1
|
Raghuvanshi R, Bharate SB. Preclinical and Clinical Studies on Bryostatins, A Class of Marine-Derived Protein Kinase C Modulators: A Mini-Review. Curr Top Med Chem 2021; 20:1124-1135. [PMID: 32209043 DOI: 10.2174/1568026620666200325110444] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/11/2020] [Accepted: 02/24/2020] [Indexed: 12/20/2022]
Abstract
Bryostatins are complex macrolactones isolated from marine organisms Bryozoan Bugula neritina. They are potent modulators of protein kinase C isozymes (PKCα: ki = 1.3-188 nM), and are one of the most extensively investigated marine natural products in clinical trials. Although ~21 natural bryostatins have been isolated, however only bryostatin-1 (1) has received much interest among medicinal chemists and clinicians. The structure-activity relationship of bryostatins has been well established, with the identification of key pharmacophoric features important for PKC modulation. The low natural abundance and the long synthetic route have prompted medicinal chemists to come-up with simplified analogs. Bryostatin skeleton comprises three pyran rings connected to each other to form a macrocyclic lactone. The simplest analog 27 contains only one pyran, which is also able to modulate the PKCα activity; however, the cyclic framework appears to be essential for the desired level of potency. Another simplified analog 17 ("picolog") exhibited potent and in-vivo efficacy against lymphoma. Bryostatin-1 (1) has shown an acceptable intravenous pharmacokinetic profile in mice and displayed promising in-vivo efficacy in mice models of various cancers and Alzheimer's disease. Bryostatin-1 was investigated in numerous Phase I/II oncology clinical trials; it has shown minimal effect as a single agent, however, provided encouraging results in combination with other chemotherapy agents. FDA has granted orphan drug status to bryostatin-1 in combination with paclitaxel for esophageal cancer. Bryostatin-1 has also received orphan drug status for fragile X syndrome. Bryostatin-1 was also investigated in clinical studies for Alzheimer's disease and HIV infection. In a nutshell, the natural as well as synthetic bryostatins have generated a strong hope to emerge as treatment for cancer along with many other diseases.
Collapse
Affiliation(s)
- Rinky Raghuvanshi
- Medicinal Chemistry Division, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Sandip B Bharate
- Medicinal Chemistry Division, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
2
|
Ly C, Shimizu AJ, Vargas MV, Duim WC, Wender PA, Olson DE. Bryostatin 1 Promotes Synaptogenesis and Reduces Dendritic Spine Density in Cortical Cultures through a PKC-Dependent Mechanism. ACS Chem Neurosci 2020; 11:1545-1554. [PMID: 32437156 PMCID: PMC7332236 DOI: 10.1021/acschemneuro.0c00175] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The marine natural product bryostatin 1 has demonstrated procognitive and antidepressant effects in animals and has been entered into human clinical trials for treating Alzheimer's disease (AD). The ability of bryostatin 1 to enhance learning and memory has largely been attributed to its effects on the structure and function of hippocampal neurons. However, relatively little is known about how bryostatin 1 influences the morphology of cortical neurons, key cells that also support learning and memory processes and are negatively impacted in AD. Here, we use a combination of carefully designed chemical probes and pharmacological inhibitors to establish that bryostatin 1 increases cortical synaptogenesis while decreasing dendritic spine density in a protein kinase C (PKC)-dependent manner. The effects of bryostatin 1 on cortical neurons are distinct from those induced by neural plasticity-promoting psychoplastogens such as ketamine. Compounds capable of increasing synaptic density with concomitant loss of immature dendritic spines may represent a unique pharmacological strategy for enhancing memory by improving signal-to-noise ratio in the central nervous system.
Collapse
Affiliation(s)
- Calvin Ly
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Akira J Shimizu
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305, United States
| | - Maxemiliano V Vargas
- Neuroscience Graduate Program, University of California, Davis, 1544 Newton Ct, Davis, California 95618, United States
| | - Whitney C Duim
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Paul A Wender
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305, United States.,Chemical and Systems Biology, Stanford University, 269 Campus Drive, Stanford, California 94305, United States
| | - David E Olson
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States.,Department of Biochemistry & Molecular Medicine, School of Medicine, University of California, Davis, 2700 Stockton Blvd, Suite 2102, Sacramento, California 95817, United States.,Center for Neuroscience, University of California, Davis, 1544 Newton Ct, Davis, California 95618, United States
| |
Collapse
|
3
|
Figuerola B, Avila C. The Phylum Bryozoa as a Promising Source of Anticancer Drugs. Mar Drugs 2019; 17:E477. [PMID: 31426556 PMCID: PMC6722838 DOI: 10.3390/md17080477] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/31/2022] Open
Abstract
Recent advances in sampling and novel techniques in drug synthesis and isolation have promoted the discovery of anticancer agents from marine organisms to combat this major threat to public health worldwide. Bryozoans, which are filter-feeding, aquatic invertebrates often characterized by a calcified skeleton, are an excellent source of pharmacologically interesting compounds including well-known chemical classes such as alkaloids and polyketides. This review covers the literature for secondary metabolites isolated from marine cheilostome and ctenostome bryozoans that have shown potential as cancer drugs. Moreover, we highlight examples such as bryostatins, the most known class of marine-derived compounds from this animal phylum, which are advancing through anticancer clinical trials due to their low toxicity and antineoplastic activity. The bryozoan antitumor compounds discovered until now show a wide range of chemical diversity and biological activities. Therefore, more research focusing on the isolation of secondary metabolites with potential anticancer properties from bryozoans and other overlooked taxa covering wider geographic areas is needed for an efficient bioprospecting of natural products.
Collapse
Affiliation(s)
- Blanca Figuerola
- Institute of Marine Sciences (ICM-CSIC), Pg. Marítim de la Barceloneta 37-49, Barcelona 08003, Catalonia, Spain.
| | - Conxita Avila
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, and Biodiversity Research Institute (IrBIO), Faculty of Biology, University of Barcelona, Av. Diagonal 643, Barcelona 08028, Catalonia, Spain
| |
Collapse
|
4
|
Hoerner CR, Chen VJ, Fan AC. The 'Achilles Heel' of Metabolism in Renal Cell Carcinoma: Glutaminase Inhibition as a Rational Treatment Strategy. KIDNEY CANCER 2019; 3:15-29. [PMID: 30854496 PMCID: PMC6400133 DOI: 10.3233/kca-180043] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An important hallmark of cancer is 'metabolic reprogramming' or the rewiring of cellular metabolism to support rapid cell proliferation [1-5]. Metabolic reprogramming through oncometabolite-mediated transformation or activation of oncogenes in renal cell carcinoma (RCC) globally impacts energy production as well as glucose and glutamine utilization in RCC cells, which can promote dependence on glutamine supply to support cell growth and proliferation [6, 7]. Novel inhibitors of glutaminase, a key enzyme in glutamine metabolism, target glutamine addiction as a viable treatment strategy in metastatic RCC (mRCC). Here, we review glutamine metabolic pathways and how changes in cellular glutamine utilization enable the progression of RCC. This overview provides scientific rationale for targeting this pathway in patients with mRCC. We will summarize the current understanding of cellular and molecular mechanisms underlying anti-tumor efficacy of glutaminase inhibitors in RCC, provide an overview of clinical efforts targeting glutaminase in mRCC, and review approaches for identifying biomarkers for patient stratification and detecting therapeutic response early on in patients treated with this novel class of anti-cancer drug. Ultimately, results of ongoing clinical trials will demonstrate whether glutaminase inhibition can be a worthy addition to the current armamentarium of drugs used for patients with mRCC.
Collapse
Affiliation(s)
- Christian R Hoerner
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, CA, USA
| | - Viola J Chen
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, CA, USA
| | - Alice C Fan
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, CA, USA
| |
Collapse
|
5
|
Review of bioactive secondary metabolites from marine bryozoans in the progress of new drugs discovery. Future Med Chem 2018; 10:1497-1514. [PMID: 29788787 DOI: 10.4155/fmc-2018-0012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Marine bryozoans play an important role for the discovery of novel bioactive compounds among marine organisms. In this review, we summarize 164 new secondary metabolites including macrocyclic lactones, sterols, alkaloids, sphingolipids and so forth from 24 marine bryozoans in the last two decades. The structural features, bioactivity, structure-activity relationship, mechanism and strategies to address the resupply of these scarce secondary metabolites are discussed. The structural and bioactive diversity of the secondary metabolites from marine bryozoans indicated the possibility of using these compounds, especially bryostatin 1 (1), bryostatin analog (BA1), alkaloids (50, 53, 127-128 and 134-139), sphingolipids sulfates (148 and 149) and sulfur-containing aromatic compound (160), as the starting points for new drug discovery.
Collapse
|
6
|
Zhao X, Kedei N, Michalowski A, Lewin NE, Keck GE, Blumberg PM. Deletion of the C26 Methyl Substituent from the Bryostatin Analogue Merle 23 Has Negligible Impact on Its Biological Profile and Potency. Chembiochem 2018. [PMID: 29517836 DOI: 10.1002/cbic.201700677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Important strides are being made in understanding the effects of structural features of bryostatin 1, a candidate therapeutic agent for cancer and dementia, in conferring its potency toward protein kinase C and the unique spectrum of biological responses that it induces. A critical pharmacophoric element in bryostatin 1 is the secondary hydroxy group at the C26 position, with a corresponding primary hydroxy group playing an analogous role in binding of phorbol esters to protein kinase C. Herein, we describe the synthesis of a bryostatin homologue in which the C26 hydroxy group is primary, as it is in the phorbol esters, and show that its biological activity is almost indistinguishable from that of the corresponding compound with a secondary hydroxy group.
Collapse
Affiliation(s)
- Xiguang Zhao
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah, 84112, USA
| | - Noemi Kedei
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Building 37, Room 4048, 37 Convent Drive MSC4255, Bethesda, MD, 20892-4255, USA
| | - Alexandra Michalowski
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Building 37, Room 4048, 37 Convent Drive MSC4255, Bethesda, MD, 20892-4255, USA
| | - Nancy E Lewin
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Building 37, Room 4048, 37 Convent Drive MSC4255, Bethesda, MD, 20892-4255, USA
| | - Gary E Keck
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah, 84112, USA
| | - Peter M Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Building 37, Room 4048, 37 Convent Drive MSC4255, Bethesda, MD, 20892-4255, USA
| |
Collapse
|
7
|
Slocum ST, Lowell AN, Tripathi A, Shende VV, Smith JL, Sherman DH. Chemoenzymatic Dissection of Polyketide β-Branching in the Bryostatin Pathway. Methods Enzymol 2018; 604:207-236. [PMID: 29779653 PMCID: PMC6327954 DOI: 10.1016/bs.mie.2018.01.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
β-Branching is an expansion upon canonical polyketide synthase extension that allows for the installation of diverse chemical moieties in several natural products. Several of these moieties are unique among natural products, including the two vinyl methylesters found in the core structure of bryostatins. This family of molecules is derived from an obligate bacterial symbiont of a sessile marine bryozoan, Bugula neritina. Within this family, bryostatin 1 has been investigated as an anticancer, neuroprotective, and immunomodulatory compound. We have turned to the biosynthetic gene cluster within the bacterial symbiont to investigate the biosynthesis of bryostatins. Recent sequencing efforts resulted in the annotation of two missing genes: bryT and bryU. Using novel chemoenzymatic techniques, we have validated these as the missing enoyl-CoA hydratase and donor acyl carrier protein, essential components of the β-branching cassette of the bryostatin pathway. Together, this cassette installs the vinyl methylester moieties essential to the activity of bryostatins.
Collapse
Affiliation(s)
- Samuel T Slocum
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States; Life Sciences Institute, Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, United States
| | - Andrew N Lowell
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
| | - Ashootosh Tripathi
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
| | - Vikram V Shende
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
| | - Janet L Smith
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States; Life Sciences Institute, Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, United States
| | - David H Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States; Life Sciences Institute, Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, United States; Life Sciences Institute, Department of Chemistry, University of Michigan, Ann Arbor, MI, United States; Life Sciences Institute, Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
8
|
Zhang Y, Guo Q, Sun X, Lu J, Cao Y, Pu Q, Chu Z, Gao L, Song Z. Total Synthesis of Bryostatin 8 Using an Organosilane-Based Strategy. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201711452] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuebao Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy; Sichuan University; Chengdu 610041 China
| | - Qianyou Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy; Sichuan University; Chengdu 610041 China
| | - Xianwei Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy; Sichuan University; Chengdu 610041 China
| | - Ji Lu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy; Sichuan University; Chengdu 610041 China
| | - Yanjun Cao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy; Sichuan University; Chengdu 610041 China
| | - Qiang Pu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy; Sichuan University; Chengdu 610041 China
| | - Zhiwen Chu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy; Sichuan University; Chengdu 610041 China
| | - Lu Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy; Sichuan University; Chengdu 610041 China
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy; Sichuan University; Chengdu 610041 China
- State Key Laboratory of Elemento-organic Chemistry; Nankai University; Tianjin 300071 China
| |
Collapse
|
9
|
Zhang Y, Guo Q, Sun X, Lu J, Cao Y, Pu Q, Chu Z, Gao L, Song Z. Total Synthesis of Bryostatin 8 Using an Organosilane-Based Strategy. Angew Chem Int Ed Engl 2017; 57:942-946. [PMID: 29210495 DOI: 10.1002/anie.201711452] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Yuebao Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy; Sichuan University; Chengdu 610041 China
| | - Qianyou Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy; Sichuan University; Chengdu 610041 China
| | - Xianwei Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy; Sichuan University; Chengdu 610041 China
| | - Ji Lu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy; Sichuan University; Chengdu 610041 China
| | - Yanjun Cao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy; Sichuan University; Chengdu 610041 China
| | - Qiang Pu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy; Sichuan University; Chengdu 610041 China
| | - Zhiwen Chu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy; Sichuan University; Chengdu 610041 China
| | - Lu Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy; Sichuan University; Chengdu 610041 China
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy; Sichuan University; Chengdu 610041 China
- State Key Laboratory of Elemento-organic Chemistry; Nankai University; Tianjin 300071 China
| |
Collapse
|
10
|
Cooke M, Magimaidas A, Casado-Medrano V, Kazanietz MG. Protein kinase C in cancer: The top five unanswered questions. Mol Carcinog 2017; 56:1531-1542. [PMID: 28112438 DOI: 10.1002/mc.22617] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/04/2017] [Accepted: 01/20/2017] [Indexed: 12/29/2022]
Abstract
Few kinases have been studied as extensively as protein kinase C (PKC), particularly in the context of cancer. As major cellular targets for the phorbol ester tumor promoters and diacylglycerol (DAG), a second messenger generated by stimulation of membrane receptors, PKC isozymes play major roles in the control of signaling pathways associated with proliferation, migration, invasion, tumorigenesis, and metastasis. However, despite decades of research, fundamental questions remain to be answered or are the subject of intense controversy. Primary among these unresolved issues are the role of PKC isozymes as either tumor promoter or tumor suppressor kinases and the incomplete understanding on isozyme-specific substrates and effectors. The involvement of PKC isozymes in cancer progression needs to be reassessed in the context of specific oncogenic and tumor suppressing alterations. In addition, there are still major hurdles in addressing isozyme-specific function due to the limited specificity of most pharmacological PKC modulators and the lack of validated predictive biomarkers for response, which impacts the translation of these agents to the clinic. In this review we focus on key controversial issues and upcoming challenges, with the expectation that understanding the intricacies of PKC function will help fulfill the yet unsuccessful promise of targeting PKCs for cancer therapeutics.
Collapse
Affiliation(s)
- Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew Magimaidas
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Victoria Casado-Medrano
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
11
|
Ketcham JM, Volchkov I, Chen TY, Blumberg PM, Kedei N, Lewin NE, Krische MJ. Evaluation of Chromane-Based Bryostatin Analogues Prepared via Hydrogen-Mediated C-C Bond Formation: Potency Does Not Confer Bryostatin-like Biology. J Am Chem Soc 2016; 138:13415-13423. [PMID: 27676096 PMCID: PMC5094189 DOI: 10.1021/jacs.6b08695] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis and biological evaluation of chromane-containing bryostatin analogues WN-2-WN-7 and the previously reported salicylate-based analogue WN-8 are described. Analogues WN-2-WN-7 are prepared through convergent assembly of the chromane-containing fragment B-I with the "binding domain" fragment A-I or its C26-des-methyl congener, fragment A-II. The synthesis of fragment B-I features enantioselective double C-H allylation of 1,3-propanediol to form the C2-symmetric diol 3 and Heck cyclization of bromo-diene 5 to form the chromane core. The synthesis of salicylate WN-8 is accomplished through the union of fragments A-III and B-II. The highest binding affinities for PKCα are observed for the C26-des-methyl analogues WN-3 (Ki = 63.9 nM) and WN-7 (Ki = 63.1 nM). All analogues, WN-2-WN-8, inhibited growth of Toledo cells, with the most potent analogue being WN-7. This response, however, does not distinguish between phorbol ester-like and bryostatin-like behavior. In contrast, while many of the analogues contain a conserved C-ring in the binding domain and other features common to analogues with bryostatin-like properties, all analogues evaluated in the U937 proliferation and cell attachment assays displayed phorbol ester-like and/or toxic behavior, including WN-8, for which "bryostatin-like PKC modulatory activities" previously was suggested solely on the basis of PKC binding. These results underscore the importance of considering downstream biological effects, as tumor suppression cannot be inferred from potent PKC binding.
Collapse
Affiliation(s)
- John M. Ketcham
- University of Texas at Austin, Department of Chemistry and Biochemistry, Austin, TX 78712, USA
| | - Ivan Volchkov
- University of Texas at Austin, Department of Chemistry and Biochemistry, Austin, TX 78712, USA
| | - Te-Yu Chen
- University of Texas at Austin, Department of Chemistry and Biochemistry, Austin, TX 78712, USA
| | - Peter M. Blumberg
- Laboratory of Cancer Biology and Genetics, NCI, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | - Noemi Kedei
- Laboratory of Cancer Biology and Genetics, NCI, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | - Nancy E. Lewin
- Laboratory of Cancer Biology and Genetics, NCI, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | - Michael J. Krische
- University of Texas at Austin, Department of Chemistry and Biochemistry, Austin, TX 78712, USA
| |
Collapse
|
12
|
|
13
|
Plummer S, Manning T, Baker T, McGreggor T, Patel M, Wylie G, Phillips D. Isolation, analytical measurements, and cell line studies of the iron-bryostatin-1 complex. Bioorg Med Chem Lett 2016; 26:2489-2497. [PMID: 27068183 DOI: 10.1016/j.bmcl.2016.03.099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/27/2016] [Accepted: 03/28/2016] [Indexed: 10/22/2022]
Abstract
Bryostatin-1 is a marine natural product that has demonstrated medicinal activity in pre-clinical and clinical trials for the treatment of cancer, Alzheimer's disease, effects of stroke, and HIV. In this study, iron-bryostatin-1 was obtained using a pharmaceutical aquaculture technique developed by our lab that cultivates marine bacteria for marine natural product extraction. Analytical measurements (1)H and (13)C NMR, mass spectrometry, and flame atomic absorption were utilized to confirm the presence of an iron-bryostatin-1 complex. The iron-bryostatin-1 complex produced was then tested against the National Cancer Institute's 60 cell line panel. Adding iron to bryostatin-1 lowered the anti-cancer efficacy of the compound.
Collapse
Affiliation(s)
- Sydney Plummer
- Department of Chemistry, Valdosta State University, Valdosta, GA 31698, United States
| | - Thomas Manning
- Department of Chemistry, Valdosta State University, Valdosta, GA 31698, United States.
| | - Tess Baker
- Department of Chemistry, Valdosta State University, Valdosta, GA 31698, United States
| | - Tysheon McGreggor
- Department of Chemistry, Valdosta State University, Valdosta, GA 31698, United States
| | - Mehulkumar Patel
- Department of Chemistry, Valdosta State University, Valdosta, GA 31698, United States
| | - Greg Wylie
- NMR Facility, Department of Chemistry, Texas A&M, College Station, TX 77843, United States
| | - Dennis Phillips
- PAMS Facility, Department of Chemistry, University of Georgia, Athens, GA 30602, United States
| |
Collapse
|
14
|
Crane EA, Gademann K. Synthetisch gewonnene Naturstofffragmente in der Wirkstoffentwicklung. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201505863] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Erika A. Crane
- Departement Chemie; Universität Basel; St. Johanns-Ring 19 CH-4056 Basel Schweiz
| | - Karl Gademann
- Departement Chemie; Universität Basel; St. Johanns-Ring 19 CH-4056 Basel Schweiz
- Institut für Chemie; Universität Zürich; Winterthurerstrasse 190 CH-8057 Zürich Schweiz
| |
Collapse
|
15
|
Crane EA, Gademann K. Capturing Biological Activity in Natural Product Fragments by Chemical Synthesis. Angew Chem Int Ed Engl 2016; 55:3882-902. [PMID: 26833854 PMCID: PMC4797711 DOI: 10.1002/anie.201505863] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Indexed: 12/22/2022]
Abstract
Natural products have had an immense influence on science and have directly led to the introduction of many drugs. Organic chemistry, and its unique ability to tailor natural products through synthesis, provides an extraordinary approach to unlock the full potential of natural products. In this Review, an approach based on natural product derived fragments is presented that can successfully address some of the current challenges in drug discovery. These fragments often display significantly reduced molecular weights, reduced structural complexity, a reduced number of synthetic steps, while retaining or even improving key biological parameters such as potency or selectivity. Examples from various stages of the drug development process up to the clinic are presented. In addition, this process can be leveraged by recent developments such as genome mining, antibody–drug conjugates, and computational approaches. All these concepts have the potential to identify the next generation of drug candidates inspired by natural products.
Collapse
Affiliation(s)
- Erika A Crane
- Department of Chemistry, University of Basel, Switzerland
| | - Karl Gademann
- Department of Chemistry, University of Basel, Switzerland. .,Department of Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.
| |
Collapse
|
16
|
Kikumori M, Yanagita RC, Tokuda H, Suenaga K, Nagai H, Irie K. Structural optimization of 10-methyl-aplog-1, a simplified analog of debromoaplysiatoxin, as an anticancer lead. Biosci Biotechnol Biochem 2015; 80:221-31. [PMID: 26452398 DOI: 10.1080/09168451.2015.1091718] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Aplog-1 is a simplified analog of debromoaplysiatoxin (DAT) with potent tumor-promoting and proinflammatory activities. Aplog-1 and DAT exhibited anti-proliferative activities against several human cancer cell lines, whereas aplog-1 did not have tumor-promoting nor proinflammatory activities. We have recently found 10-methyl-aplog-1 (1) to have strong anti-proliferative activity compared with aplog-1. To further investigate the structural factors involved in the tumor-promoting, proinflammatory, and anti-proliferative activities, two dimethyl derivatives of aplog-1 (2, 3) were synthesized, where two methyl groups were installed at positions 4 and 10 or 10 and 12. 10,12-Dimethyl-aplog-1 (2) had stronger inhibitory effects on the growth of several human cancer cell lines than 1 and DAT, but exhibited no tumor-promoting and proinflammatory activities. In contrast, 4,10-dimethyl-aplog-1 (3) displayed weak tumor-promoting and proinflammatory activities along with anti-proliferative activity similar to that of 1 and DAT. Compound 2 would be the optimized seed for anticancer drugs among the simplified analogs of DAT.
Collapse
Affiliation(s)
- Masayuki Kikumori
- a Division of Food Science and Biotechnology , Graduate School of Agriculture, Kyoto University , Kyoto , Japan
| | - Ryo C Yanagita
- b Faculty of Agriculture, Department of Applied Biological Science , Kagawa University , Miki , Japan
| | - Harukuni Tokuda
- c Department of Complementary and Alternative Medicine, Clinical R&D , Graduate School of Medical Science, Kanazawa University , Kanazawa , Japan
| | - Kiyotake Suenaga
- d Faculty of Science and Technology , Keio University , Yokohama , Japan
| | - Hiroshi Nagai
- e Department of Ocean Sciences , Tokyo University of Marine Science and Technology , Tokyo , Japan
| | - Kazuhiro Irie
- a Division of Food Science and Biotechnology , Graduate School of Agriculture, Kyoto University , Kyoto , Japan
| |
Collapse
|
17
|
Chen JQ, Wakefield LM, Goldstein DJ. Capillary nano-immunoassays: advancing quantitative proteomics analysis, biomarker assessment, and molecular diagnostics. J Transl Med 2015; 13:182. [PMID: 26048678 PMCID: PMC4467619 DOI: 10.1186/s12967-015-0537-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/14/2015] [Indexed: 12/17/2022] Open
Abstract
There is an emerging demand for the use of molecular profiling to facilitate biomarker identification and development, and to stratify patients for more efficient treatment decisions with reduced adverse effects. In the past decade, great strides have been made to advance genomic, transcriptomic and proteomic approaches to address these demands. While there has been much progress with these large scale approaches, profiling at the protein level still faces challenges due to limitations in clinical sample size, poor reproducibility, unreliable quantitation, and lack of assay robustness. A novel automated capillary nano-immunoassay (CNIA) technology has been developed. This technology offers precise and accurate measurement of proteins and their post-translational modifications using either charge-based or size-based separation formats. The system not only uses ultralow nanogram levels of protein but also allows multi-analyte analysis using a parallel single-analyte format for increased sensitivity and specificity. The high sensitivity and excellent reproducibility of this technology make it particularly powerful for analysis of clinical samples. Furthermore, the system can distinguish and detect specific protein post-translational modifications that conventional Western blot and other immunoassays cannot easily capture. This review will summarize and evaluate the latest progress to optimize the CNIA system for comprehensive, quantitative protein and signaling event characterization. It will also discuss how the technology has been successfully applied in both discovery research and clinical studies, for signaling pathway dissection, proteomic biomarker assessment, targeted treatment evaluation and quantitative proteomic analysis. Lastly, a comparison of this novel system with other conventional immuno-assay platforms is performed.
Collapse
Affiliation(s)
- Jin-Qiu Chen
- Collaborative Protein Technology Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 37, Room 2140, Bethesda, MD, 20892, USA.
| | - Lalage M Wakefield
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - David J Goldstein
- Office of Science and Technology Resources, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
18
|
Abstract
![]()
In 1996,
a snapshot of the field of synthesis was provided by many
of its thought leaders in a Chemical Reviews thematic
issue on “Frontiers in Organic Synthesis”. This Accounts of Chemical Research thematic issue on “Synthesis,
Design, and Molecular Function” is intended to provide further
perspective now from well into the 21st century. Much has happened
in the past few decades. The targets, methods, strategies, reagents,
procedures, goals, funding, practices, and practitioners of synthesis
have changed, some in dramatic ways as documented in impressive contributions
to this issue. However, a constant for most synthesis studies continues
to be the goal of achieving function with synthetic economy. Whether in the form of new catalysts, reagents, therapeutic leads,
diagnostics, drug delivery systems, imaging agents, sensors, materials,
energy generation and storage systems, bioremediation strategies,
or molecules that challenge old theories or test new ones, the function
of a target has been and continues to be a major and compelling justification
for its synthesis. While the targets of synthesis have historically
been heavily represented by natural products, increasingly design,
often inspired by natural structures, is providing a new source of
target structures exhibiting new or natural functions and new or natural
synthetic challenges. Complementing isolation and screening approaches
to new target identification, design enables one to create targets de novo with an emphasis on sought-after function and synthetic
innovation with step-economy. Design provides choice. It allows one
to determine how close a synthesis will come to the ideal synthesis
and how close a structure will come to the ideal function. In
this Account, we address studies in our laboratory on function-oriented
synthesis (FOS), a strategy to achieve
function by design and with synthetic economy. By starting with function
rather than structure, FOS places an initial emphasis on target design,
thereby harnessing the power of chemists and computers to create new
structures with desired functions that could be prepared in a simple,
safe, economical, and green, if not ideal, fashion. Reported herein
are examples of FOS associated with (a) molecular recognition, leading
to the first designed phorbol-inspired protein kinase C regulatory
ligands, the first designed bryostatin analogs, the newest bryologs,
and a new family of designed kinase inhibitors, (b) target modification,
leading to highly simplified but functionally competent photonucleases—molecules
that cleave DNA upon photoactivation, (c) drug delivery, leading to
cell penetrating molecular transporters, molecules that ferry other
attached or complexed molecules across biological barriers, and (d)
new reactivity-regenerating reagents in the form of functional equivalents
of butatrienes, reagents that allow for back-to-back three-component
cycloaddition reactions, thus achieving structural complexity and
value with step-economy. While retrosynthetic analysis seeks to identify
the best way to make a target, retrofunction analysis seeks to identify
the best targets to make. In essence, form (structure) follows function.
Collapse
Affiliation(s)
- Paul A. Wender
- Departments of Chemistry
and Chemical and Systems Biology, Stanford University, Stanford, California 94305-5080, United States
| | - Ryan V. Quiroz
- Departments of Chemistry
and Chemical and Systems Biology, Stanford University, Stanford, California 94305-5080, United States
| | - Matthew C. Stevens
- Departments of Chemistry
and Chemical and Systems Biology, Stanford University, Stanford, California 94305-5080, United States
| |
Collapse
|
19
|
Loy BA, Lesser AB, Staveness D, Billingsley KL, Cegelski L, Wender PA. Toward a biorelevant structure of protein kinase C bound modulators: design, synthesis, and evaluation of labeled bryostatin analogues for analysis with rotational echo double resonance NMR spectroscopy. J Am Chem Soc 2015; 137:3678-85. [PMID: 25710634 DOI: 10.1021/jacs.5b00886] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein kinase C (PKC) modulators are currently of great importance in preclinical and clinical studies directed at cancer, immunotherapy, HIV eradication, and Alzheimer's disease. However, the bound conformation of PKC modulators in a membrane environment is not known. Rotational echo double resonance (REDOR) NMR spectroscopy could uniquely address this challenge. However, REDOR NMR requires strategically labeled, high affinity ligands to determine interlabel distances from which the conformation of the bound ligand in the PKC-ligand complex could be identified. Here we report the first computer-guided design and syntheses of three bryostatin analogues strategically labeled for REDOR NMR analysis. Extensive computer analyses of energetically accessible analogue conformations suggested preferred labeling sites for the identification of the PKC-bound conformers. Significantly, three labeled analogues were synthesized, and, as required for REDOR analysis, all proved highly potent with PKC affinities (∼1 nM) on par with bryostatin. These potent and strategically labeled bryostatin analogues are new structural leads and provide the necessary starting point for projected efforts to determine the PKC-bound conformation of such analogues in a membrane environment, as needed to design new PKC modulators and understand PKC-ligand-membrane structure and dynamics.
Collapse
Affiliation(s)
- Brian A Loy
- †Department of Chemistry and ‡Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Adam B Lesser
- †Department of Chemistry and ‡Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Daryl Staveness
- †Department of Chemistry and ‡Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Kelvin L Billingsley
- †Department of Chemistry and ‡Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Lynette Cegelski
- †Department of Chemistry and ‡Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Paul A Wender
- †Department of Chemistry and ‡Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
20
|
Molecular regulation of synaptogenesis during associative learning and memory. Brain Res 2014; 1621:239-51. [PMID: 25485772 DOI: 10.1016/j.brainres.2014.11.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 01/06/2023]
Abstract
Synaptogenesis plays a central role in associative learning and memory. The biochemical pathways that underlie synaptogenesis are complex and incompletely understood. Nevertheless, research has so far identified three conceptually distinct routes to synaptogenesis: cell-cell contact mediated by adhesion proteins, cell-cell biochemical signaling from astrocytes and other cells, and neuronal signaling through classical ion channels and cell surface receptors. The cell adhesion pathways provide the physical substrate to the new synaptic connection, while cell-cell signaling may provide a global or regional signal, and the activity-dependent pathways provide the neuronal specificity that is required for the new synapses to produce functional neuronal networks capable of storing associative memories. These three aspects of synaptogenesis require activation of a variety of interacting biochemical pathways that converge on the actin cytoskeleton and strengthen the synapse in an information-dependent manner. This article is part of a Special Issue titled SI: Brain and Memory.
Collapse
|
21
|
Affiliation(s)
- Joydip Das
- Department of Pharmacological
and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 521 Science and Research Building 2, Houston, Texas 77204, United States
| | - Ghazi M. Rahman
- Department of Pharmacological
and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 521 Science and Research Building 2, Houston, Texas 77204, United States
| |
Collapse
|
22
|
Andrews IP, Ketcham JM, Blumberg PM, Kedei N, Lewin N, Peach ML, Krische MJ. Synthesis of seco-B-ring bryostatin analogue WN-1 via C-C bond-forming hydrogenation: critical contribution of the B-ring in determining bryostatin-like and phorbol 12-myristate 13-acetate-like properties. J Am Chem Soc 2014; 136:13209-16. [PMID: 25207655 PMCID: PMC4183601 DOI: 10.1021/ja507825s] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Indexed: 01/31/2023]
Abstract
The seco-B-ring bryostatin analogue, macrodiolide WN-1, was prepared in 17 steps (longest linear sequence) and 30 total steps with three bonds formed via hydrogen-mediated C-C coupling. This synthetic route features a palladium-catalyzed alkoxycarbonylation of a C2-symmetric diol to form the C9-deoxygenated bryostatin A-ring. WN-1 binds to PKCα (Ki = 16.1 nM) and inhibits the growth of multiple leukemia cell lines. Although structural features of the WN-1 A-ring and C-ring are shared by analogues that display bryostatin-like behavior, WN-1 displays PMA-like behavior in U937 cell attachment and proliferation assays, as well as in K562 and MV-4-11 proliferation assays. Molecular modeling studies suggest the pattern of internal hydrogen bonds evident in bryostatin 1 is preserved in WN-1, and that upon docking WN-1 into the crystal structure of the C1b domain of PKCδ, the binding mode of bryostatin 1 is reproduced. The collective data emphasize the critical contribution of the B-ring to the function of the upper portion of the molecule in conferring a bryostatin-like pattern of biological activity.
Collapse
Affiliation(s)
- Ian P. Andrews
- Department
of Chemistry and Biochemistry, University
of Texas at Austin, Austin, Texas 78712, United States
| | - John M. Ketcham
- Department
of Chemistry and Biochemistry, University
of Texas at Austin, Austin, Texas 78712, United States
| | - Peter M. Blumberg
- Laboratory
of Cancer Biology and Genetics, National
Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, United States
| | - Noemi Kedei
- Laboratory
of Cancer Biology and Genetics, National
Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, United States
| | - Nancy
E. Lewin
- Laboratory
of Cancer Biology and Genetics, National
Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, United States
| | - Megan L. Peach
- Basic Science Program,
Leidos Biomedical Research, Inc., Chemical Biology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Michael J. Krische
- Department
of Chemistry and Biochemistry, University
of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
23
|
Wender PA, Donnelly AC, Loy BA, Near KE, Staveness D. Rethinking the Role of Natural Products: Function-Oriented Synthesis, Bryostatin, and Bryologs. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1002/9783527676545.ch14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
24
|
Cragg GM, Grothaus PG, Newman DJ. New horizons for old drugs and drug leads. JOURNAL OF NATURAL PRODUCTS 2014; 77:703-23. [PMID: 24499205 DOI: 10.1021/np5000796] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
There is mounting urgency to find new drugs for the treatment of serious infectious diseases and cancer that are rapidly developing resistance to previously effective drugs. One approach to addressing this need is through drug repurposing, which refers to the discovery of new useful activities for "old" clinically used drugs through screening them against relevant disease targets. A large number of potential drug that, for various reasons, have failed to advance to clinical and commercial use can be added to the candidates available for such purposes. The application of new techniques and methodology developed through the impressive progress made in multidisciplinary, natural product-related research in recent years should aid substantially in expediting the discovery and development process. This review briefly outlines some of these developments as applied to a number of selected natural product examples, which may also include advances in chemical synthesis of derivatives with extended biological activities.
Collapse
Affiliation(s)
- Gordon M Cragg
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory , P.O. Box B, Frederick, Maryland 21702, United States
| | | | | |
Collapse
|
25
|
Kollár P, Rajchard J, Balounová Z, Pazourek J. Marine natural products: bryostatins in preclinical and clinical studies. PHARMACEUTICAL BIOLOGY 2014; 52:237-242. [PMID: 24033119 DOI: 10.3109/13880209.2013.804100] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
CONTEXT Bryostatins represent an important group of pharmaceutically promising substances. These compounds are produced by commensal microorganisms naturally occurring in marine invertebrates, mainly in bryozoans. The most frequently investigated substance is bryostatin-1, which is a highly oxygenated macrolide with a polyacetate backbone. OBJECTIVE The aim of this work was to summarize documented preclinical and clinical effects of bryostatin-class compounds. METHODS A literature search was made of Medline and Web of Science databases in 2012. RESULTS AND CONCLUSION Our review showed that bryostatins are potent agonists of protein kinase C. In addition to this, their significant antineoplastic activity against several tumor types has also been established and described. Bryostatin's anticancer activity has been proved against various cancer types. Moreover, significant results have been achieved by using bryostatin-1 in combination with other therapies, including combination with vaccine testing. Concerning other important properties that bryostatins possess, their ability to sensitize some resistant cells to chemotherapy agents, or immunoactivity and further stimulating growth of new neural connections, and enhancing effect on long-term memory are worth mentioning. In particular, some new bryostatin analogs could represent potential therapeutic agent for the treatment of cancer and other diseases in future.
Collapse
Affiliation(s)
- Peter Kollár
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno , Brno , Czech Republic
| | | | | | | |
Collapse
|
26
|
Xu J, Lacoske MH, Theodorakis EA. Neurotrophic natural products: chemistry and biology. Angew Chem Int Ed Engl 2014; 53:956-87. [PMID: 24353244 PMCID: PMC3945720 DOI: 10.1002/anie.201302268] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases and spinal cord injury affect approximately 50 million people worldwide, bringing the total healthcare cost to over 600 billion dollars per year. Nervous system growth factors, that is, neurotrophins, are a potential solution to these disorders, since they could promote nerve regeneration. An average of 500 publications per year attests to the significance of neurotrophins in biomedical sciences and underlines their potential for therapeutic applications. Nonetheless, the poor pharmacokinetic profile of neurotrophins severely restricts their clinical use. On the other hand, small molecules that modulate neurotrophic activity offer a promising therapeutic approach against neurological disorders. Nature has provided an impressive array of natural products that have potent neurotrophic activities. This Review highlights the current synthetic strategies toward these compounds and summarizes their ability to induce neuronal growth and rehabilitation. It is anticipated that neurotrophic natural products could be used not only as starting points in drug design but also as tools to study the next frontier in biomedical sciences: the brain activity map project.
Collapse
Affiliation(s)
- Jing Xu
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358 (USA), Homepage: http://theodorakisgroup.ucsd.edu
| | - Michelle H. Lacoske
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358 (USA), Homepage: http://theodorakisgroup.ucsd.edu
| | - Emmanuel A. Theodorakis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358 (USA), Homepage: http://theodorakisgroup.ucsd.edu
| |
Collapse
|
27
|
Xu J, Lacoske MH, Theodorakis EA. Neurotrophe Naturstoffe - ihre Chemie und Biologie. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302268] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Fan AC, O'Rourke JJ, Praharaj DR, Felsher DW. Real-time nanoscale proteomic analysis of the novel multi-kinase pathway inhibitor rigosertib to measure the response to treatment of cancer. Expert Opin Investig Drugs 2013; 22:1495-509. [PMID: 23937225 DOI: 10.1517/13543784.2013.829453] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Rigosertib (ON01910.Na), is a targeted therapeutic that inhibits multiple kinases, including PI3K and PIk-1. Rigosertib has been found to induce the proliferative arrest and apoptosis of myeloblasts but not of other normal hematopoietic cells. Rigosertib has significant clinical activity as a therapy for patients with high-risk myelodysplastic syndrome who are otherwise refractory to DNA methyltransferase inhibitors. Moreover, rigosertib has potential clinical activity in a multitude of solid tumors. AREAS COVERED The objective of this review is to evaluate the mechanism of activity, efficacy and dosing of rigosertib. Furthermore, the challenge in the clinical development of rigosertib, to identify the specific patients that are most likely to benefit from this therapeutic agent, is discussed. A PubMed search was performed using the following key words: rigosertib and ON01910.Na. EXPERT OPINION We describe the application of a novel nanoscale proteomic assay, the nanoimmunoassay, a tractable approach for measuring the activity and predicting the efficacy of rigosertib, in real-time, using limited human clinical specimens. Our strategy suggests a possible paradigm where proteomic analysis during the pre-clinical and clinical development of a therapy can be used to uncover biomarkers for the analysis and prediction of efficacy in human patients.
Collapse
Affiliation(s)
- Alice C Fan
- Stanford University School of Medicine, Division of Oncology, Departments of Medicine and Pathology , Stanford, CA , USA
| | | | | | | |
Collapse
|
29
|
Ogawa Y, Painter PP, Tantillo DJ, Wender PA. Mechanistic and computational studies of exocyclic stereocontrol in the synthesis of bryostatin-like cis-2,6-disubstituted 4-alkylidenetetrahydropyrans by Prins cyclization. J Org Chem 2012; 78:104-15. [PMID: 23121542 DOI: 10.1021/jo301953h] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Prins cyclization of syn-β-hydroxy allylsilanes and aldehydes gives cis-2,6-disubstituted 4-alkylidenetetrahydropyrans as sole products in excellent yields regardless of the aldehyde (R″) or syn-β-hydroxy allylsilane substituent (R') used. By reversing the R″ and R' groups, complementary exocyclic stereocontrol can be achieved. When the anti-β-hydroxy allylsilanes are used, the Prins cyclization gives predominantly cis-2,6-disubstituted 4-alkylidenetetrahydropyrans, now with the opposite olefin geometry in excellent yield. The proposed reaction mechanism and the observed stereoselectivity for these processes are supported by DFT calculations.
Collapse
Affiliation(s)
- Yasuyuki Ogawa
- Department of Chemistry, University of California, Davis, California 95616, United States
| | | | | | | |
Collapse
|
30
|
|
31
|
Designed, synthetically accessible bryostatin analogues potently induce activation of latent HIV reservoirs in vitro. Nat Chem 2012; 4:705-10. [PMID: 22914190 PMCID: PMC3428736 DOI: 10.1038/nchem.1395] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/28/2012] [Indexed: 11/24/2022]
Abstract
Bryostatin is a unique lead in the development of potentially transformative therapies for cancer, Alzheimer’s disease, and the eradication of HIV/AIDS. However, the clinical use of bryostatin has been hampered by its limited supply, difficulties in accessing clinically-relevant derivatives, and side effects. Herein, we address these problems through the step-economical syntheses of seven members of a new family of designed bryostatin analogues utilizing a highly convergent Prins-macrocyclization strategy. We also demonstrate for the first time that such analogues effectively induce latent HIV activation in vitro with potencies similar to or better than bryostatin. Significantly, these analogues are up to 1000-fold more potent in inducing latent HIV expression than prostratin, the current clinical candidate for latent virus induction. This study provides the first demonstration that designed, synthetically-accessible bryostatin analogues could serve as superior candidates for the eradication of HIV/AIDS through induction of latent viral reservoirs in conjunction with current antiretroviral therapy.
Collapse
|