-AML patients treated with IC.
Collapse
Affiliation(s)
- Aminetou Mint Mohamed
- Université Lyon 1, CNRS UMR5239, Oncovirologie et Biothérapies, Faculté de Médecine Lyon Sud, ENS - HCL, Pierre Bénite, France
| | - Marie Balsat
- Université Lyon 1, CNRS UMR5239, Oncovirologie et Biothérapies, Faculté de Médecine Lyon Sud, ENS - HCL, Pierre Bénite, France
| | - Catherine Koering
- Université Lyon 1, CNRS UMR5239, Oncovirologie et Biothérapies, Faculté de Médecine Lyon Sud, ENS - HCL, Pierre Bénite, France
| | - Delphine Maucort-Boulch
- Service de Biostatistique, UMR 5558, Laboratoire Biostatistique Santé, Pierre-Bénite, France
| | | | - Lea Payen-Gay
- INSERM, UMR-S1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Meyling Cheok
- Jean-Pierre Aubert Center, INSERM U837, Facteurs de persistance des cellules leucémiques, Institute for Cancer Research in Lille, Genomics Core, 1, Place de Verdun, 59045, Lille Cedex, France
| | - Hussein Mortada
- Centre de Recherche sur le Cancer de Lyon, Inserm, Epissage alternatif et progression tumorale, Lyon, France
| | - Didier Auboeuf
- Centre de Recherche sur le Cancer de Lyon, Inserm, Epissage alternatif et progression tumorale, Lyon, France
| | - Christiane Pinatel
- Centre de Recherche sur le Cancer de Lyon, Inserm, Echappement aux systèmes de sauvegarde et plasticité cellulaire, Lyon, France
| | - Mohamed El-Hamri
- Université Lyon I, Service d'Hématologie, Pavillon Marcel Bérard, Centre Hospitalier Lyon-Sud, Pierre Bénite, France
| | - Isabelle Tigaud
- Université Lyon I, Cytogénétique, Laboratoire d'Hématologie, Centre Hospitalier Lyon-Sud, Pierre Bénite, France
| | - Sandrine Hayette
- Université Lyon I, Laboratoire d'Hématologie-Biologie Moléculaire, Centre Hospitalier Lyon-Sud, Pierre Bénite, France
| | - Charles Dumontet
- Centre de Recherche sur le Cancer de Lyon, Inserm, Anticorps Anticancer, Lyon, France
| | - Emeline Cros
- Centre de Recherche sur le Cancer de Lyon, Inserm, Anticorps Anticancer, Lyon, France
| | - Pascale Flandrin-Gresta
- Université Lyon 1, CNRS UMR5239, Oncovirologie et Biothérapies, Faculté de Médecine Lyon Sud, ENS - HCL, Pierre Bénite, France; Université de Saint Etienne, Laboratoire d'Hématologie, CHU de Saint-Etienne, France
| | - Olivier Nibourel
- Jean-Pierre Aubert Center, INSERM U837, Facteurs de persistance des cellules leucémiques, Institute for Cancer Research in Lille, Genomics Core, 1, Place de Verdun, 59045, Lille Cedex, France
| | - Claude Preudhomme
- Jean-Pierre Aubert Center, INSERM U837, Facteurs de persistance des cellules leucémiques, Institute for Cancer Research in Lille, Genomics Core, 1, Place de Verdun, 59045, Lille Cedex, France
| | - Xavier Thomas
- Université Lyon I, Service d'Hématologie, Pavillon Marcel Bérard, Centre Hospitalier Lyon-Sud, Pierre Bénite, France
| | - Franck-Emmanuel Nicolini
- Université Lyon I, Service d'Hématologie, Pavillon Marcel Bérard, Centre Hospitalier Lyon-Sud, Pierre Bénite, France
| | - Françoise Solly
- Université Lyon 1, CNRS UMR5239, Oncovirologie et Biothérapies, Faculté de Médecine Lyon Sud, ENS - HCL, Pierre Bénite, France; Université de Saint Etienne, Laboratoire d'Hématologie, CHU de Saint-Etienne, France
| | - Denis Guyotat
- Université Lyon 1, CNRS UMR5239, Oncovirologie et Biothérapies, Faculté de Médecine Lyon Sud, ENS - HCL, Pierre Bénite, France; Institut de Cancérologie de la Loire, CHU de Saint-Etienne, Saint Priest en Jarez, France
| | - Lydia Campos
- Université Lyon 1, CNRS UMR5239, Oncovirologie et Biothérapies, Faculté de Médecine Lyon Sud, ENS - HCL, Pierre Bénite, France; Université de Saint Etienne, Laboratoire d'Hématologie, CHU de Saint-Etienne, France
| | - Mauricette Michallet
- Université Lyon 1, CNRS UMR5239, Oncovirologie et Biothérapies, Faculté de Médecine Lyon Sud, ENS - HCL, Pierre Bénite, France; Université Lyon I, Service d'Hématologie, Pavillon Marcel Bérard, Centre Hospitalier Lyon-Sud, Pierre Bénite, France
| | - Antony Ceraulo
- Université Lyon 1, CNRS UMR5239, Oncovirologie et Biothérapies, Faculté de Médecine Lyon Sud, ENS - HCL, Pierre Bénite, France
| | - Franck Mortreux
- Université Lyon 1, CNRS UMR5239, Oncovirologie et Biothérapies, Faculté de Médecine Lyon Sud, ENS - HCL, Pierre Bénite, France.
| | - Eric Wattel
- Université Lyon 1, CNRS UMR5239, Oncovirologie et Biothérapies, Faculté de Médecine Lyon Sud, ENS - HCL, Pierre Bénite, France; Université Lyon I, Service d'Hématologie, Pavillon Marcel Bérard, Centre Hospitalier Lyon-Sud, Pierre Bénite, France.
| |
Collapse
|
15
|
Zhou J, Chng WJ. Aberrant RNA splicing and mutations in spliceosome complex in acute myeloid leukemia. Stem Cell Investig 2017; 4:6. [PMID: 28217708 PMCID: PMC5313292 DOI: 10.21037/sci.2017.01.06] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 12/29/2016] [Indexed: 12/19/2022]
Abstract
The spliceosome, the cellular splicing machinery, regulates RNA splicing of messenger RNA precursors (pre-mRNAs) into maturation of protein coding RNAs. Recurrent mutations and copy number changes in genes encoding spliceosomal proteins and splicing regulatory factors have tumor promoting or suppressive functions in hematological malignancies, as well as some other cancers. Leukemia stem cell (LSC) populations, although rare, are essential contributors of treatment failure and relapse. Recent researches have provided the compelling evidence that link the erratic spicing activity to the LSC phenotype in acute myeloid leukemia (AML). In this article, we describe the diverse roles of aberrant splicing in hematological malignancies, particularly in AML and their contributions to the characteristics of LSC. We review these promising strategies to exploit the addiction of aberrant spliceosomal machinery for anti-leukemic therapy with aim to eradicate LSC. However, given the complexity and plasticity of spliceosome and not fully known functions of splicing in cancer, the challenges facing the development of the therapeutic strategies targeting RAN splicing are highlighted and future directions are discussed too.
Collapse
Affiliation(s)
- Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore 117599, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore 117599, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS), Singapore 119228, Singapore
| |
Collapse
|
16
|
Siveen KS, Uddin S, Mohammad RM. Targeting acute myeloid leukemia stem cell signaling by natural products. Mol Cancer 2017; 16:13. [PMID: 28137265 PMCID: PMC5282735 DOI: 10.1186/s12943-016-0571-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/19/2016] [Indexed: 12/11/2022] Open
Abstract
Acute myeloid leukemia (AML) is the most commonly diagnosed leukemia in adults (25%) and comprises 15-20% in children. It is a genetically heterogeneous aggressive disease characterized by the accumulation of somatically acquired genetic changes, altering self-renewal, proliferation, and differentiation of hematopoietic progenitor cells, resulting in uncontrolled clonal proliferation of malignant progenitor myeloid cells in the bone marrow, peripheral blood, and occasionally in other body tissues. Treatment with modern chemotherapy regimen (cytarabine and daunorubicin) usually achieves high remission rates, still majority of patients are found to relapse, resulting in only 40-45% overall 5 year survival in young patients and less than 10% in the elderly AML patients. The leukemia stem cells (LSCs) are characterized by their unlimited self-renewal, repopulating potential and long residence in a quiescent state of G0/G1 phase. LSCs are considered to have a pivotal role in the relapse and refractory of AML. Therefore, new therapeutic strategies to target LSCs with limited toxicity towards the normal hematopoietic population is critical for the ultimate curing of AML. Ongoing research works with natural products like parthenolide (a natural plant extract derived compound) and its derivatives, that have the ability to target multiple pathways that regulate the self-renewal, growth and survival of LSCs point to ways for a possible complete remission in AML. In this review article, we will update and discuss various natural products that can target LSCs in AML.
Collapse
Affiliation(s)
- Kodappully Sivaraman Siveen
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, Qatar.
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, Qatar
| | - Ramzi M Mohammad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, Qatar
| |
Collapse
|
17
|
Solly F, Koering C, Mohamed AM, Maucort-Boulch D, Robert G, Auberger P, Flandrin-Gresta P, Adès L, Fenaux P, Kosmider O, Tavernier-Tardy E, Cornillon J, Guyotat D, Campos L, Mortreux F, Wattel E. An miRNA–DNMT1 Axis Is Involved in Azacitidine Resistance and Predicts Survival in Higher-Risk Myelodysplastic Syndrome and Low Blast Count Acute Myeloid Leukemia. Clin Cancer Res 2016; 23:3025-3034. [DOI: 10.1158/1078-0432.ccr-16-2304] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/02/2016] [Accepted: 11/05/2016] [Indexed: 11/16/2022]
|
18
|
Avin BA, Umbricht CB, Zeiger MA. Human telomerase reverse transcriptase regulation by DNA methylation, transcription factor binding and alternative splicing (Review). Int J Oncol 2016; 49:2199-2205. [PMID: 27779655 DOI: 10.3892/ijo.2016.3743] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 10/17/2016] [Indexed: 12/31/2022] Open
Abstract
The catalytic subunit of telomerase, human telomerase reverse transcriptase (hTERT), plays an essential role in telomere maintenance to oppose cellular senescence and, is highly regulated in normal and cancerous cells. Regulation of hTERT occurs through multiple avenues, including a unique pattern of CpG promoter methylation and alternative splicing. Promoter methylation affects the binding of transcription factors, resulting in changes in expression of the gene. In addition to expression level changes, changes in promoter binding can affect alternative splicing in a cotranscriptional manner. The alternative splicing of hTERT results in either the full length transcript which can form the active telomerase complex with hTR, or numerous inactive isoforms. Both regulation strategies are exploited in cancer to activate telomerase, however, the exact mechanism is unknown. Therefore, unraveling the link between promoter methylation status and alternative splicing for hTERT could expose yet another level of hTERT regulation. In an attempt to provide insight into the cellular control of active telomerase in cancer, this review will discuss our current perspective on CpG methylation of the hTERT promoter region, summarize the different forms of alternatively spliced variants, and examine examples of transcription factor binding that affects splicing.
Collapse
Affiliation(s)
- Brittany A Avin
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Christopher B Umbricht
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Martha A Zeiger
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
19
|
Tian C, Zheng G, Zhuang H, Li X, Hu D, Zhu L, Wang T, You MJ, Zhang Y. MicroRNA-494 Activation Suppresses Bone Marrow Stromal Cell-Mediated Drug Resistance in Acute Myeloid Leukemia Cells. J Cell Physiol 2016; 232:1387-1395. [PMID: 27696394 DOI: 10.1002/jcp.25628] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 09/30/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Chen Tian
- Department of Hematology; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy; Tianjin Medical University Cancer Institute and Hospital; Tianjin People's Republic of China
| | - Guoguang Zheng
- State Key Laboratory of Experimental Hematology; Institute of Hematology and Blood Diseases Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Tianjin People's Republic of China
| | - Hongqing Zhuang
- Department of Hematology; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy; Tianjin Medical University Cancer Institute and Hospital; Tianjin People's Republic of China
| | - Xubin Li
- Department of Hematology; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy; Tianjin Medical University Cancer Institute and Hospital; Tianjin People's Republic of China
| | - Dongzhi Hu
- Department of Hematology; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy; Tianjin Medical University Cancer Institute and Hospital; Tianjin People's Republic of China
| | - Lei Zhu
- Department of Hematology; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy; Tianjin Medical University Cancer Institute and Hospital; Tianjin People's Republic of China
| | - Tengteng Wang
- Department of Hematology; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy; Tianjin Medical University Cancer Institute and Hospital; Tianjin People's Republic of China
| | - Mingjian James You
- Department of Hematopathology; University of Texas MD Anderson Cancer Center; Houston Texas
| | - Yizhuo Zhang
- Department of Hematology; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy; Tianjin Medical University Cancer Institute and Hospital; Tianjin People's Republic of China
| |
Collapse
|
20
|
de Necochea-Campion R, Shouse GP, Zhou Q, Mirshahidi S, Chen CS. Aberrant splicing and drug resistance in AML. J Hematol Oncol 2016; 9:85. [PMID: 27613060 PMCID: PMC5018179 DOI: 10.1186/s13045-016-0315-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/02/2016] [Indexed: 02/08/2023] Open
Abstract
The advent of next-generation sequencing technologies has unveiled a new window into the heterogeneity of acute myeloid leukemia (AML). In particular, recurrent mutations in spliceosome machinery and genome-wide aberrant splicing events have been recognized as a prominent component of this disease. This review will focus on how these factors influence drug resistance through altered splicing of tumor suppressor and oncogenes and dysregulation of the apoptotic signaling network. A better understanding of these factors in disease progression is necessary to design appropriate therapeutic strategies recognizing specific alternatively spliced or mutated oncogenic targets.
Collapse
Affiliation(s)
- Rosalia de Necochea-Campion
- Biospecimen Laboratory, Loma Linda University Cancer Center, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Geoffrey P Shouse
- Division of Hematology/Oncology, Loma Linda University School of Medicine, 11175 Campus Street, Chan Shun Pavilion 11015, Loma Linda, CA, 92354, USA
| | - Qi Zhou
- Biospecimen Laboratory, Loma Linda University Cancer Center, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Saied Mirshahidi
- Biospecimen Laboratory, Loma Linda University Cancer Center, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Chien-Shing Chen
- Biospecimen Laboratory, Loma Linda University Cancer Center, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA. .,Division of Hematology/Oncology, Loma Linda University School of Medicine, 11175 Campus Street, Chan Shun Pavilion 11015, Loma Linda, CA, 92354, USA.
| |
Collapse
|
21
|
Yang XY, Zhang MY, Zhou Q, Wu SY, Zhao Y, Gu WY, Pan J, Cen JN, Chen ZX, Guo WG, Chen CS, Yan WH, Hu SY. High expression of S100A8 gene is associated with drug resistance to etoposide and poor prognosis in acute myeloid leukemia through influencing the apoptosis pathway. Onco Targets Ther 2016; 9:4887-99. [PMID: 27540302 PMCID: PMC4982505 DOI: 10.2147/ott.s101594] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
S100A8 has been increasingly recognized as a biomarker in multiple solid tumors and has played pivotal roles in hematological malignancies. S100A8 is potentially an indicator for poor survival in acute myeloid leukemia (AML) in retrospective studies. However, the mechanisms of S100A8 are diverse in cancers. In this study, we investigated the correlation of S100A8 at the transcription level with clinical parameters in 91 de novo AML patients and explored its mechanisms of chemoresistance to etoposide in vitro. The transcription level of S100A8 was significantly lower at initial and relapse stages of AML samples than at complete remission (P<0.001) and than in the control group (P=0.0078), while no significant difference could be found between initial and relapse stages (P=0.257). Patients with high transcription levels of S100A8 exhibited a shorter overall survival (P=0.0012). HL-60 cells transfected with S100A8 showed resistance to etoposide with a higher level IC50 value and lower apoptosis rate compared with HL-60 cells transfected with empty vector. Thirty-six genes were significantly downregulated and 12 genes were significantly upregulated in S100A8 overexpression group compared with control group in which 360 genes involved in apoptotic genes array were performed by real-time reverse transcriptase polymerase chain reaction. Among them, the caspase-3, Bcl-2, and Bax were verified by Western blot analysis which indicated that the role of S100A8 in resistance to chemotherapy was closely related with antiapoptosis. In conclusion, critical S100A8 provided useful clinical information in predicting the outcome of AML. The main mechanism of S100A8 which promoted chemoresistance was antiapoptosis.
Collapse
Affiliation(s)
- Xiao-Yan Yang
- Department of Haematology and Oncology, Children's Hospital of Soochow University
| | - Ming-Ying Zhang
- Department of Haematology and Oncology, Children's Hospital of Soochow University
| | - Qi Zhou
- Department of Haematology and Oncology, Children's Hospital of Soochow University
| | - Shui-Yan Wu
- Department of Haematology and Oncology, Children's Hospital of Soochow University
| | - Ye Zhao
- Department of Haematology, The First Affiliated Hospital of Soochow University, Suzhou
| | - Wei-Ying Gu
- Department of Haematology, The Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Jian Pan
- Department of Haematology and Oncology, Children's Hospital of Soochow University
| | - Jian-Nong Cen
- Department of Haematology, The First Affiliated Hospital of Soochow University, Suzhou
| | - Zi-Xing Chen
- Department of Haematology, The First Affiliated Hospital of Soochow University, Suzhou
| | - Wen-Ge Guo
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ
| | - Chien-Shing Chen
- Department of Internal Medicine, Division of Hematology and Medical Oncology and Biospecimen Laboratory, Loma Linda University, Loma Linda, CA, USA
| | - Wen-Hua Yan
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Shao-Yan Hu
- Department of Haematology and Oncology, Children's Hospital of Soochow University
| |
Collapse
|