1
|
Mao J, Cai Z, Xie D, Guo M, Gao Y, Zhao G, Zhou J. CA3 bridges dietary restriction to glioblastoma suppression and tumor progression as a key downstream effector. Sci Rep 2025; 15:18661. [PMID: 40436961 PMCID: PMC12119974 DOI: 10.1038/s41598-025-01986-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 05/09/2025] [Indexed: 06/01/2025] Open
Abstract
Dietary restriction (DR) is recognized as a health-promoting, non-pharmacological intervention with demonstrated inhibitory effects on the initiation and progression of cancer. The molecular mechanisms underpinning DR's anticancer activity are pivotal, with documented evidence of its suppressive role across a spectrum of cancers. Glioblastoma multiforme (GBM) represents an aggressively malignant intracranial neoplasm, and despite incremental therapeutic and managerial advancements, the clinical outcomes remain suboptimal. Consequently, the discovery of novel molecular markers to augment diagnostic accuracy and therapeutic efficacy is imperative. Employing an array of bioinformatics strategies, we conducted an exhaustive analysis of molecules associated with DR, culminating in the identification of CA3 as a novel molecular marker for GBM. We evaluated its diagnostic and therapeutic potential within GBM. Our data indicate that the DR-associated molecule CA3 may exhibit correlations with multiple GBM phenotypes, including the immune contexture, with particular emphasis on the tumor's invasive and migratory capacities. Subsequent inquiries confirmed that modulating CA3 expression can effectively curb the genesis and progression of GBM. Our research substantiates that DR can mitigate the onset and development of GBM via the gene CA3, thereby validating a novel GBM marker and proposing a non-pharmacological interventional approach for this life-threatening condition.
Collapse
Affiliation(s)
- Junxiang Mao
- The Second Hospital & Clinical Medical School, Lanzhou University, No.82 Cuiyingmen, Linxia Road, Chengguan District, Lanzhou City, 730000, Gansu Province, China
| | - Zhibiao Cai
- Department of Neurosurgery, The 940 th Hospital of Joint Logistics Support force of Chinese People's Liberation Army, No.333, Nanbinhe Road, Qilihe District, Lanzhou City, 730000, Gansu Province, China
| | - Dong Xie
- Department of First Clinical College of Medicine, Gansu University of Traditional Chinese Medicine, No. 35 Dingxi East Road, Chengguan District, Lanzhou City, 730000, Gansu Province, China
| | - Man Guo
- Department of First Clinical College of Medicine, Gansu University of Traditional Chinese Medicine, No. 35 Dingxi East Road, Chengguan District, Lanzhou City, 730000, Gansu Province, China
| | - Yu Gao
- Department of First Clinical College of Medicine, Gansu University of Traditional Chinese Medicine, No. 35 Dingxi East Road, Chengguan District, Lanzhou City, 730000, Gansu Province, China
| | - Guohui Zhao
- Department of First Clinical College of Medicine, Gansu University of Traditional Chinese Medicine, No. 35 Dingxi East Road, Chengguan District, Lanzhou City, 730000, Gansu Province, China
| | - Jie Zhou
- The Second Hospital & Clinical Medical School, Lanzhou University, No.82 Cuiyingmen, Linxia Road, Chengguan District, Lanzhou City, 730000, Gansu Province, China.
| |
Collapse
|
2
|
Hou H, Liu X, Liu J, Wang Y. Carbohydrate polymer-based nanoparticles with cell membrane camouflage for cancer therapy: A review. Int J Biol Macromol 2025; 289:138620. [PMID: 39674458 DOI: 10.1016/j.ijbiomac.2024.138620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/21/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
Recent developments in biomimetic nanoparticles, specifically carbohydrate polymer-coated cell membrane nanoparticles, have demonstrated considerable promise in treating cancer. These systems improve drug delivery by imitating natural cell actions, enhancing biocompatibility, and decreasing immune clearance. Conventional drug delivery methods frequently face challenges with non-specific dispersal and immune detection, which can hinder their efficiency and safety. These biomimetic nanoparticles improve target specificity, retention times, and therapeutic efficiency by using biological components like chitosan, hyaluronic acid, and alginate. Chitosan-based nanoparticles, which come from polysaccharides found in nature, have self-assembly abilities that make them better drug carriers. Hyaluronic acid helps target tissues more effectively, especially in cancer environments where there are high levels of hyaluronic acid receptors. Alginate-based systems also enhance drug delivery by being biocompatible and degradable, making them ideal choices for advanced therapeutic uses. Moreover, these particles hold potential for overcoming resistance to multiple drugs and boosting the body's immune reaction to tumors through precise delivery and decreased side effects of chemotherapy drugs. This review delves into the possibilities of using carbohydrate polymer-functionalized nanoparticles and their impact on enhancing the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Haijia Hou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xuejian Liu
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Liu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Yudong Wang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Moghbeli M. MicroRNAs as the pivotal regulators of cisplatin resistance in osteosarcoma. Pathol Res Pract 2023; 249:154743. [PMID: 37549518 DOI: 10.1016/j.prp.2023.154743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
Osteosarcoma (OS) is an aggressive bone tumor that originates from mesenchymal cells. It is considered as the eighth most frequent childhood cancer that mainly affects the tibia and femur among the teenagers and young adults. OS can be usually diagnosed by a combination of MRI and surgical biopsy. The intra-arterial cisplatin (CDDP) and Adriamycin is one of the methods of choices for the OS treatment. CDDP induces tumor cell death by disturbing the DNA replication. Although, CDDP has a critical role in improving the clinical complication in OS patients, a high ratio of CDDP resistance is observed among these patients. Prolonged CDDP administrations have also serious side effects in normal tissues and organs. Therefore, the molecular mechanisms of CDDP resistance should be clarified to define the novel therapeutic modalities in OS. Multidrug resistance (MDR) can be caused by various cellular and molecular processes such as drug efflux, detoxification, and signaling pathways. MicroRNAs (miRNAs) are the key regulators of CDDP response by the post transcriptional regulation of target genes involved in MDR. In the present review we have discussed all of the miRNAs associated with CDDP response in OS cells. It was observed that the majority of reported miRNAs increased CDDP sensitivity in OS cells through the regulation of signaling pathways, apoptosis, transporters, and autophagy. This review highlights the miRNAs as reliable non-invasive markers for the prediction of CDDP response in OS patients.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Messeha SS, Noel S, Zarmouh NO, Womble T, Latinwo LM, Soliman KFA. Involvement of AKT/PI3K Pathway in Sanguinarine's Induced Apoptosis and Cell Cycle Arrest in Triple-negative Breast Cancer Cells. Cancer Genomics Proteomics 2023; 20:323-342. [PMID: 37400144 PMCID: PMC10320563 DOI: 10.21873/cgp.20385] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND/AIM Chemotherapy resistance in triple-negative breast cancer (TNBC) cells is well documented. Therefore, it is necessary to develop safer and more effective therapeutic agents to enhance the outcomes of chemotherapeutic agents. The natural alkaloid sanguinarine (SANG) has demonstrated therapeutic synergy when coupled with chemotherapeutic agents. SANG can also induce cell cycle arrest and trigger apoptosis in various cancer cells. MATERIALS AND METHODS In this study, we investigated the molecular mechanism underlying SANG activity in MDA-MB-231 and MDA-MB-468 cells as two genetically different models of TNBC. We employed various assays including Alamar Blue to measure the effect of SANG on cell viability and proliferation rate, flow cytometry analysis to study the potential of the compound to induce apoptosis and cell cycle arrest, quantitative qRT PCR apoptosis array to measure the expression of different genes mediating apoptosis, and the western system was used to analyze the impact of the compound on AKT protein expression. RESULTS SANG lowered cell viability and disrupted cell cycle progression in both cell lines. Furthermore, S-phase cell cycle arrest-mediated apoptosis was found to be the primary contributor to cell growth inhibition in MDA-MB-231 cells. SANG-treated TNBC cells showed significantly up-regulated mRNA expression of 18 genes associated with apoptosis, including eight TNF receptor superfamily (TNFRSF), three members of the BCL2 family, and two members of the caspase (CASP) family in MDA-MB-468 cells. In MDA-MB-231 cells, two members of the TNF superfamily and four members of the BCL2 family were affected. The western study data showed the inhibition of AKT protein expression in both cell lines concurrent with up-regulated BCL2L11 gene. Our results point to the AKT/PI3K signaling pathway as one of the key mechanisms behind SANG-induced cell cycle arrest and death. CONCLUSION SANG shows anticancer properties and apoptosis-related gene expression changes in the two TNBC cell lines and suggests AKT/PI3K pathway implication in apoptosis induction and cell cycle arrest. Thus, we propose SANG's potential as a solitary or supplementary treatment agent against TNBC.
Collapse
Affiliation(s)
- Samia S Messeha
- Division of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL, U.S.A
| | - Sophie Noel
- Division of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL, U.S.A
| | - Najla O Zarmouh
- Faculty of Medical Technology-Misrata, Libyan Ministry of Technical & Vocational Education, Misrata, Libya
| | - Tracy Womble
- Division of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Lekan M Latinwo
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL, U.S.A
| | - Karam F A Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A.;
| |
Collapse
|
5
|
Cellular senescence in malignant cells promotes tumor progression in mouse and patient Glioblastoma. Nat Commun 2023; 14:441. [PMID: 36707509 PMCID: PMC9883514 DOI: 10.1038/s41467-023-36124-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults, yet it remains refractory to systemic therapy. Elimination of senescent cells has emerged as a promising new treatment approach against cancer. Here, we investigated the contribution of senescent cells to GBM progression. Senescent cells are identified in patient and mouse GBMs. Partial removal of p16Ink4a-expressing malignant senescent cells, which make up less than 7 % of the tumor, modifies the tumor ecosystem and improves the survival of GBM-bearing female mice. By combining single cell and bulk RNA sequencing, immunohistochemistry and genetic knockdowns, we identify the NRF2 transcription factor as a determinant of the senescent phenotype. Remarkably, our mouse senescent transcriptional signature and underlying mechanisms of senescence are conserved in patient GBMs, in whom higher senescence scores correlate with shorter survival times. These findings suggest that senolytic drug therapy may be a beneficial adjuvant therapy for patients with GBM.
Collapse
|
6
|
He W, Li X, Morsch M, Ismail M, Liu Y, Rehman FU, Zhang D, Wang Y, Zheng M, Chung R, Zou Y, Shi B. Brain-Targeted Codelivery of Bcl-2/Bcl-xl and Mcl-1 Inhibitors by Biomimetic Nanoparticles for Orthotopic Glioblastoma Therapy. ACS NANO 2022; 16:6293-6308. [PMID: 35353498 DOI: 10.1021/acsnano.2c00320] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Glioblastoma (GBM) is among the most treatment-resistant solid tumors and often recurrs after resection. One of the mechanisms through which GBM escapes various treatment modalities is the overexpression of anti-apoptotic Bcl-2 family proteins (e.g., Bcl-2, Bcl-xl, and Mcl-1) in tumor cells. Small-molecule inhibitors such as ABT-263 (ABT), which can promote mitochondrial-mediated cell apoptosis by selectively inhibiting the function of Bcl-2 and Bcl-xl, have been proven to be promising anticancer agents in clinical trials. However, the therapeutic prospects of ABT for GBM treatment are hampered by its limited blood-brain barrier (BBB) penetration, dose-dependent thrombocytopenia, and the drug resistance driven by Mcl-1, which is overexpressed in GBM cells and further upregulated upon treatment with ABT. Herein, we reported that the Mcl-1-specific inhibitor A-1210477 (A12) can act synergistically with ABT to induce potent cell apoptosis in U87 MG cells, drug-resistant U251 cells, and patient-derived GBM cancer stem cells. We further designed a biomimetic nanomedicine, based on the apolipoprotein E (ApoE) peptide-decorated red blood cell membrane and pH-sensitive dextran nanoparticles, for the brain-targeted delivery of ABT and A12. The synergistic anti-GBM effect was retained after encapsulation in the nanomedicine. Additionally, the obtained nanomedicine possessed good biocompatibility, exhibited efficient BBB penetration, and could effectively suppress tumor growth and prolong the survival time of mice bearing orthotopic GBM xenografts without inducing detectable adverse effects.
Collapse
Affiliation(s)
| | | | - Marco Morsch
- Center for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | | | | | | | | | | | | | - Roger Chung
- Center for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yan Zou
- Center for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Bingyang Shi
- Center for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
7
|
Ghaemi S, Fekrirad Z, Zamani N, Rahmani R, Arefian E. Non-coding RNAs Enhance the Apoptosis Efficacy of Therapeutic Agents Used for the Treatment of Glioblastoma Multiform. J Drug Target 2022; 30:589-602. [DOI: 10.1080/1061186x.2022.2047191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Shokoofeh Ghaemi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Zahra Fekrirad
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Nina Zamani
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Rana Rahmani
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Pediatric Cell Therapy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Westhoff MA, Schuler-Ortoli M, Zerrinius D, Hadzalic A, Schuster A, Strobel H, Scheuerle A, Wong T, Wirtz CR, Debatin KM, Peraud A. Bcl-XL but Not Bcl-2 Is a Potential Target in Medulloblastoma Therapy. Pharmaceuticals (Basel) 2022; 15:ph15010091. [PMID: 35056150 PMCID: PMC8779796 DOI: 10.3390/ph15010091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 01/26/2023] Open
Abstract
Medulloblastoma (MB) is the most common solid tumour in children and, despite current treatment with a rather aggressive combination therapy, accounts for 10% of all deaths associated with paediatric cancer. Breaking the tumour cells’ intrinsic resistance to therapy-induced cell death should lead to less aggressive and more effective treatment options. In other tumour entities, this has been achieved by modulating the balance between the various pro- and anti-apoptotic members of the Bcl-2 family with small molecule inhibitors. To evaluate the therapeutic benefits of ABT-199 (Venetoclax), a Bcl-2 inhibitor, and ABT-263 (Navitoclax), a dual Bcl-XL/Bcl-2 inhibitor, increasingly more relevant model systems were investigated. Starting from established MB cell lines, progressing to primary patient-derived material and finally an experimental tumour system imbedded in an organic environment were chosen. Assessment of the metabolic activity (a surrogate readout for population viability), the induction of DNA fragmentation (apoptosis) and changes in cell number (the combined effect of alterations in proliferation and cell death induction) revealed that ABT-263, but not ABT-199, is a promising candidate for combination therapy, synergizing with cell death-inducing stimuli. Interestingly, in the experimental tumour setting, the sensitizing effect of ABT-263 seems to be predominantly mediated via an anti-proliferative and not a pro-apoptotic effect, opening a future line of investigation. Our data show that modulation of specific members of the Bcl-2 family might be a promising therapeutic addition for the treatment of MB.
Collapse
Affiliation(s)
- Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, Ulm University Hospital, 89075 Ulm, Germany; (A.S.); (H.S.); (T.W.); (K.-M.D.)
- Correspondence: (M.-A.W.); (A.P.); Tel.: +49-731-500-57495 (M.-A.W.); +49-731-500-55001 (A.P.)
| | - Marie Schuler-Ortoli
- Section Pediatric Neurosurgery, Department of Neurosurgery, Ulm University Hospital, 89081 Ulm, Germany; (M.S.-O.); (D.Z.); (A.H.)
| | - Daniela Zerrinius
- Section Pediatric Neurosurgery, Department of Neurosurgery, Ulm University Hospital, 89081 Ulm, Germany; (M.S.-O.); (D.Z.); (A.H.)
| | - Amina Hadzalic
- Section Pediatric Neurosurgery, Department of Neurosurgery, Ulm University Hospital, 89081 Ulm, Germany; (M.S.-O.); (D.Z.); (A.H.)
| | - Andrea Schuster
- Department of Pediatrics and Adolescent Medicine, Ulm University Hospital, 89075 Ulm, Germany; (A.S.); (H.S.); (T.W.); (K.-M.D.)
| | - Hannah Strobel
- Department of Pediatrics and Adolescent Medicine, Ulm University Hospital, 89075 Ulm, Germany; (A.S.); (H.S.); (T.W.); (K.-M.D.)
| | | | - Tiana Wong
- Department of Pediatrics and Adolescent Medicine, Ulm University Hospital, 89075 Ulm, Germany; (A.S.); (H.S.); (T.W.); (K.-M.D.)
- Section Pediatric Neurosurgery, Department of Neurosurgery, Ulm University Hospital, 89081 Ulm, Germany; (M.S.-O.); (D.Z.); (A.H.)
| | | | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Hospital, 89075 Ulm, Germany; (A.S.); (H.S.); (T.W.); (K.-M.D.)
| | - Aurelia Peraud
- Section Pediatric Neurosurgery, Department of Neurosurgery, Ulm University Hospital, 89081 Ulm, Germany; (M.S.-O.); (D.Z.); (A.H.)
- Correspondence: (M.-A.W.); (A.P.); Tel.: +49-731-500-57495 (M.-A.W.); +49-731-500-55001 (A.P.)
| |
Collapse
|
9
|
Nguyen TTT, Shang E, Westhoff MA, Karpel-Massler G, Siegelin MD. Methodological Approaches for Assessing Metabolomic Changes in Glioblastomas. Methods Mol Biol 2022; 2445:305-328. [PMID: 34973000 DOI: 10.1007/978-1-0716-2071-7_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Glioblastoma (GBM), a highly malignant primary brain tumor, inevitably leads to death. In the last decade, a variety of novel molecular characteristics of GBMs were unraveled. The identification of the mutation in the IDH1 and less commonly IDH2 gene was surprising and ever since has nurtured research in the field of GBM metabolism. While initially thought that mutated IDH1 were to act as a loss of function mutation it became clear that it conferred the production of an oncometabolite that in turn substantially reprograms GBM metabolism. While mutated IDH1 represents truly the tip of the iceberg, there are numerous other related observations in GBM that are of significant interest to the field, including the notion that oxidative metabolism appears to play a more critical role than believed earlier. Metabolic zoning is another important hallmark of GBM since it was found that the infiltrative margin that drives GBM progression reveals enrichment of fatty acid derivatives. Consistently, fatty acid metabolism appears to be a novel therapeutic target for GBM. How metabolism in GBM intersects is another pivotal issue that appears to be important for its progression and response and resistance to therapies. In this review, we will summarize some of the most relevant findings related to GBM metabolism and cell death and how these observations are influencing the field. We will provide current approaches that are applied in the field to measure metabolomic changes in GBM models, including the detection of unlabeled and labeled metabolites as well as extracellular flux analysis.
Collapse
Affiliation(s)
- Trang T T Nguyen
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Enyuan Shang
- Department of Biological Sciences, Bronx Community College, City University of New York, Bronx, NY, USA
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | | | - Markus D Siegelin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
10
|
Lin H, Koren SA, Cvetojevic G, Girardi P, Johnson GV. The role of BAG3 in health and disease: A "Magic BAG of Tricks". J Cell Biochem 2022; 123:4-21. [PMID: 33987872 PMCID: PMC8590707 DOI: 10.1002/jcb.29952] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/25/2021] [Indexed: 01/03/2023]
Abstract
The multi-domain structure of Bcl-2-associated athanogene 3 (BAG3) facilitates its interaction with many different proteins that participate in regulating a variety of biological pathways. After revisiting the BAG3 literature published over the past ten years with Citespace software, we classified the BAG3 research into several clusters, including cancer, cardiomyopathy, neurodegeneration, and viral propagation. We then highlighted recent key findings in each cluster. To gain greater insight into the roles of BAG3, we analyzed five different published mass spectrometry data sets of proteins that co-immunoprecipitate with BAG3. These data gave us insight into universal, as well as cell-type-specific BAG3 interactors in cancer cells, cardiomyocytes, and neurons. Finally, we mapped variable BAG3 SNPs and also mutation data from previous publications to further explore the link between the domains and function of BAG3. We believe this review will provide a better understanding of BAG3 and direct future studies towards understanding BAG3 function in physiological and pathological conditions.
Collapse
Affiliation(s)
- Heng Lin
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| | - Shon A. Koren
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| | - Gregor Cvetojevic
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| | - Peter Girardi
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| | - Gail V.W. Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| |
Collapse
|
11
|
The role of ubiquitin-specific peptidases in glioma progression. Biomed Pharmacother 2021; 146:112585. [PMID: 34968923 DOI: 10.1016/j.biopha.2021.112585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/24/2022] Open
Abstract
The balance between ubiquitination and deubiquitination is crucial for protein stability, function and location under physiological conditions. Dysregulation of E1/E2/E3 ligases or deubiquitinases (DUBs) results in malfunction of the ubiquitin system and is involved in many diseases. Increasing reports have indicated that ubiquitin-specific peptidases (USPs) play a part in the progression of many kinds of cancers and could be good targets for anticancer treatment. Glioma is the most common malignant tumor in the central nervous system. Clinical treatment for high-grade glioma is unsatisfactory thus far. Multiple USPs are dysregulated in glioma and have the potential to be therapeutic targets. In this review, we collected studies on the roles of USPs in glioma progression and summarized the mechanisms of USPs in glioma tumorigenesis, malignancy and chemoradiotherapy resistance.
Collapse
|
12
|
Walczak A, Radek M, Majsterek I. The Role of ER Stress-Related Phenomena in the Biology of Malignant Peripheral Nerve Sheath Tumors. Int J Mol Sci 2021; 22:ijms22179405. [PMID: 34502310 PMCID: PMC8430526 DOI: 10.3390/ijms22179405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNST) are rare but one of the most aggressive types of cancer. Currently, there are no effective chemotherapy strategies for these malignancies. The inactivation of the neurofibromatosis type I (NF1) gene, followed by loss of TP53, is an early stage in MPNST carcinogenesis. NF1 is a negative regulator of the Ras proteins family, which are key factors in regulating cell growth, homeostasis and survival. Cell cycle dysregulation induces a stress phenotype, such as proteotoxic stress, metabolic stress, and oxidative stress, which should result in cell death. However, in the case of neoplastic cells, we observe not only the avoidance of apoptosis, but also the impact of stress factors on the treatment effectiveness. This review focuses on the pathomechanisms underlying MPNST cells physiology, and discusses the possible ways to develop a successful treatment based on the molecular background of the disease.
Collapse
Affiliation(s)
- Anna Walczak
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-647 Lodz, Poland;
| | - Maciej Radek
- Department of Neurosurgery and Peripheral Nerve Surgery, Medical University of Lodz, 90-647 Lodz, Poland;
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-647 Lodz, Poland;
- Correspondence:
| |
Collapse
|
13
|
Photodynamic Therapy Combined with Bcl-2/Bcl-xL Inhibition Increases the Noxa/Mcl-1 Ratio Independent of Usp9X and Synergistically Enhances Apoptosis in Glioblastoma. Cancers (Basel) 2021; 13:cancers13164123. [PMID: 34439278 PMCID: PMC8393699 DOI: 10.3390/cancers13164123] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 07/29/2021] [Indexed: 01/14/2023] Open
Abstract
Simple Summary Glioblastoma represents one of the most common malignant brain tumors in adults and is associated with a poor clinical outcome despite current therapeutic measures. Therefore, novel strategies for the treatment of this disease are urgently needed. In this work, we examined the antineoplastic effects of a combined treatment with photodynamic therapy and ABT-263 on different glioblastoma cells. Photodynamic therapy uses the selective uptake of a photosensitive molecule followed by activation by light of a specific wavelength to kill cancer cells. ABT-263 is a small molecule inhibitor that targets cancer cells by facilitating programmed cell death. This novel combinatorial therapeutic strategy synergistically killed glioblastoma cells. These results indicate that a combination of the two treatment modalities may be of benefit for the treatment of glioblastoma supporting further studies. Abstract The purpose of this study was to assess in vitro whether the biological effects of 5-aminolevulinic acid (5-ALA)-based photodynamic therapy are enhanced by inhibition of the anti-apoptotic Bcl-2 family proteins Bcl-2 and Bcl-xL in different glioblastoma models. Pre-clinical testing of a microcontroller-based device emitting light of 405 nm wavelength in combination with exposure to 5-ALA (PDT) and the Bcl-2/Bcl-xL inhibitor ABT-263 (navitoclax) was performed in human established and primary cultured glioblastoma cells as well as glioma stem-like cells. We applied cell count analyses to assess cellular proliferation and Annexin V/PI staining to examine pro-apoptotic effects. Western blot analyses and specific knockdown experiments using siRNA were used to examine molecular mechanisms of action. Bcl-2/Bcl-xL inhibition synergistically enhanced apoptosis in combination with PDT. This effect was caspase-dependent. On the molecular level, PDT caused an increased Noxa/Mcl-1 ratio, which was even more pronounced when combined with ABT-263 in a Usp9X-independent manner. Our data showed that Bcl-2/Bcl-xL inhibition increases the response of glioblastoma cells toward photodynamic therapy. This effect can be partly attributed to cytotoxicity and is likely related to a pro-apoptotic shift because of an increased Noxa/Mcl-1 ratio. The results of this study warrant further investigation.
Collapse
|
14
|
Xie K, Liu Z, Chen N, Chen T. redPATH: Reconstructing the Pseudo Development Time of Cell Lineages in Single-cell RNA-seq Data and Applications in Cancer. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 19:292-305. [PMID: 33607293 PMCID: PMC8602773 DOI: 10.1016/j.gpb.2020.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 03/27/2020] [Accepted: 09/08/2020] [Indexed: 11/28/2022]
Abstract
The recent advancement of single-cell RNA sequencing (scRNA-seq) technologies facilitates the study of cell lineages in developmental processes and cancer. In this study, we developed a computational method, called redPATH, to reconstruct the pseudo developmental time of cell lineages using a consensus asymmetric Hamiltonian path algorithm. Besides, we developed a novel approach to visualize the trajectory development and implemented visualization methods to provide biological insights. We validated the performance of redPATH by segmenting different stages of cell development on multiple neural stem cell and cancer datasets, as well as other single-cell transcriptome data. In particular, we identified a stem cell-like subpopulation in malignant glioma cells. These cells express known proliferative markers, such as GFAP, ATP1A2, IGFBPL1, and ALDOC, and remain silenced for quiescent markers such as ID3. Furthermore, we identified MCL1 as a significant gene that regulates cell apoptosis and CSF1R for reprogramming macrophages to control tumor growth. In conclusion, redPATH is a comprehensive tool for analyzing scRNA-seq datasets along the pseudo developmental time. redPATH is available at https://github.com/tinglabs/redPATH.
Collapse
Affiliation(s)
- Kaikun Xie
- Institute for Artificial Intelligence, State Key Lab of Intelligent Technology and Systems, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China; Tsinghua-Fuzhou Institute of Digital Technology, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
| | - Zehua Liu
- Institute for Artificial Intelligence, State Key Lab of Intelligent Technology and Systems, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China; Tsinghua-Fuzhou Institute of Digital Technology, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Ning Chen
- Institute for Artificial Intelligence, State Key Lab of Intelligent Technology and Systems, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China; Tsinghua-Fuzhou Institute of Digital Technology, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China.
| | - Ting Chen
- Institute for Artificial Intelligence, State Key Lab of Intelligent Technology and Systems, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China; Tsinghua-Fuzhou Institute of Digital Technology, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
15
|
Balakrishnan I, Danis E, Pierce A, Madhavan K, Wang D, Dahl N, Sanford B, Birks DK, Davidson N, Metselaar DS, Meel MH, Lemma R, Donson A, Vijmasi T, Katagi H, Sola I, Fosmire S, Alimova I, Steiner J, Gilani A, Hulleman E, Serkova NJ, Hashizume R, Hawkins C, Carcaboso AM, Gupta N, Monje M, Jabado N, Jones K, Foreman N, Green A, Vibhakar R, Venkataraman S. Senescence Induced by BMI1 Inhibition Is a Therapeutic Vulnerability in H3K27M-Mutant DIPG. Cell Rep 2020; 33:108286. [PMID: 33086074 PMCID: PMC7574900 DOI: 10.1016/j.celrep.2020.108286] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 07/05/2020] [Accepted: 09/25/2020] [Indexed: 01/19/2023] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is an incurable brain tumor of childhood characterized by histone mutations at lysine 27, which results in epigenomic dysregulation. There has been a failure to develop effective treatment for this tumor. Using a combined RNAi and chemical screen targeting epigenomic regulators, we identify the polycomb repressive complex 1 (PRC1) component BMI1 as a critical factor for DIPG tumor maintenance in vivo. BMI1 chromatin occupancy is enriched at genes associated with differentiation and tumor suppressors in DIPG cells. Inhibition of BMI1 decreases cell self-renewal and attenuates tumor growth due to induction of senescence. Prolonged BMI1 inhibition induces a senescence-associated secretory phenotype, which promotes tumor recurrence. Clearance of senescent cells using BH3 protein mimetics co-operates with BMI1 inhibition to enhance tumor cell killing in vivo.
Collapse
Affiliation(s)
- Ilango Balakrishnan
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Etienne Danis
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Angela Pierce
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Krishna Madhavan
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Dong Wang
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Nathan Dahl
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Bridget Sanford
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Diane K Birks
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Nate Davidson
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Dennis S Metselaar
- Princess Máxima Center for Pediatric Oncology, Utrecht and Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Michaël Hananja Meel
- Princess Máxima Center for Pediatric Oncology, Utrecht and Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Rakeb Lemma
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew Donson
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Trinka Vijmasi
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Hiroaki Katagi
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ismail Sola
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Susan Fosmire
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Irina Alimova
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Jenna Steiner
- Departments of Radiology, Radiation Oncology, and Anesthesiology, Colorado Animal Imaging Shared Resource (AISR), University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ahmed Gilani
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Esther Hulleman
- Princess Máxima Center for Pediatric Oncology, Utrecht and Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Natalie J Serkova
- Departments of Radiology, Radiation Oncology, and Anesthesiology, Colorado Animal Imaging Shared Resource (AISR), University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rintaro Hashizume
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Cynthia Hawkins
- Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Angel M Carcaboso
- Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain
| | - Nalin Gupta
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Michelle Monje
- Departments of Neurology, Neurosurgery, Pediatrics, and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada; Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
| | - Kenneth Jones
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Nicholas Foreman
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Adam Green
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Rajeev Vibhakar
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA.
| | - Sujatha Venkataraman
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA.
| |
Collapse
|
16
|
MicroRNA‑22 regulates autophagy and apoptosis in cisplatin resistance of osteosarcoma. Mol Med Rep 2020; 22:3911-3921. [PMID: 33000186 PMCID: PMC7533487 DOI: 10.3892/mmr.2020.11447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 07/20/2020] [Indexed: 01/04/2023] Open
Abstract
Osteosarcoma (OS) is a primary malignant tumor of bone tissue. Effective chemotherapy may improve the survival of patients with OS. MicroRNAs (miRs) serve significant roles in the regulatory function of tumorigenesis and chemosensitivity of different types of cancer. miR‑22 has been revealed to inhibit the proliferation and migration of OS cells, as well as increasing their sensitivity to cisplatin (CDDP). The mechanisms of action behind the functions of miR‑22 in OS drug resistance require investigation. Therefore, in the present study, the human OS cell lines (MG‑63, U2OS, Saos2 and OS9901) and a drug‑resistant cell line (MG‑63/CDDP) were cultured. Cell proliferation, apoptosis and autophagy assays were performed to investigate the proliferation, apoptosis and autophagy of cell lines transfected with miR‑22 mimic. Reverse transcription‑quantitative polymerase chain reaction and western blot analysis were performed to investigate the expression levels of associated genes. The results revealed that miR‑22 inhibited the proliferation of MG‑63 cells and MG‑63/CDDP cells, and enhanced the anti‑proliferative ability of CDDP. miR‑22 induced apoptosis and inhibited autophagy of MG‑63 cells and MG‑63/CDDP cells. Apoptosis‑related genes, including caspase‑3 and Bcl‑2‑associated X protein were upregulated, while B‑cell lymphoma‑2 was downregulated in both cell lines transfected with the miR‑22 mimic. Autophagy protein 5, beclin1 and microtubules‑associated protein 1 light chain 3 were downregulated in both cell lines transfected with miR‑22 mimic. Furthermore, the in vitro and in vivo expression levels of metadherin (MTDH) in the OS/OS‑CDDP‑resistant models were downregulated following transfection with the miR‑22 mimic. Therefore, the results of the present study suggested that miR‑22 promoted CDDP sensitivity by inhibiting autophagy and inducing apoptosis in OS cells, while MTDH may serve a positive role in inducing CDDP resistance of OS cells.
Collapse
|
17
|
Epigenetic Targeting of Mcl-1 Is Synthetically Lethal with Bcl-xL/Bcl-2 Inhibition in Model Systems of Glioblastoma. Cancers (Basel) 2020; 12:cancers12082137. [PMID: 32752193 PMCID: PMC7464325 DOI: 10.3390/cancers12082137] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/23/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022] Open
Abstract
Apoptotic resistance remains a hallmark of glioblastoma (GBM), the most common primary brain tumor in adults, and a better understanding of this process may result in more efficient treatments. By utilizing chromatin immunoprecipitation with next-generation sequencing (CHIP-seq), we discovered that GBMs harbor a super enhancer around the Mcl-1 locus, a gene that has been known to confer cell death resistance in GBM. We utilized THZ1, a known super-enhancer blocker, and BH3-mimetics, including ABT263, WEHI-539, and ABT199. Combined treatment with BH3-mimetics and THZ1 led to synergistic growth reduction in GBM models. Reduction in cellular viability was accompanied by significant cell death induction with features of apoptosis, including disruption of mitochondrial membrane potential followed by activation of caspases. Mechanistically, THZ1 elicited a profound disruption of the Mcl-1 enhancer region, leading to a sustained suppression of Mcl-1 transcript and protein levels, respectively. Mechanism experiments suggest involvement of Mcl-1 in the cell death elicited by the combination treatment. Finally, the combination treatment of ABT263 and THZ1 resulted in enhanced growth reduction of tumors without induction of detectable toxicity in two patient-derived xenograft models of GBM in vivo. Taken together, these findings suggest that combined epigenetic targeting of Mcl-1 along with Bcl-2/Bcl-xL is potentially therapeutically feasible.
Collapse
|
18
|
Pruss M, Dwucet A, Tanriover M, Hlavac M, Kast RE, Debatin KM, Wirtz CR, Halatsch ME, Siegelin MD, Westhoff MA, Karpel-Massler G. Dual metabolic reprogramming by ONC201/TIC10 and 2-Deoxyglucose induces energy depletion and synergistic anti-cancer activity in glioblastoma. Br J Cancer 2020; 122:1146-1157. [PMID: 32115576 PMCID: PMC7156767 DOI: 10.1038/s41416-020-0759-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 01/08/2020] [Accepted: 02/05/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Dysregulation of the metabolome is a hallmark of primary brain malignancies. In this work we examined whether metabolic reprogramming through a multi-targeting approach causes enhanced anti-cancer activity in glioblastoma. METHODS Preclinical testing of a combined treatment with ONC201/TIC10 and 2-Deoxyglucose was performed in established and primary-cultured glioblastoma cells. Extracellular flux analysis was used to determine real-time effects on OXPHOS and glycolysis. Respiratory chain complexes were analysed by western blotting. Biological effects on tumour formation were tested on the chorioallantoic membrane (CAM). RESULTS ONC201/TIC10 impairs mitochondrial respiration accompanied by an increase of glycolysis. When combined with 2-Deoxyglucose, ONC201/TIC10 induces a state of energy depletion as outlined by a significant decrease in ATP levels and a hypo-phosphorylative state. As a result, synergistic anti-proliferative and anti-migratory effects were observed among a broad panel of different glioblastoma cells. In addition, this combinatorial approach significantly impaired tumour formation on the CAM. CONCLUSION Treatment with ONC201/TIC10 and 2-Deoxyglucose results in a dual metabolic reprogramming of glioblastoma cells resulting in a synergistic anti-neoplastic activity. Given, that both agents penetrate the blood-brain barrier and have been used in clinical trials with a good safety profile warrants further clinical evaluation of this therapeutic strategy.
Collapse
Affiliation(s)
- Maximilian Pruss
- Department of Neurological Surgery, Ulm University Medical Center, Ulm, Germany
| | - Annika Dwucet
- Department of Neurological Surgery, Ulm University Medical Center, Ulm, Germany
| | - Mine Tanriover
- Department of Neurological Surgery, Ulm University Medical Center, Ulm, Germany
| | - Michal Hlavac
- Department of Neurological Surgery, Ulm University Medical Center, Ulm, Germany
| | | | - Klaus-Michael Debatin
- Department of Pediatric and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | | | - Marc-Eric Halatsch
- Department of Neurological Surgery, Ulm University Medical Center, Ulm, Germany
| | - Markus David Siegelin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Mike-Andrew Westhoff
- Department of Pediatric and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Georg Karpel-Massler
- Department of Neurological Surgery, Ulm University Medical Center, Ulm, Germany.
| |
Collapse
|
19
|
Iglesia RP, Fernandes CFDL, Coelho BP, Prado MB, Melo Escobar MI, Almeida GHDR, Lopes MH. Heat Shock Proteins in Glioblastoma Biology: Where Do We Stand? Int J Mol Sci 2019; 20:E5794. [PMID: 31752169 PMCID: PMC6888131 DOI: 10.3390/ijms20225794] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 12/16/2022] Open
Abstract
Heat shock proteins (HSPs) are evolutionary conserved proteins that work as molecular chaperones and perform broad and crucial roles in proteostasis, an important process to preserve the integrity of proteins in different cell types, in health and disease. Their function in cancer is an important aspect to be considered for a better understanding of disease development and progression. Glioblastoma (GBM) is the most frequent and lethal brain cancer, with no effective therapies. In recent years, HSPs have been considered as possible targets for GBM therapy due their importance in different mechanisms that govern GBM malignance. In this review, we address current evidence on the role of several HSPs in the biology of GBMs, and how these molecules have been considered in different treatments in the context of this disease, including their activities in glioblastoma stem-like cells (GSCs), a small subpopulation able to drive GBM growth. Additionally, we highlight recent works that approach other classes of chaperones, such as histone and mitochondrial chaperones, as important molecules for GBM aggressiveness. Herein, we provide new insights into how HSPs and their partners play pivotal roles in GBM biology and may open new therapeutic avenues for GBM based on proteostasis machinery.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marilene Hohmuth Lopes
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (R.P.I.); (C.F.d.L.F.); (B.P.C.); (M.B.P.); (M.I.M.E.); (G.H.D.R.A.)
| |
Collapse
|
20
|
Chen R, Wang G, Zheng Y, Hua Y, Cai Z. Drug resistance-related microRNAs in osteosarcoma: Translating basic evidence into therapeutic strategies. J Cell Mol Med 2019; 23:2280-2292. [PMID: 30724027 PMCID: PMC6433687 DOI: 10.1111/jcmm.14064] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/14/2018] [Accepted: 11/08/2018] [Indexed: 12/19/2022] Open
Abstract
Although the application of multiple chemotherapy brought revolutionary changes to improve overall survival of osteosarcoma patients, the existence of multidrug resistance (MDR) has become a great challenge for successful osteosarcoma treatment in recent decades. Substantial studies have revealed various underlying mechanisms of MDR in cancers. As for osteosarcoma, evidence has highlighted that microRNAs (miRNAs) can mediate in the processes of DNA damage response, apoptosis avoidance, autophagy induction, activation of cancer stem cells, and signal transduction. Besides, these drug resistance‐related miRNAs showed much promise for serving as candidates for predictive biomarkers of poor outcomes and shorter survival time, and therapeutic targets to reverse drug resistance and overcome treatment refractoriness. This review aims to demonstrate the potential molecular mechanisms of miRNAs‐regulated drug resistance in osteosarcoma, and provide insight in translating basic evidence into therapeutic strategies.
Collapse
Affiliation(s)
- Ruiling Chen
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gangyang Wang
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Zheng
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingqi Hua
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengdong Cai
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Diao W, Tong X, Yang C, Zhang F, Bao C, Chen H, Liu L, Li M, Ye F, Fan Q, Wang J, Ou-Yang ZC. Behaviors of Glioblastoma Cells in in Vitro Microenvironments. Sci Rep 2019; 9:85. [PMID: 30643153 PMCID: PMC6331579 DOI: 10.1038/s41598-018-36347-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/06/2018] [Indexed: 01/17/2023] Open
Abstract
Glioblastoma (GBM) is the most malignant and highly aggressive brain tumor. In this study, four types of typical GBM cell lines (LN229, SNB19, U87, U251) were cultured in a microfabricated 3-D model to study their in vitro behaviors. The 3-D in vitro model provides hollow micro-chamber arrays containing a natural collagen interface and thus allows the GBM cells to grow in the 3-D chambers. The GBM cells in this model showed specific properties on the aspects of cell morphology, proliferation, migration, and invasion, some of which were rarely observed before. Furthermore, how the cells invaded into the surrounding ECM and the corresponding specific invasion patterns were observed in details, implying that the four types of cells have different features during their development in cancer. This complex in vitro model, if applied to patient derived cells, possesses the potential of becoming a clinically relevant predictive model.
Collapse
Affiliation(s)
- Wenwen Diao
- Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, 55 East Zhongguancun Road, Beijing, 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Xuezhi Tong
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Cheng Yang
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Fengrong Zhang
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chun Bao
- Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, 325001, China.,School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Hao Chen
- Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, 325001, China.,School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Liyu Liu
- College of Physics, Chongqing University, Chongqing, 401331, China
| | - Ming Li
- School of Physical Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.,Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Fangfu Ye
- School of Physical Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.,Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qihui Fan
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Jiangfei Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China.
| | - Zhong-Can Ou-Yang
- Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, 55 East Zhongguancun Road, Beijing, 100190, China. .,School of Physical Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
22
|
Bianchetti E, Bates SJ, Carroll SL, Siegelin MD, Roth KA. Usp9X Regulates Cell Death in Malignant Peripheral Nerve Sheath Tumors. Sci Rep 2018; 8:17390. [PMID: 30478285 PMCID: PMC6255814 DOI: 10.1038/s41598-018-35806-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 11/09/2018] [Indexed: 12/26/2022] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are the leading cause of death in neurofibromatosis type 1 (NF1) patients. Current treatment modalities have been largely unsuccessful in improving MPNST patient survival, making the identification of new therapeutic targets urgent. In this study, we found that interference with Usp9X, a deubiquitinating enzyme which is overexpressed in nervous system tumors, or Mcl-1, an anti-apoptotic member of the Bcl-2 family whose degradation is regulated by Usp9X, causes rapid death in human MPNST cell lines. Although both Usp9X and Mcl-1 knockdown elicited some features of apoptosis, broad spectrum caspase inhibition was ineffective in preventing knockdown-induced MPNST cell death suggesting that caspase-independent death pathways were also activated. Ultrastructural examination of MPNST cells following either Usp9X interference or pharmacological inhibition showed extensive cytoplasmic vacuolization and swelling of endoplasmic reticulum (ER) and mitochondria most consistent with paraptotic cell death. Finally, the Usp9X pharmacological inhibitor WP1130 significantly reduced human MPNST growth and induced tumor cell death in an in vivo xenograft model. In total, these findings indicate that Usp9X and Mcl-1 play significant roles in maintaining human MPNST cell viability and that pharmacological inhibition of Usp9X deubiquitinase activity could be a therapeutic target for MPNST treatment.
Collapse
Affiliation(s)
- E Bianchetti
- Department of Pathology & Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, USA.
| | - S J Bates
- Department of Pathology & Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, USA
| | - S L Carroll
- Medical University of South Carolina, Department of Pathology and Laboratory Medicine, Charleston, South Carolina, USA
| | - M D Siegelin
- Department of Pathology & Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, USA
| | - K A Roth
- Department of Pathology & Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, USA
| |
Collapse
|
23
|
Ferreira J, Ramos AA, Almeida T, Azqueta A, Rocha E. Drug resistance in glioblastoma and cytotoxicity of seaweed compounds, alone and in combination with anticancer drugs: A mini review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 48:84-93. [PMID: 30195884 DOI: 10.1016/j.phymed.2018.04.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/19/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Glioblastomas (GBM) are one of the most aggressive tumor of the central nervous system with an average life expectancy of only 1-2 years after diagnosis, even with the use of advanced treatments with surgery, radiation, and chemotherapy. There are several anticancer drugs with alkylating properties that have been used in the therapy of malignant gliomas. Temozolomide (TMZ) is one of them, widely used even in combination with ionizing radiation. However, the main disadvantage of using these types of drugs in the treatment of GBM is the development of cancer drug resistance. Research of bioactive compounds with anticancer activity has been heavily explored. PURPOSE This review focuses on a carotenoid and a phlorotannin present in seaweed, namely fucoxanthin and phloroglucinol, and their anticancer activity against glioblastoma. The combination of natural compounds with conventional drugs is also discussed. CONCLUSION Several natural compounds existing in seaweeds, such as fucoxanthin and phoroglucinol, have shown cytotoxic activity in models in vitro and in vivo, acting through different molecular mechanisms, such as antioxidant, antiproliferative, DNA damage/DNA repair, proapoptotic, antiangiogenic and antimetastic. Within the scope of interactions with conventional drugs, there are evidences that some seaweed compounds could be used to potentiate the action of anticancer drugs. However, their effects and mechanisms of action, alone or in combination with anticancer drugs, namely TMZ, in glioblastoma cell, still few explored and require more attention due to the unquestionable high potential of these marine compounds.
Collapse
Affiliation(s)
- Joana Ferreira
- Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR - Interdisciplinary Center for Marine and Environmental Research, U.Porto - University of Porto, Avenida General Norton de Matos s/n, Matosinhos 4450-208, Portugal; Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, U.Porto - University of Porto, Rua de Jorge Viterbo Ferreira, n° 228, Porto 4050-313, Portugal; FCUP - Faculty of Sciences, U.Porto - University of Porto (U.Porto), Rua do Campo Alegre, Porto 4169-007, Portugal
| | - Alice Abreu Ramos
- Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR - Interdisciplinary Center for Marine and Environmental Research, U.Porto - University of Porto, Avenida General Norton de Matos s/n, Matosinhos 4450-208, Portugal; Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, U.Porto - University of Porto, Rua de Jorge Viterbo Ferreira, n° 228, Porto 4050-313, Portugal.
| | - Tânia Almeida
- Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR - Interdisciplinary Center for Marine and Environmental Research, U.Porto - University of Porto, Avenida General Norton de Matos s/n, Matosinhos 4450-208, Portugal; Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, U.Porto - University of Porto, Rua de Jorge Viterbo Ferreira, n° 228, Porto 4050-313, Portugal; FCUP - Faculty of Sciences, U.Porto - University of Porto (U.Porto), Rua do Campo Alegre, Porto 4169-007, Portugal
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, University of Navarra, C/ Irunlarrea, CP 31008 Pamplona, Navarra, Spain
| | - Eduardo Rocha
- Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR - Interdisciplinary Center for Marine and Environmental Research, U.Porto - University of Porto, Avenida General Norton de Matos s/n, Matosinhos 4450-208, Portugal; Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, U.Porto - University of Porto, Rua de Jorge Viterbo Ferreira, n° 228, Porto 4050-313, Portugal
| |
Collapse
|
24
|
Ishida CT, Zhang Y, Bianchetti E, Shu C, Nguyen TTT, Kleiner G, Sanchez-Quintero MJ, Quinzii CM, Westhoff MA, Karpel-Massler G, Prabhu VV, Allen JE, Siegelin MD. Metabolic Reprogramming by Dual AKT/ERK Inhibition through Imipridones Elicits Unique Vulnerabilities in Glioblastoma. Clin Cancer Res 2018; 24:5392-5406. [PMID: 30037819 DOI: 10.1158/1078-0432.ccr-18-1040] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/16/2018] [Accepted: 07/17/2018] [Indexed: 12/12/2022]
Abstract
Purpose: The goal of this study is to enhance the efficacy of imipridones, a novel class of AKT/ERK inhibitors that displayed limited therapeutic efficacy against glioblastoma (GBM).Experimental Design: Gene set enrichment, LC/MS, and extracellular flux analyses were used to determine the mechanism of action of novel imipridone compounds, ONC206 and ONC212. Orthotopic patient-derived xenografts were utilized to evaluate therapeutic potency.Results: Imipridones reduce the proliferation of patient-derived xenograft and stem-like glioblastoma cell cultures in vitro and in multiple xenograft models in vivo ONC212 displayed the highest potency. High levels of c-myc predict susceptibility to growth inhibition and apoptosis induction by imipridones and increased host survival in orthotopic patient-derived xenografts. As early as 1 hour, imipridones elicit on-target inhibition, followed by dephosphorylation of GSK3β at serine 9. GSK3β promotes phosphorylation of c-myc at threonine 58 and enhances its proteasomal degradation. Moreover, inhibition of c-myc by BRD4 antagonists sensitizes for imipridone-induced apoptosis in stem-like GBM cells in vitro and in vivo Imipridones affect energy metabolism by suppressing both glycolysis and oxidative phosphorylation, which is accompanied by a compensatory activation of the serine-one carbon-glycine (SOG) pathway, involving the transcription factor ATF4. Interference with the SOG pathway through novel inhibitors of PHGDH results in synergistic cell death induction in vitro and in vivo Conclusions: These results suggest that c-myc expression predicts therapeutic responses to imipridones and that imipridones lead to suppression of tumor cell energy metabolism, eliciting unique metabolic vulnerabilities that can be exploited for clinical relevant drug combination therapies. Clin Cancer Res; 24(21); 5392-406. ©2018 AACR.
Collapse
Affiliation(s)
- Chiaki T Ishida
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Yiru Zhang
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Elena Bianchetti
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Chang Shu
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Trang T T Nguyen
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Giulio Kleiner
- Department of Neurology, Columbia University Medical Center, New York, New York
| | | | - Catarina M Quinzii
- Department of Neurology, Columbia University Medical Center, New York, New York
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | | | | | | | - Markus D Siegelin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York.
| |
Collapse
|
25
|
Zhang Y, Ishida CT, Shu C, Kleiner G, Sanchez-Quintero MJ, Bianchetti E, Quinzii CM, Westhoff MA, Karpel-Massler G, Siegelin MD. Inhibition of Bcl-2/Bcl-xL and c-MET causes synthetic lethality in model systems of glioblastoma. Sci Rep 2018; 8:7373. [PMID: 29743557 PMCID: PMC5943348 DOI: 10.1038/s41598-018-25802-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/30/2018] [Indexed: 12/31/2022] Open
Abstract
Recent data suggest that glioblastomas (GBM) activate the c-MET signaling pathway and display increased levels in anti-apoptotic Bcl-2 family members. Therefore, targeting these two deregulated pathways for therapy might yield synergistic treatment responses. We applied extracellular flux analysis to assess tumor metabolism. We found that combined treatment with ABT263 and Crizotinib synergistically reduces the proliferation of glioblastoma cells, which was dependent on dual inhibition of Bcl-2 and Bcl-xL. The combination treatment led to enhanced apoptosis with loss of mitochondrial membrane potential and activation of caspases. On the molecular level, c-MET-inhibition results in significant energy deprivation with a reduction in oxidative phosphorylation, respiratory capacity and a suppression of intracellular energy production (ATP). In turn, loss of energy levels suppresses protein synthesis, causing a decline in anti-apoptotic Mcl-1 levels. Silencing of Mcl-1 enhanced ABT263 and MET-inhibitor mediated apoptosis, but marginally the combination treatment, indicating that Mcl-1 is the central factor for the induction of cell death induced by the combination treatment. Finally, combined treatment with BH3-mimetics and c-MET inhibitors results in significantly smaller tumors than each treatment alone in a PDX model system of glioblastoma. These results suggest that c-MET inhibition causes a selective vulnerability of GBM cells to Bcl-2/Bcl-xL inhibition.
Collapse
Affiliation(s)
- Yiru Zhang
- Department of Pathology & Cell Biology, Columbia University Medical Center, NY, New York, USA
| | - Chiaki Tsuge Ishida
- Department of Pathology & Cell Biology, Columbia University Medical Center, NY, New York, USA
| | - Chang Shu
- Department of Pathology & Cell Biology, Columbia University Medical Center, NY, New York, USA
| | - Giulio Kleiner
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | | | - Elena Bianchetti
- Department of Pathology & Cell Biology, Columbia University Medical Center, NY, New York, USA
| | - Catarina M Quinzii
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | | | - Markus D Siegelin
- Department of Pathology & Cell Biology, Columbia University Medical Center, NY, New York, USA.
| |
Collapse
|
26
|
Ishida CT, Shu C, Halatsch ME, Westhoff MA, Altieri DC, Karpel-Massler G, Siegelin MD. Mitochondrial matrix chaperone and c-myc inhibition causes enhanced lethality in glioblastoma. Oncotarget 2018; 8:37140-37153. [PMID: 28415755 PMCID: PMC5514897 DOI: 10.18632/oncotarget.16202] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/03/2017] [Indexed: 12/11/2022] Open
Abstract
Malignant gliomas display high levels of the transcription factor c-myc and organize a tumor specific chaperone network within mitochondria. Here, we show that c-myc along with mitochondrial chaperone inhibition displays massive tumor cell death. Inhibition of mitochondrial matrix chaperones and c-myc was established by utilizing genetic as well as pharmacological approaches. Bromodomain and extraterminal (BET) family protein inhibitors, JQ1 and OTX015, were used for c-myc inhibition. Gamitrinib was applied to interfere with mitochondrial matrix chaperones. A xenograft model was used to determine the in vivo efficacy. Combined inhibition of c-myc and mitochondrial matrix chaperones led to a synergistic reduction of cellular proliferation (CI values less than 1) in established glioblastoma, patient-derived xenograft and stem cell-like glioma cultures. The combinatorial treatment of BET inhibitors and Gamitrinib elicited massive apoptosis induction with dissipation of mitochondrial membrane potential and activation of caspases. Mechanistically, BET-inhibitors and Gamitrinib mediated a pronounced integrated stress response with a PERK-dependent up regulation of ATF4 and subsequent modulation of Bcl-2 family of proteins with down-regulation of Mcl-1 and its interacting partner, Usp9X, and an increase in pro-apoptotic Noxa. Blocking ATF4 by siRNA attenuated Gamitrinib/BET inhibitor mediated increase of Noxa. Knockdown of Noxa and Bak protected from the combinatorial treatment. Finally, the combination treatment of Gamitrinib and OTX015 led to a significantly stronger reduction of tumor growth as compared to single treatments in a xenograft model of human glioma without induction of toxicity. Thus, Gamitrinib in combination with BET-inhibitors should be considered for the development for clinical application.
Collapse
Affiliation(s)
- Chiaki Tsuge Ishida
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Chang Shu
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | | | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent medicine, Ulm University Medical Center, Ulm, Germany
| | | | | | - Markus David Siegelin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
27
|
BH3-mimetics and BET-inhibitors elicit enhanced lethality in malignant glioma. Oncotarget 2018; 8:29558-29573. [PMID: 28418907 PMCID: PMC5444687 DOI: 10.18632/oncotarget.16365] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/08/2017] [Indexed: 01/03/2023] Open
Abstract
Drug combination therapies remain pivotal for the treatment of heterogeneous malignancies, such as glioblastomas. Here, we show a novel lethal interaction between Bcl-xL and c-myc inhibition accomplished by bromodomain protein inhibitors. Established, patient-derived xenograft and stem cell-like glioma cells were treated with the novel bromodomain protein inhibitors, JQ1 and OTX015, along with BH3-mimetics, ABT263 or Obatoclax. Synergy was assessed by calculation of CI values. Small interfering RNAs (siRNAs) were used for gene silencing and mechanistic studies. In vivo experiments were performed in a glioblastoma xenograft model. Single treatments with JQ1 and OTX015 had only moderate effects on the reduction of cellular viability. However, the combination treatment of BH3-mimetics along with JQ1 or OTX015 resulted in a highly synergistic reduction of cellular viability in a broad range of different model systems of malignant glioma. Similarly, knockdown of c-myc sensitized glioma cells for ABT263 mediated cell death. The enhanced loss of cellular viability in the combination treatment was mediated by activation of apoptosis with dissipation of mitochondrial membrane potential and caspase cleavage. The combination treatment led to a modulation of anti- and pro-apoptotic Bcl-2 family members with an increase in pro-apoptotic Noxa mediated by ATF4. Small interfering RNA mediated knockdown of Bak and Noxa protected glioma cells from ABT263/JQ1 mediated apoptosis. Finally, the combination treatment of ABT263 and OTX015 resulted in a regression of tumors and a significantly smaller tumor size as compared to single or vehicle treated tumors. Thus, these results warrant clinical testing for the drug combination of BH3-mimetics along with bromodain protein inhibitors.
Collapse
|
28
|
Ren FH, Yang H, He RQ, Lu JN, Lin XG, Liang HW, Dang YW, Feng ZB, Chen G, Luo DZ. Analysis of microarrays of miR-34a and its identification of prospective target gene signature in hepatocellular carcinoma. BMC Cancer 2018; 18:12. [PMID: 29298665 PMCID: PMC5753510 DOI: 10.1186/s12885-017-3941-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 12/19/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Currently, some studies have demonstrated that miR-34a could serve as a suppressor of several cancers including hepatocellular carcinoma (HCC). Previously, we discovered that miR-34a was downregulated in HCC and involved in the tumorigenesis and progression of HCC; however, the mechanism remains unclear. The purpose of this study was to estimate the expression of miR-34a in HCC by applying the microarray profiles and analyzing the predicted targets of miR-34a and their related biological pathways of HCC. METHODS Gene expression omnibus (GEO) datasets were conducted to identify the difference of miR-34a expression between HCC and corresponding normal tissues and to explore its relationship with HCC clinicopathologic features. The natural language processing (NLP), gene ontology (GO), pathway and network analyses were performed to analyze the genes associated with the carcinogenesis and progression of HCC and the targets of miR-34a predicted in silico. In addition, the integrative analysis was performed to explore the targets of miR-34a which were also relevant to HCC. RESULTS The analysis of GEO datasets demonstrated that miR-34a was downregulated in HCC tissues, and no heterogeneity was observed (Std. Mean Difference(SMD) = 0.63, 95% confidence intervals(95%CI):[0.38, 0.88], P < 0.00001; Pheterogeneity = 0.08 I2 = 41%). However, no association was found between the expression value of miR-34a and any clinicopathologic characteristics. In the NLP analysis of HCC, we obtained 25 significant HCC-associated signaling pathways. Besides, we explored 1000 miR-34a-related genes and 5 significant signaling pathways in which CCND1 and Bcl-2 served as necessary hub genes. In the integrative analysis, we found 61 hub genes and 5 significant pathways, including cell cycle, cytokine-cytokine receptor interaction, notching pathway, p53 pathway and focal adhesion, which proposed the relevant functions of miR-34a in HCC. CONCLUSION Our results may lead researchers to understand the molecular mechanism of miR-34a in the diagnosis, prognosis and therapy of HCC. Therefore, the interaction between miR-34a and its targets may promise better prediction and treatment for HCC. And the experiments in vivo and vitro will be conducted by our group to identify the specific mechanism of miR-34a in the progress and deterioration of HCC.
Collapse
Affiliation(s)
- Fang-Hui Ren
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
| | - Hong Yang
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
| | - Rong-Quan He
- Center for Genomic and Personalized Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
| | - Jing-Ning Lu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
| | - Xing-Gu Lin
- Center for Genomic and Personalized Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
| | - Hai-Wei Liang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
| | - Zhen-Bo Feng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China.
| | - Dian-Zhong Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China.
| |
Collapse
|
29
|
Dong JL, Dong HC, Yang L, Qiu ZW, Liu J, Li H, Zhong LX, Song X, Zhang P, Li PN, Zheng LJ. Upregulation of BAG3 with apoptotic and autophagic activities in maggot extract‑promoted rat skin wound healing. Mol Med Rep 2017; 17:3807-3812. [PMID: 29286112 DOI: 10.3892/mmr.2017.8331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 09/21/2017] [Indexed: 11/06/2022] Open
Abstract
Maggot extract (ME) accelerates rat skin wound healing, however its effect on cell maintenance in wound tissues remains unclear. B‑cell lymphoma (Bcl) 2‑associated athanogene (BAG)3 inhibits apoptosis and promotes autophagy by associating with Bcl‑2 or Beclin 1. Bcl‑2, the downstream effector of signal transducer and activator of transcription 3 signaling, is enhanced in ME‑treated wound tissues, which may reinforce the Bcl‑2 anti‑apoptotic activity and/or cooperate with Beclin 1 to regulate autophagy during wound healing. The present study investigated expression levels of BAG3, Bcl‑2, Beclin 1 and light chain (LC)3 levels in rat skin wound tissues in the presence and absence of ME treatment. The results revealed frequent TUNEL‑negative cell death in the wound tissues in the early three days following injury, irrespective to ME treatment. TUNEL‑positive cells appeared in the wound tissues following 4 days of injury and 150 µg/ml ME efficiently reduced apoptotic rate and enhanced BAG3 and Bcl‑2 expression. Elevated Beclin 1 and LC3 levels and an increased LC3 II ratio were revealed in the ME‑treated tissues during the wound healing. The results of the present study demonstrate the anti‑apoptotic effects of BAG3 and Bcl‑2 in ME‑promoted wound healing. Beclin 1/LC3 mediated autophagy may be favorable in maintaining cell survival in the damaged tissues and ME‑upregulated BAG3 may enhance its activity.
Collapse
Affiliation(s)
- Jian-Li Dong
- Department of Orthopedic Surgery, Second Clinical College, Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Hai-Cao Dong
- Department of Orthopedic Surgery, Second Clinical College, Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Liang Yang
- Department of Orthopedic Surgery, Second Clinical College, Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Zhe-Wen Qiu
- Experimental Animal Center, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Jia Liu
- Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Hong Li
- Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Li-Xia Zhong
- Department of Oncology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| | - Xue Song
- Experimental Animal Center, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Peng Zhang
- Experimental Animal Center, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Pei-Nan Li
- Department of Orthopedic Surgery, Second Clinical College, Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Lian-Jie Zheng
- Department of Orthopedic Surgery, Second Clinical College, Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
30
|
Karpel-Massler G, Banu MA, Shu C, Halatsch ME, Westhoff MA, Bruce JN, Canoll P, Siegelin MD. Inhibition of deubiquitinases primes glioblastoma cells to apoptosis in vitro and in vivo. Oncotarget 2017; 7:12791-805. [PMID: 26872380 PMCID: PMC4914322 DOI: 10.18632/oncotarget.7302] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/26/2016] [Indexed: 11/25/2022] Open
Abstract
It remains a challenge in oncology to identify novel drug regimens to efficiently tackle glioblastoma, the most common primary brain tumor in adults. Here, we target deubiquitinases for glioblastoma therapy by utilizing the small-molecule inhibitor WP1130 which has been characterized as a deubiquitinase inhibitor that interferes with the function of Usp9X. Expression analysis data confirm that Usp9X expression is increased in glioblastoma compared to normal brain tissue indicating its potential as a therapeutic. Consistently, increasing concentrations of WP1130 decrease the cellular viability of established, patient-derived xenograft (PDX) and stem cell-like glioblastoma cells. Specific down-regulation of Usp9X reduces viability in glioblastoma cells mimicking the effects of WP1130. Mechanistically, WP1130 elicits apoptosis and increases activation of caspases. Moreover, WP1130 and siRNAs targeting Usp9X reduce the expression of anti-apoptotic Bcl-2 family members and Inhibitor of Apoptosis Proteins, XIAP and Survivin. Pharmacological and genetic interference with Usp9X efficiently sensitized glioblastoma cells to intrinsic and extrinsic apoptotic stimuli. In addition, single treatment with WP1130 elicited anti-glioma activity in an orthotopic proneural murine model of glioblastoma. Finally, the combination treatment of WP1130 and ABT263 inhibited tumor growth more efficiently than each reagent by its own in vivo without detectable side effects or organ toxicity. Taken together, these results suggest that targeting deubiquitinases for glioma therapy is feasible and effective.
Collapse
Affiliation(s)
- Georg Karpel-Massler
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Matei A Banu
- Department of Neurosurgery, Columbia University Medical Center, New York, New York, USA
| | - Chang Shu
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | | | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Jeffrey N Bruce
- Department of Neurosurgery, Columbia University Medical Center, New York, New York, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Markus D Siegelin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
31
|
Fu X, Xie W, Song X, Wu K, Xiao L, Liu Y, Zhang L. Aberrant expression of deubiquitylating enzyme USP9X predicts poor prognosis in gastric cancer. Clin Res Hepatol Gastroenterol 2017; 41:687-692. [PMID: 28274596 DOI: 10.1016/j.clinre.2017.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/30/2016] [Accepted: 01/24/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND Ubiquitin-specific peptidase 9, X-linked (USP9X), a member of deubiquitylating enzymes family, has recently been reported to be associated with a variety of cancer progression. While it functions as either oncogene or tumor suppressor in a context-dependent manner, the expression and role of USP9X in gastric cancer is largely unknown. METHODS Sixty-eight cases of patients with gastric cancer were enrolled in this study. The expression of USP9X and MCL1 were detected by immunohistochemistry. USP9X expression was further analyzed by Western blot. Furthermore, we analyzed the correlation between USP9X and MCL1 expression, as well as USP9X expression and clinicopathologic parameters of gastric cancer. Finally, the significance of USP9X expression in gastric cancer was analyzed by both Kaplan-Meier and Cox regression analysis. RESULTS USP9X expression significantly increased in gastric cancer tissues compared to matched normal tissues. Moreover, expression of USP9X was positive correlated with MCL1 expression (P=0.006) and significant associated with lymph node metastasis (P=0.016), distant metastasis (P=0.001) and tumor staging (P=0.013) in gastric cancer. Importantly, the increasing expression of USP9X in gastric cancer reduces overall survival rate and was an independent factor predicts poor prognosis in patients with gastric cancer. CONCLUSIONS In this study, deubiquitylating enzyme USP9X was overexpressed in gastric cancer, suggesting a potential implication as an oncogene, and was significantly associated with a poorer survival.
Collapse
Affiliation(s)
- Xiang Fu
- Department of General Surgery, Chongqing General Hospital, 400013 Chongqing, People's Republic of China
| | - Wei Xie
- Department of General Surgery, Chongqing General Hospital, 400013 Chongqing, People's Republic of China.
| | - Xiaoxue Song
- Department of General Surgery, Chongqing General Hospital, 400013 Chongqing, People's Republic of China
| | - Kun Wu
- Department of General Surgery, Chongqing General Hospital, 400013 Chongqing, People's Republic of China
| | - Linkang Xiao
- Department of General Surgery, Chongqing General Hospital, 400013 Chongqing, People's Republic of China
| | - Yongqiang Liu
- Department of General Surgery, Chongqing General Hospital, 400013 Chongqing, People's Republic of China
| | - Lei Zhang
- Department of General Surgery, Chongqing General Hospital, 400013 Chongqing, People's Republic of China
| |
Collapse
|
32
|
Valdés-Rives SA, Casique-Aguirre D, Germán-Castelán L, Velasco-Velázquez MA, González-Arenas A. Apoptotic Signaling Pathways in Glioblastoma and Therapeutic Implications. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7403747. [PMID: 29259986 PMCID: PMC5702396 DOI: 10.1155/2017/7403747] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/22/2017] [Accepted: 09/28/2017] [Indexed: 12/18/2022]
Abstract
Glioblastoma multiforme (GBM) is the most hostile type of brain cancer. Its aggressiveness is due to increased invasion, migration, proliferation, angiogenesis, and a decreased apoptosis. In this review, we discuss the role of key regulators of apoptosis in GBM and glioblastoma stem cells. Given their importance in the etiology and pathogenesis of GBM, these signaling molecules may represent potential therapeutic targets.
Collapse
Affiliation(s)
- Silvia Anahi Valdés-Rives
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Diana Casique-Aguirre
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Liliana Germán-Castelán
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Marco A. Velasco-Velázquez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Unidad Periférica de Investigación en Biomedicina Translacional, ISSSTE C.M.N. 20 de Noviembre, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Aliesha González-Arenas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
33
|
Karpel-Massler G, Ishida CT, Bianchetti E, Zhang Y, Shu C, Tsujiuchi T, Banu MA, Garcia F, Roth KA, Bruce JN, Canoll P, Siegelin MD. Induction of synthetic lethality in IDH1-mutated gliomas through inhibition of Bcl-xL. Nat Commun 2017; 8:1067. [PMID: 29057925 PMCID: PMC5651864 DOI: 10.1038/s41467-017-00984-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 08/10/2017] [Indexed: 01/12/2023] Open
Abstract
Certain gliomas often harbor a mutation in the activity center of IDH1 (R132H), which leads to the production of the oncometabolite 2-R-2-hydroxyglutarate (2-HG). In six model systems, including patient-derived stem cell-like glioblastoma cultures, inhibition of Bcl-xL induces significantly more apoptosis in IDH1-mutated cells than in wild-type IDH1 cells. Anaplastic astrocytoma samples with mutated IDH1 display lower levels of Mcl-1 than IDH1 wild-type tumors and specific knockdown of Mcl-1 broadly sensitizes glioblastoma cells to Bcl-xL inhibition-mediated apoptosis. Addition of 2-HG to glioblastoma cultures recapitulates the effects of the IDH mutation on intrinsic apoptosis, shuts down oxidative phosphorylation and reduces ATP levels in glioblastoma cells. 2-HG-mediated energy depletion activates AMPK (Threonine 172), blunting protein synthesis and mTOR signaling, culminating in a decline of Mcl-1. In an orthotopic glioblastoma xenograft model expressing mutated IDH1, Bcl-xL inhibition leads to long-term survival. These results demonstrate that IDH1-mutated gliomas are particularly vulnerable to Bcl-xL inhibition. Glioblastoma (GBM) cells are often characterized by the presence of the IDH1 R132H mutation and high expression of anti-apoptotic proteins. Here, the authors show that the inhibition of Bcl-xL is synthetically lethal in IDH1-mutated GBM models and that this effect is mediated by the oncometabolite, 2-HG, which reduces Mcl-1 protein levels.
Collapse
Affiliation(s)
- Georg Karpel-Massler
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA.,Department of Neurosurgery, University of Ulm Medical Center, Ulm, Germany
| | - Chiaki Tsuge Ishida
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Elena Bianchetti
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Yiru Zhang
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Chang Shu
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Takashi Tsujiuchi
- Department of Neurosurgery, Columbia University Medical Center, New York, NY, 10032, USA
| | - Matei A Banu
- Department of Neurosurgery, Columbia University Medical Center, New York, NY, 10032, USA
| | - Franklin Garcia
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Kevin A Roth
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Jeffrey N Bruce
- Department of Neurosurgery, Columbia University Medical Center, New York, NY, 10032, USA
| | - Peter Canoll
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Markus D Siegelin
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
34
|
Abstract
Accumulating evidence has demonstrated that human cancers arise from various tissues of origin that initiate from cancer stem cells (CSCs) or cancer-initiating cells. The extrinsic and intrinsic apoptotic pathways are dysregulated in CSCs, and these cells play crucial roles in tumor initiation, progression, cell death resistance, chemo- and radiotherapy resistance, and tumor recurrence. Understanding CSC-specific signaling proteins and pathways is necessary to identify specific therapeutic targets that may lead to the development of more efficient therapies selectively targeting CSCs. Several signaling pathways-including the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), maternal embryonic leucine zipper kinase (MELK), NOTCH1, and Wnt/Β-catenin&and expression of the CSC markers CD133, CD24, CD44, Oct4, Sox2, Nanog, and ALDH1A1 maintain CSC properties. Studying such pathways may help to understand CSC biology and lead to the development of potential therapeutic interventions to render CSCs more sensitive to cell death triggered by chemotherapy and radiation therapy. Moreover, recent demonstrations of dedifferentiation of differentiated cancer cells into CSC-like cells have created significant complexity in the CSCs hypothesis. Therefore, any successful therapeutic agent or combination of drugs for cancer therapy must eliminate not only CSCs but differentiated cancer cells and the entire bulk of tumor cells. This review article expands on the CSC hypothesis and paradigm with respect to major signaling pathways and effectors that regulate CSC apoptosis resistance. Moreover, selective CSC apoptotic modulators and their therapeutic potential for making tumors more responsive to therapy are discussed. The use of novel therapies, including small-molecule inhibitors of specific proteins in signaling pathways that regulate stemness, proliferation and migration of CSCs, immunotherapy, and noncoding microRNAs may provide better means of treating CSCs.
Collapse
Affiliation(s)
- Ahmad R Safa
- Indiana University Simon Cancer Center and Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
35
|
Anti-glioma Activity of Dapsone and Its Enhancement by Synthetic Chemical Modification. Neurochem Res 2017; 42:3382-3389. [PMID: 28852934 DOI: 10.1007/s11064-017-2378-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 08/01/2017] [Accepted: 08/08/2017] [Indexed: 12/13/2022]
Abstract
The sulfone dapsone is an old antibiotic used for the treatment of mycobacterial and protozoal infections. We postulated before that dapsone might possess biological activity exceeding its anti-infectious properties and that it could potentially be repurposed for the treatment of glioma. To test this hypothesis, we treated established and primary cultured glioma cells with dapsone or several dapsone analogues which we previously synthesized (D2-D5) and determined effects on proliferation, anchorage-independent growth and migration. While dapsone and its synthetic analogues D2-D5 displayed only modest anti-proliferative activity, important neoplastic features such as anchorage-independent growth, clonogenic survival and directed migration were significantly inhibited by dapsone treatment. Moreover, dapsone analogues D3, D4 and D5 yielded even enhanced anti-glioma activity against different pro-neoplastic features. Overall these data suggest that dapsone provides activity against glioma which can be further enhanced by molecular modifications. These compounds could potentially serve as a therapeutic adjunct to the treatment of gliomas in a repurposing approach.
Collapse
|
36
|
Karpel-Massler G, Ishida CT, Zhang Y, Halatsch ME, Westhoff MA, Siegelin MD. Targeting intrinsic apoptosis and other forms of cell death by BH3-mimetics in glioblastoma. Expert Opin Drug Discov 2017; 12:1031-1040. [PMID: 28712306 DOI: 10.1080/17460441.2017.1356286] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Novel approaches to treat malignant brain tumors are necessary since these neoplasms still display an unfavorable prognosis. Areas covered: In this review, the authors summarize and analyze recent preclinical data that suggest that targeting intrinsic apoptosis may be a suitable strategy for the treatment of malignant gliomas. They focus on the anti-apoptotic Bcl-2 family members of proteins and the recent drug developments in that field with a special focus on BH3-mimetics. With the discovery of BH3-mimetics that interfere with anti-apoptotic Bcl-2 family members in the low nanomolar range significant excitement has been generated towards these class of inhibitors, such as ABT-737, ABT-263 and the most recent successor, ABT-199 which is most advanced with respect to clinical application. The authors discuss the more recent selective inhibitors of Bcl-xL and Mcl-1. Concerning Mcl-1, these novel classes of inhibitors have the potential to impact malignant gliomas since these tumors reveal increased levels of Mcl-1. Expert opinion: The recent development of certain small molecules raises significant hope that intrinsic apoptosis might soon be efficiently targetable for malignancies of the central nervous system. That being said, additional studies are necessary to determine which of the BH3-mimetics might be most suitable.
Collapse
Affiliation(s)
| | - Chiaki Tsuge Ishida
- b Department of Pathology & Cell Biology , Columbia University Medical Center , New York , NY , USA
| | - Yiru Zhang
- b Department of Pathology & Cell Biology , Columbia University Medical Center , New York , NY , USA
| | - Marc-Eric Halatsch
- a Department of Neurosurgery , Ulm University Medical Center , Ulm , Germany
| | - M-Andrew Westhoff
- c Department of Pediatrics and Adolescent medicine , Ulm University Medical Center , Ulm , Germany
| | - Markus D Siegelin
- b Department of Pathology & Cell Biology , Columbia University Medical Center , New York , NY , USA
| |
Collapse
|
37
|
Bose B, Sen U, Shenoy P S. Breast Cancer Stem Cell Therapeutics, Multiple Strategies Versus Using Engineered Mesenchymal Stem Cells With Notch Inhibitory Properties: Possibilities and Perspectives. J Cell Biochem 2017; 119:141-149. [PMID: 28590064 DOI: 10.1002/jcb.26196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 01/07/2023]
Abstract
Relapse cases of cancers are more vigorous and difficult to control due to the preponderance of cancer stem cells (CSCs). Such CSCs that had been otherwise dormant during the first incidence of cancer gradually appear as radiochemoresistant cancer cells. Hence, cancer therapeutics aimed at CSCs would be an effective strategy for mitigating the cancers during relapse. Alternatively, CSC therapy can also be proposed as an adjuvant therapy, along-with the conventional therapies. As regenerative stem cells (RSCs) are known for their trophic effects, anti-tumorogenicity, and better migration toward an injury site, this review aims to address the use of adult stem cells such as dental pulp derived; cord blood derived pure populations of regenerative stem cells for targeting CSCs. Indeed, pro-tumorogenicity of RSCs is of concern and hence has also been dealt with in relation to breast CSC therapeutics. Furthermore, as notch signaling pathways are upregulated in breast cancers, and anti-notch antibody based and sh-RNA based therapies are already in the market, this review focuses the possibilities of engineering RSCs to express notch inhibitory proteins for breast CSC therapeutics. Also, we have drawn a comparison among various possibilities of breast CSC therapeutics, about, notch1 inhibition. J. Cell. Biochem. 119: 141-149, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bipasha Bose
- Stem Cells and Regenerative Medicine Center, Yenepoya Research Center, Yenepoya University, University Road, Mangalore 575018, Karnataka, India
| | - Utsav Sen
- Stem Cells and Regenerative Medicine Center, Yenepoya Research Center, Yenepoya University, University Road, Mangalore 575018, Karnataka, India
| | - Sudheer Shenoy P
- Stem Cells and Regenerative Medicine Center, Yenepoya Research Center, Yenepoya University, University Road, Mangalore 575018, Karnataka, India
| |
Collapse
|
38
|
Combination Treatment with PPAR γ Ligand and Its Specific Inhibitor GW9662 Downregulates BIS and 14-3-3 Gamma, Inhibiting Stem-Like Properties in Glioblastoma Cells. BIOMED RESEARCH INTERNATIONAL 2017. [PMID: 28642874 PMCID: PMC5470001 DOI: 10.1155/2017/5832824] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PPARγ is a nuclear receptor that regulates differentiation and proliferation and is highly expressed in many cancer cells. Its synthetic ligands, such as rosiglitazone and ciglitazone, and its inhibitor GW9662, were shown to induce cellular differentiation, inhibit proliferation, and lead to apoptosis. Glioblastoma is a common brain tumor with poor survival prospects. Recently, glioblastoma stem cells (GSCs) have been examined as a potential target for anticancer therapy; however, little is known about the combined effect of various agents on GSCs. In this study, we found that cotreatment with PPARγ ligands and GW9662 inhibited stem-like properties in GSC-like spheres, which significantly express SOX2. In addition, this treatment decreased the activation of STAT3 and AKT and decreased the amounts of 14-3-3 gamma and BIS proteins. Moreover, combined administration of small-interfering RNA (siRNA) transfection with PPARγ ligands induced downregulation of SOX2 and MMP2 activity together with inhibition of sphere-forming activity regardless of poly(ADP-ribose) polymerase (PARP) cleavage. Taken together, our findings suggest that a combination therapy using PPARγ ligands and its inhibitor could be a potential therapeutic strategy targeting GSCs.
Collapse
|
39
|
Karpel-Massler G, Ishida CT, Bianchetti E, Shu C, Perez-Lorenzo R, Horst B, Banu M, Roth KA, Bruce JN, Canoll P, Altieri DC, Siegelin MD. Inhibition of Mitochondrial Matrix Chaperones and Antiapoptotic Bcl-2 Family Proteins Empower Antitumor Therapeutic Responses. Cancer Res 2017; 77:3513-3526. [PMID: 28522750 DOI: 10.1158/0008-5472.can-16-3424] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/22/2017] [Accepted: 04/28/2017] [Indexed: 11/16/2022]
Abstract
Rational therapeutic approaches based on synthetic lethality may improve cancer management. On the basis of a high-throughput drug screen, we provide preclinical proof of concept that targeting the mitochondrial Hsp90 chaperone network (mtHsp90) and inhibition of Bcl-2, Bcl-xL, and Mcl-1 is sufficient to elicit synthetic lethality in tumors recalcitrant to therapy. Our analyses focused on BH3 mimetics that are broad acting (ABT263 and obatoclax) or selective (ABT199, WEHI-539, and A1210477), along with the established mitochondrial matrix chaperone inhibitor gamitrinib-TPP. Drug combinations were tested in various therapy-resistant tumors in vitro and in vivo in murine model systems of melanoma, triple-negative breast cancer, and patient-derived orthotopic xenografts (PDX) of human glioblastoma. We found that combining BH3 mimetics and gamitrinib-TPP blunted cellular proliferation in a synergistic manner by massive activation of intrinsic apoptosis. In like manner, suppressing either Bcl-2, Bcl-xL, or Mcl-1 recapitulated the effects of BH3 mimetics and enhanced the effects of gamitrinib-TPP. Mechanistic investigations revealed that gamitrinib-TPP activated a PERK-dependent integrated stress response, which activated the proapoptotic BH3 protein Noxa and its downstream targets Usp9X and Mcl-1. Notably, in the PDX glioblastoma and BRAFi-resistant melanoma models, this drug combination safely and significantly extended host survival. Our results show how combining mitochondrial chaperone and Bcl-2 family inhibitors can synergize to safely degrade the growth of tumors recalcitrant to other treatments. Cancer Res; 77(13); 3513-26. ©2017 AACR.
Collapse
Affiliation(s)
- Georg Karpel-Massler
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York
| | - Chiaki Tsuge Ishida
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York
| | - Elena Bianchetti
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York
| | - Chang Shu
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York
| | | | - Basil Horst
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York
- Department of Dermatology, Columbia University Medical Center, New York, New York
| | - Matei Banu
- Department of Neurosurgery, Columbia University Medical Center, New York, New York
| | - Kevin A Roth
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York
| | - Jeffrey N Bruce
- Department of Neurosurgery, Columbia University Medical Center, New York, New York
| | - Peter Canoll
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York
| | | | - Markus D Siegelin
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York.
| |
Collapse
|
40
|
Ren Z, Zou W, Cui J, Liu L, Qing Y, Li Y. Geraniin suppresses tumor cell growth and triggers apoptosis in human glioma via inhibition of STAT3 signaling. Cytotechnology 2017; 69:765-773. [PMID: 28374108 DOI: 10.1007/s10616-017-0085-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 03/17/2017] [Indexed: 01/28/2023] Open
Abstract
Natural phytochemicals are attracting increasing interest as anticancer agents. The aim of this study is to evaluate the therapeutic potential of geraniin, a major ellagitannin extracted from Geranium sibiricum L., in human glioma. Human U87 and LN229 glioma cells were treated with different concentrations of geraniin, and cell viability, apoptosis, and gene expression were assessed. The involvement of STAT3 signaling in the action of geraniin was examined. We found that geraniin treatment for 48 h significantly (P < 0.05) impaired the phosphorylation of STAT3 and reduced the expression of downstream target genes Bcl-xL, Mcl-1, Bcl-2, and cyclin D1. Exposure to geraniin led to a concentration-dependent decline in cell viability and increase in apoptosis in glioma cells, but had no significant impact on the viability of normal human astrocytes. Measurement of caspase-3 activity showed that geraniin-treated U87 and LN229 cells showed a 1.8-2.5-fold higher caspase-3 activity than control cells. Overexpression of constitutively active STAT3 significantly (P < 0.05) reversed geraniin-mediated growth suppression and apoptosis, which was accompanied by restoration of Bcl-xL, Mcl-1, Bcl-2, and cyclin D1 expression. In an xenograft tumor mouse model, geraniin treatment significantly retarded tumor growth and induced apoptosis. Western blot analysis confirmed the suppression of STAT3 phosphorylation in glioma xenograft tumors by geraniin. Taken together, these data suggest that geraniin exerts growth-suppressive and pro-apoptotic effects on glioma cells via inhibition of STAT3 signaling and may have therapeutic benefits in malignant gliomas.
Collapse
Affiliation(s)
- Zhong Ren
- Encephalopathy Division, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Wenshuang Zou
- Liver Disease Division, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Junfeng Cui
- Clinical Training Center, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Luping Liu
- Department of Orthopaedic Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yang Qing
- Department of Nuclear Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yongmei Li
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China.
| |
Collapse
|
41
|
Karpel-Massler G, Bâ M, Shu C, Halatsch ME, Westhoff MA, Bruce JN, Canoll P, Siegelin MD. TIC10/ONC201 synergizes with Bcl-2/Bcl-xL inhibition in glioblastoma by suppression of Mcl-1 and its binding partners in vitro and in vivo. Oncotarget 2017; 6:36456-71. [PMID: 26474387 PMCID: PMC4742189 DOI: 10.18632/oncotarget.5505] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/29/2015] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma is the most frequent primary brain tumor in adults. Current therapeutic options are sparse and the prognosis of patients suffering from this disease is grim. Abundance in intratumoral heterogeneity among different deregulated signaling pathways is a hallmark of glioblastoma and likely accounts for its recurrence and resistance to treatment. Glioblastomas harbor a plethora of deregulated pathways driving tumor formation and growth. In this study, we show that TIC10/ONC201, a promising compound that is currently in planned clinical development, along with Bcl-2/Bcl-xL inhibition by ABT263 yields a strong synergistic antiproliferative effect on pediatric, adult, proneural glioblastoma and glioma stem-like cells. On the molecular level, treatment with TIC10/ONC201 results in a posttranslational decrease of the anti-apoptotic Bcl-2 family member, myeloid cell leukemia 1 (Mcl-1), through modulation of the chaperone Bag3 and the deubiquitinase Usp9X. Consistently, the combination treatment of TIC10/ONC201 and ABT263 required the presence of functional BAX and BAK to drive intrinsic apoptosis, but is surprisingly independent of the extrinsic apoptotic pathway. Moreover, the expression of Noxa protein was required for efficient apoptosis induction by TIC10/ONC201 and ABT263. Importantly, the drug combination of TIC10/ONC201 and the BH3-mimetic, ABT263, led to a regression of tumors in vivo, without any notable toxicity and side effects. Overall, TIC10/ONC201 along with Bcl-2/Bcl-xL inhibition holds significant promise as a novel potential approach for the treatment of recalcitrant tumors such as glioblastoma.
Collapse
Affiliation(s)
- Georg Karpel-Massler
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York, U.S.A
| | - Maïmouna Bâ
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York, U.S.A
| | - Chang Shu
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York, U.S.A
| | | | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Jeffrey N Bruce
- Department of Neurosurgery, Columbia University Medical Center, New York, New York, U.S.A
| | - Peter Canoll
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York, U.S.A
| | - Markus D Siegelin
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York, U.S.A
| |
Collapse
|
42
|
Karpel-Massler G, Ramani D, Shu C, Halatsch ME, Westhoff MA, Bruce JN, Canoll P, Siegelin MD. Metabolic reprogramming of glioblastoma cells by L-asparaginase sensitizes for apoptosis in vitro and in vivo. Oncotarget 2016; 7:33512-28. [PMID: 27172899 PMCID: PMC5085099 DOI: 10.18632/oncotarget.9257] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/26/2016] [Indexed: 12/11/2022] Open
Abstract
Cancer cells display a variety of global metabolic changes, which aside from the glycolytic pathway largely involve amino acid metabolism. To ensure aggressive growth, tumor cells highly depend on amino acids, most notably due to their pivotal need of protein synthesis. In this study, we assessed the overall hypothesis that depletion of asparagine by E. coli-derived L-asparaginase might be a novel means for the therapy of one of the most recalcitrant neoplasms and for which no efficient treatment currently exists - glioblastoma (WHO grade IV). Our results suggest that certain glioma cell cultures are particularly susceptible to inhibition of proliferation by L-asparaginase, while others display a more resistant phenotype. In sensitive cells, L-asparaginase induces apoptosis with dissipation of mitochondrial membrane potential and activation of effector caspases. L-asparaginase-mediated apoptosis was accompanied by modulation of pro- and anti-apoptotic Bcl-2 family members, including Noxa, Mcl-1 and the deubiquitinase Usp9X. Given the impact of L-asparaginase on these molecules, we found that L-asparaginase potently overcomes resistance to both intrinsic apoptosis induced by the Bcl-2/Bcl-xL inhibitor, ABT263, and extrinsic apoptosis mediated by TRAIL even in glioma cells that are resistant towards L-asparaginase single treatment. RNA interference studies showed that Usp9X, Mcl-1, Noxa and Bax/Bak are involved in ABT263/L-asparaginase-mediated cell death. In vivo, combined treatment with ABT263 and L-asparaginase led to an enhanced reduction of tumor growth when compared to each reagent alone without induction of toxicity. These observations suggest that L-asparaginase might be useful for the treatment of malignant glial neoplasms.
Collapse
Affiliation(s)
- Georg Karpel-Massler
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| | - Doruntina Ramani
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| | - Chang Shu
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| | | | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Jeffrey N. Bruce
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York, United States of America
| | - Peter Canoll
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| | - Markus D. Siegelin
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| |
Collapse
|
43
|
Karpel-Massler G, Horst BA, Shu C, Chau L, Tsujiuchi T, Bruce JN, Canoll P, Greene LA, Angelastro JM, Siegelin MD. A Synthetic Cell-Penetrating Dominant-Negative ATF5 Peptide Exerts Anticancer Activity against a Broad Spectrum of Treatment-Resistant Cancers. Clin Cancer Res 2016; 22:4698-711. [PMID: 27126996 DOI: 10.1158/1078-0432.ccr-15-2827] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 04/09/2016] [Indexed: 12/20/2022]
Abstract
PURPOSE Despite significant progress in cancer research, many tumor entities still have an unfavorable prognosis. Activating transcription factor 5 (ATF5) is upregulated in various malignancies and promotes apoptotic resistance. We evaluated the efficacy and mechanisms of the first described synthetic cell-penetrating inhibitor of ATF5 function, CP-d/n-ATF5-S1. EXPERIMENTAL DESIGN Preclinical drug testing was performed in various treatment-resistant cancer cells and in vivo xenograft models. RESULTS CP-d/n-ATF5-S1 reduced the transcript levels of several known direct ATF5 targets. It depleted endogenous ATF5 and induced apoptosis across a broad panel of treatment-refractory cancer cell lines, sparing non-neoplastic cells. CP-d/n-ATF5-S1 promoted tumor cell apoptotic susceptibility in part by reducing expression of the deubiquitinase Usp9X and led to diminished levels of antiapoptotic Bcl-2 family members Mcl-1 and Bcl-2. In line with this, CP-d/n-ATF5-S1 synergistically enhanced tumor cell apoptosis induced by the BH3-mimetic ABT263 and the death ligand TRAIL. In vivo, CP-d/n-ATF5-S1 attenuated tumor growth as a single compound in glioblastoma, melanoma, prostate cancer, and triple receptor-negative breast cancer xenograft models. Finally, the combination treatment of CP-d/n-ATF5-S1 and ABT263 significantly reduced tumor growth in vivo more efficiently than each reagent on its own. CONCLUSIONS Our data support the idea that CP-d/n-ATF5-S1, administered as a single reagent or in combination with other drugs, holds promise as an innovative, safe, and efficient antineoplastic agent against treatment-resistant cancers. Clin Cancer Res; 22(18); 4698-711. ©2016 AACR.
Collapse
Affiliation(s)
- Georg Karpel-Massler
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York
| | - Basil A Horst
- Department of Dermatology, Columbia University Medical Center, New York, New York
| | - Chang Shu
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York
| | - Lily Chau
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York
| | - Takashi Tsujiuchi
- Department of Neurosurgery, Columbia University Medical Center, New York, New York
| | - Jeffrey N Bruce
- Department of Neurosurgery, Columbia University Medical Center, New York, New York
| | - Peter Canoll
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York
| | - Lloyd A Greene
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York
| | - James M Angelastro
- Department of Molecular Biosciences, University of California, Davis School of Veterinary Medicine, Davis, California.
| | - Markus D Siegelin
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York.
| |
Collapse
|
44
|
Safa AR, Saadatzadeh MR, Cohen-Gadol AA, Pollok KE, Bijangi-Vishehsaraei K. Emerging targets for glioblastoma stem cell therapy. J Biomed Res 2015; 30:19-31. [PMID: 26616589 PMCID: PMC4726830 DOI: 10.7555/jbr.30.20150100] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 07/27/2015] [Accepted: 08/07/2015] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme (GBM), designated as World Health Organization (WHO) grade IV astrocytoma, is a lethal and therapy-resistant brain cancer comprised of several tumor cell subpopulations, including GBM stem cells (GSCs) which are believed to contribute to tumor recurrence following initial response to therapies. Emerging evidence demonstrates that GBM tumors are initiated from GSCs. The development and use of novel therapies including small molecule inhibitors of specific proteins in signaling pathways that regulate stemness, proliferation and migration of GSCs, immunotherapy, and non-coding microRNAs may provide better means of treating GBM. Identification and characterization of GSC-specific signaling pathways would be necessary to identify specific therapeutic targets which may lead to the development of more efficient therapies selectively targeting GSCs. Several signaling pathways including mTOR, AKT, maternal embryonic leucine zipper kinase (MELK), NOTCH1 and Wnt/β-catenin as well as expression of cancer stem cell markers CD133, CD44, Oct4, Sox2, Nanog, and ALDH1A1 maintain GSC properties. Moreover, the data published in the Cancer Genome Atlas (TCGA) specifically demonstrated the activated PI3K/AKT/mTOR pathway in GBM tumorigenesis. Studying such pathways may help to understand GSC biology and lead to the development of potential therapeutic interventions to render them more sensitive to chemotherapy and radiation therapy. Furthemore, recent demonstration of dedifferentiation of GBM cell lines into CSC-like cells prove that any successful therapeutic agent or combination of drugs for GBM therapy must eliminate not only GSCs, but the differentiated GBM cells and the entire bulk of tumor cells.
Collapse
Affiliation(s)
- Ahmad R Safa
- Indiana University Simon Cancer Center.,Department of Pharmacology and Toxicology.
| | - Mohammad Reza Saadatzadeh
- Indiana University Simon Cancer Center.,Department of Neurosurgery, IU School of Medicine and Goodman Campbell Brain and Spine
| | - Aaron A Cohen-Gadol
- Department of Neurosurgery, IU School of Medicine and Goodman Campbell Brain and Spine
| | - Karen E Pollok
- Indiana University Simon Cancer Center.,Department of Pharmacology and Toxicology.,Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | |
Collapse
|