1
|
Mukherjee P, Ansell SM, Mondello P. Unraveling the role of cancer-associated fibroblasts in B cell lymphoma. Front Immunol 2024; 15:1451791. [PMID: 39555055 PMCID: PMC11563820 DOI: 10.3389/fimmu.2024.1451791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/03/2024] [Indexed: 11/19/2024] Open
Abstract
Recent breakthroughs in research have sparked a paradigm shift in our understanding of cancer biology, uncovering the critical role of the crosstalk between tumor cells and the immune cells of the tumor microenvironment (TME) in malignant transformation. Fibroblasts have long been viewed as ancillary participants in cancer progression, often eclipsed by the prominence given to malignant cells. Novel investigations, however, have increasingly acknowledged the essential part played by the fibroblasts and their phenotypic doppelganger cancer-associated fibroblasts (CAFs) in fostering immunosuppression and promoting tumor progression. Here we review the cell-of-origin from which CAFs derive and their altered programs compared to their normal counterpart. We will also discuss the complex interplay between CAFs and the surrounding immune cells of the TME in the context of solid tumors and B cell lymphomas, with a focus on the "reprogrammable" role of CAFs in immunosuppression, immuno-activation and immuno-avoidance, and their implications on drug resistance. Finally, we will examine the existing and plausible therapeutic approaches targeting CAFs as a strategy to enhance treatment response.
Collapse
|
2
|
Milosevic V, Östman A. Interactions between cancer-associated fibroblasts and T-cells: functional crosstalk with targeting and biomarker potential. Ups J Med Sci 2024; 129:10710. [PMID: 38863724 PMCID: PMC11165253 DOI: 10.48101/ujms.v129.10710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 06/13/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) are a heterogeneous cell population recognized as a key component of the tumour microenvironment (TME). Cancer-associated fibroblasts are known to play an important role in maintaining and remodelling the extracellular matrix (ECM) in the tumour stroma, supporting cancer progression and inhibiting the immune system's response against cancer cells. This review aims to summarize the immunomodulatory roles of CAFs, particularly focussing on their T-cell suppressive effects. Cancer-associated fibroblasts have several ways by which they can affect the tumour's immune microenvironment (TIME). For example, their interactions with macrophages and dendritic cells (DCs) create an immunosuppressive milieu that can indirectly affect T-cell anticancer immunity and enable immune evasion. In addition, a number of recent studies have confirmed CAF-mediated direct suppressive effects on T-cell anticancer capacity through ECM remodelling, promoting the expression of immune checkpoints, cytokine secretion and the release of extracellular vesicles. The consequential impact of CAFs on T-cell function is then reflected in affecting T-cell proliferation and apoptosis, migration and infiltration, differentiation and exhaustion. Emerging evidence highlights the existence of specific CAF subsets with distinct capabilities to modulate the immune landscape of TME in various cancers, suggesting the possibility of their exploitation as possible prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Vladan Milosevic
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Arne Östman
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Dou T, Li J, Zhang Y, Pei W, Zhang B, Wang B, Wang Y, Jia H. The cellular composition of the tumor microenvironment is an important marker for predicting therapeutic efficacy in breast cancer. Front Immunol 2024; 15:1368687. [PMID: 38487526 PMCID: PMC10937353 DOI: 10.3389/fimmu.2024.1368687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
At present, the incidence rate of breast cancer ranks first among new-onset malignant tumors in women. The tumor microenvironment is a hot topic in tumor research. There are abundant cells in the tumor microenvironment that play a protumor or antitumor role in breast cancer. During the treatment of breast cancer, different cells have different influences on the therapeutic response. And after treatment, the cellular composition in the tumor microenvironment will change too. In this review, we summarize the interactions between different cell compositions (such as immune cells, fibroblasts, endothelial cells, and adipocytes) in the tumor microenvironment and the treatment mechanism of breast cancer. We believe that detecting the cellular composition of the tumor microenvironment is able to predict the therapeutic efficacy of treatments for breast cancer and benefit to combination administration of breast cancer.
Collapse
Affiliation(s)
- Tingyao Dou
- Department of First Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Jing Li
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yaochen Zhang
- Department of First Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Wanru Pei
- Department of First Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Binyue Zhang
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Bin Wang
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanhong Wang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China
| | - Hongyan Jia
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China
| |
Collapse
|
4
|
Kang X, Huang Y, Wang H, Jadhav S, Yue Z, Tiwari AK, Babu RJ. Tumor-Associated Macrophage Targeting of Nanomedicines in Cancer Therapy. Pharmaceutics 2023; 16:61. [PMID: 38258072 PMCID: PMC10819517 DOI: 10.3390/pharmaceutics16010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
The tumor microenvironment (TME) is pivotal in tumor growth and metastasis, aligning with the "Seed and Soil" theory. Within the TME, tumor-associated macrophages (TAMs) play a central role, profoundly influencing tumor progression. Strategies targeting TAMs have surfaced as potential therapeutic avenues, encompassing interventions to block TAM recruitment, eliminate TAMs, reprogram M2 TAMs, or bolster their phagocytic capabilities via specific pathways. Nanomaterials including inorganic materials, organic materials for small molecules and large molecules stand at the forefront, presenting significant opportunities for precise targeting and modulation of TAMs to enhance therapeutic efficacy in cancer treatment. This review provides an overview of the progress in designing nanoparticles for interacting with and influencing the TAMs as a significant strategy in cancer therapy. This comprehensive review presents the role of TAMs in the TME and various targeting strategies as a promising frontier in the ever-evolving field of cancer therapy. The current trends and challenges associated with TAM-based therapy in cancer are presented.
Collapse
Affiliation(s)
- Xuejia Kang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA;
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Yongzhuo Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangzhou 528400, China;
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
| | - Huiyuan Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
| | - Sanika Jadhav
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA;
| | - Zongliang Yue
- Department of Health Outcome and Research Policy, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA;
| | - Amit K. Tiwari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas of Medical Sciences, Little Rock, AR 72205, USA;
| | - R. Jayachandra Babu
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA;
| |
Collapse
|
5
|
Tu Z, Karnoub AE. Mesenchymal stem/stromal cells in breast cancer development and management. Semin Cancer Biol 2022; 86:81-92. [PMID: 36087857 DOI: 10.1016/j.semcancer.2022.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/17/2022]
Abstract
Mesenchymal stem/stromal cells (MSCs) encompass a heterogeneous population of fibroblastic progenitor cells that reside in multiple tissues around the body. They are endowed with capacities to differentiate into multiple connective tissue lineages, including chondrocytes, adipocytes, and osteoblasts, and are thought to function as trophic cells recruited to sites of injury and inflammation where they contribute to tissue regeneration. In keeping with these roles, MSCs also to home to sites of breast tumorigenesis, akin to their migration to wounds, and participate in tumor stroma formation. Mounting evidence over the past two decades has described the critical regulatory roles for tumor-associated MSCs in various aspects of breast tumor pathogenesis, be it tumor initiation, growth, angiogenesis, tumor microenvironment formation, immune evasion, cancer cell migration, invasion, survival, therapeutic resistance, dissemination, and metastatic colonization. In this review, we present a brief summary of the role of MSCs in breast tumor development and progression, highlight some of the molecular frameworks underlying their pro-malignant contributions, and present evidence of their promising utility in breast cancer therapy.
Collapse
Affiliation(s)
- Zhenbo Tu
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Antoine E Karnoub
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Boston Veterans Affairs Research Institute, West Roxbury, MA 02132, USA.
| |
Collapse
|
6
|
Wang L, Jiang J, Chen Y, Jia Q, Chu Q. The roles of CC chemokines in response to radiation. Radiat Oncol 2022; 17:63. [PMID: 35365161 PMCID: PMC8974090 DOI: 10.1186/s13014-022-02038-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/20/2022] [Indexed: 01/21/2023] Open
Abstract
Radiotherapy is an effective regimen for cancer treatment alone or combined with chemotherapy or immunotherapy. The direct effect of radiotherapy involves radiation-induced DNA damage, and most studies have focused on this area to improve the efficacy of radiotherapy. Recently, the immunomodulatory effect of radiation on the tumour microenvironment has attracted much interest. Dying tumour cells can release multiple immune-related molecules, including tumour-associated antigens, chemokines, and inflammatory mediators. Then, immune cells are attracted to the irradiated site, exerting immunostimulatory or immunosuppressive effects. CC chemokines play pivotal roles in the trafficking process. The CC chemokine family includes 28 members that attract different immune subsets. Upon irradiation, tumour cells or immune cells can release different CC chemokines. Here, we mainly discuss the importance of CCL2, CCL3, CCL5, CCL8, CCL11, CCL20 and CCL22 in radiotherapy. In irradiated normal tissues, released chemokines induce epithelial to mesenchymal transition, thus promoting tissue injury. In the tumour microenvironment, released chemokines recruit cancer-associated cells, such as tumour-infiltrating lymphocytes, myeloid-derived suppressor cells and tumour-associated macrophages, to the tumour niche. Thus, CC chemokines have protumour and antitumour properties. Based on the complex roles of CC chemokines in the response to radiation, it would be promising to target specific chemokines to alleviate radiation-induced injury or promote tumour control.
Collapse
|
7
|
Li X, Chen M, Lu W, Tang J, Deng L, Wen Q, Huang M, Deng R, Ye G, Ye W, Zhang D. Targeting FAPα-expressing tumor-associated mesenchymal stromal cells inhibits triple-negative breast cancer pulmonary metastasis. Cancer Lett 2021; 503:32-42. [PMID: 33482262 DOI: 10.1016/j.canlet.2021.01.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/08/2020] [Accepted: 01/13/2021] [Indexed: 02/08/2023]
Abstract
Tumor metastasis is the main cause of death in patients with triple-negative breast cancer (TNBC). Bone marrow-derived mesenchymal stem cells (BM-MSCs) have tropism towards tumor tissues, and can be converted into tumor-associated mesenchymal stromal cells (TA-MSCs) to facilitate TNBC metastasis through interactions with tumor-associated macrophages (TAMs). However, the underlying molecular mechanisms are complex and unclear, and effective strategies to suppress tumor metastasis via eliminating TA-MSCs are still lacking. Here, we demonstrate that fibroblast activation protein alpha (FAPα) was overexpressed in TA-MSCs, which prompts TA-MSCs to secrete multiple C-C motif chemokine ligands, promoting C-C motif chemokine receptor 2 (CCR2)+ TAM recruitment and facilitating TAM polarization into the M2 phenotype, thereby promoting TNBC pulmonary metastasis. Z-GP-DAVLBH, an FAPα-activated vinblastine prodrug, induces FAPα+ TA-MSC apoptosis, which significantly suppresses CCR2+ TAM recruitment and polarization, thus inhibiting pulmonary metastasis of orthotopic TNBC cell-derived xenografts and patient-derived xenografts. This study provides insight into an important role of FAPα in mediating TA-MSC-induced TNBC metastasis and provides compelling evidence that targeting TA-MSCs with an FAPα-activated prodrug is a promising strategy for suppressing TNBC metastasis.
Collapse
Affiliation(s)
- Xiaobo Li
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Minfeng Chen
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Weijin Lu
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Jun Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China; Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Lijuan Deng
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Qing Wen
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Maohua Huang
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Rong Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Geni Ye
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Wencai Ye
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China.
| | - Dongmei Zhang
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
8
|
CC Chemokines in a Tumor: A Review of Pro-Cancer and Anti-Cancer Properties of the Ligands of Receptors CCR1, CCR2, CCR3, and CCR4. Int J Mol Sci 2020; 21:ijms21218412. [PMID: 33182504 PMCID: PMC7665155 DOI: 10.3390/ijms21218412] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/14/2022] Open
Abstract
CC chemokines, a subfamily of 27 chemotactic cytokines, are a component of intercellular communication, which is crucial for the functioning of the tumor microenvironment. Although many individual chemokines have been well researched, there has been no comprehensive review presenting the role of all known human CC chemokines in the hallmarks of cancer, and this paper aims at filling this gap. The first part of this review discusses the importance of CCL1, CCL3, CCL4, CCL5, CCL18, CCL19, CCL20, CCL21, CCL25, CCL27, and CCL28 in cancer. Here, we discuss the significance of CCL2 (MCP-1), CCL7, CCL8, CCL11, CCL13, CCL14, CCL15, CCL16, CCL17, CCL22, CCL23, CCL24, and CCL26. The presentation of each chemokine includes its physiological function and then the role in tumor, including proliferation, drug resistance, migration, invasion, and organ-specific metastasis of tumor cells, as well as the effects on angiogenesis and lymphangiogenesis. We also discuss the effects of each CC chemokine on the recruitment of cancer-associated cells to the tumor niche (eosinophils, myeloid-derived suppressor cells (MDSC), tumor-associated macrophages (TAM), tumor-associated neutrophils (TAN), regulatory T cells (Treg)). On the other hand, we also present the anti-cancer properties of CC chemokines, consisting in the recruitment of tumor-infiltrating lymphocytes (TIL).
Collapse
|
9
|
Ge Z, Ding S. The Crosstalk Between Tumor-Associated Macrophages (TAMs) and Tumor Cells and the Corresponding Targeted Therapy. Front Oncol 2020; 10:590941. [PMID: 33224886 PMCID: PMC7670061 DOI: 10.3389/fonc.2020.590941] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Tumor microenvironment (TME) is composed of tumor cells and surrounding non-tumor stromal cells, mainly including tumor associated macrophages (TAMs), endothelial cells, and carcinoma-associated fibroblasts (CAFs). The TAMs are the major components of non-tumor stromal cells, and play an important role in promoting the occurrence and development of tumors. Macrophages originate from bone marrow hematopoietic stem cells and embryonic yolk sacs. There is close crosstalk between TAMs and tumor cells. With the occurrence of tumors, tumor cells secrete various chemokines to recruit monocytes to infiltrate tumor tissues and further promote their M2-type polarization. Importantly, M2-like TAMs can in turn accelerate tumor growth, promote tumor cell invasion and metastasis, and inhibit immune killing to promote tumor progression. Therefore, targeting TAMs in tumor tissues has become one of the principal strategies in current tumor immunotherapy. Current treatment strategies focus on reducing macrophage infiltration in tumor tissues and reprogramming TAMs to M1-like to kill tumors. Although these treatments have had some success, their effects are still limited. This paper mainly summarized the recruitment and polarization of macrophages by tumors, the support of TAMs for the growth of tumors, and the research progress of TAMs targeting tumors, to provide new treatment strategies for tumor immunotherapy.
Collapse
Affiliation(s)
- Zhe Ge
- School of Physical Education & Health Care, East China Normal University, Shanghai, China.,Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Shuzhe Ding
- School of Physical Education & Health Care, East China Normal University, Shanghai, China.,Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| |
Collapse
|
10
|
Hilmi M, Nicolle R, Bousquet C, Neuzillet C. Cancer-Associated Fibroblasts: Accomplices in the Tumor Immune Evasion. Cancers (Basel) 2020; 12:cancers12102969. [PMID: 33066357 PMCID: PMC7602282 DOI: 10.3390/cancers12102969] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/04/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary A growing number of studies suggest that cancer-associated fibroblasts (CAFs) modulate both myeloid and lymphoid cells through secretion of molecules (i.e., chemical function) and production of the extracellular matrix (ECM), i.e., physical function. Even though targeting functions CAFs is a relevant strategy, published clinical trials solely aimed at targeting the stroma showed disappointing results, despite being based on solid preclinical evidence. Our review dissects the interactions between CAFs and immune cells and explains how a deeper understanding of CAF subpopulations is the cornerstone to propose relevant therapies that will ultimately improve survival of patients with cancer. Abstract Cancer-associated fibroblasts (CAFs) are prominent cells within the tumor microenvironment, by communicating with other cells within the tumor and by secreting the extracellular matrix components. The discovery of the immunogenic role of CAFs has made their study particularly attractive due to the potential applications in the field of cancer immunotherapy. Indeed, CAFs are highly involved in tumor immune evasion by physically impeding the immune system and interacting with both myeloid and lymphoid cells. However, CAFs do not represent a single cell entity but are divided into several subtypes with different functions that may be antagonistic. Considering that CAFs are orchestrators of the tumor microenvironment and modulate immune cells, targeting their functions may be a promising strategy. In this review, we provide an overview of (i) the mechanisms involved in immune regulation by CAFs and (ii) the therapeutic applications of CAFs modulation to improve the antitumor immune response and the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Marc Hilmi
- Department of Medical Oncology, Curie Institute, University of Versailles Saint-Quentin, 92210 Saint-Cloud, France;
- GERCOR, 151 rue du Faubourg Saint-Antoine, 75011 Paris, France
- Correspondence: ; Tel.: +33-06-8547-3027
| | - Rémy Nicolle
- Programme Cartes d’Identité des Tumeurs (CIT), Ligue Nationale Contre Le Cancer, 75013 Paris, France;
| | - Corinne Bousquet
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, University Toulouse III Paul Sabatier, ERL5294 CNRS, 31000 Toulouse, France;
| | - Cindy Neuzillet
- Department of Medical Oncology, Curie Institute, University of Versailles Saint-Quentin, 92210 Saint-Cloud, France;
- GERCOR, 151 rue du Faubourg Saint-Antoine, 75011 Paris, France
- Institut Curie, Cell Migration and Invasion, UMR144, PSL Research University, 26, rue d’Ulm, F-75005 Paris, France
| |
Collapse
|
11
|
Zoledronic Acid Abrogates Restraint Stress-Induced Macrophage Infiltration, PDGF-AA Expression, and Ovarian Cancer Growth. Cancers (Basel) 2020; 12:cancers12092671. [PMID: 32962103 PMCID: PMC7563308 DOI: 10.3390/cancers12092671] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Biobehavioral disorders can negatively impact patients with ovarian cancer. Growing evidence suggests that chronic stress can promote tumor progression, the release of inflammatory mediators, and macrophage infiltration into the tumor. However, the role of stress hormones in regulating cancer cell/macrophage crosstalk remains unclear. This study aimed to assess the role of stress hormone-stimulated macrophages in modulating inflammatory networks and ovarian cancer biology. Our data show that stress hormones induced secretion of inflammatory proteins in ovarian cancer cell/macrophage co-cultures. Furthermore, we show that restraint stress leads to cancer growth, macrophage infiltration, and PDGF-AA protein expression in animal models of ovarian cancer. Conversely, zoledronic acid was able to prevent the effects of restraint stress on ovarian cancer growth. Overall, our data suggest a role for stress hormone-stimulated macrophages in ovarian cancer progression and suggest the involvement of PDGF-AA as a key mediator of this process. Abstract Multiple studies suggest that chronic stress accelerates the growth of existing tumors by activating the sympathetic nervous system. Data suggest that sustained adrenergic signaling can induce tumor growth, secretion of pro-inflammatory cytokines, and macrophage infiltration. Our goal was to study the role of adrenergic-stimulated macrophages in ovarian cancer biology. Cytokine arrays were used to assess the effect of adrenergic stimulation in pro-tumoral cytokine networks. An orthotopic model of ovarian cancer was used to assess the in vivo effect of daily restraint stress on tumor growth and adrenergic-induced macrophages. Cytokine analyses showed that adrenergic stimulation modulated pro-inflammatory cytokine secretion in a SKOV3ip1 ovarian cancer cell/U937 macrophage co-culture system. Among these, platelet-derived growth factor AA (PDGF-AA), epithelial cell-derived neutrophil-activating peptide (ENA-78), Angiogenin, vascular endothelial growth factor (VEGF), granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-5 (IL-5), Lipocalin-2, macrophage migration inhibitory factor (MIF), and transferrin receptor (TfR) were upregulated. Enriched biological processes included cytokine-mediated signaling pathways and positive regulation of cell proliferation. In addition, daily restraint stress increased ovarian cancer growth, infiltration of CD68+ macrophages, and expression of PDGF-AA in orthotopic models of ovarian cancer (SKOV3ip1 and HeyT30), while zoledronic acid, a macrophage-depleting agent, abrogated this effect. Furthermore, in ovarian cancer patients, high PDGFA expression correlated with worse outcomes. Here, it is shown that the adrenergic regulation of macrophages and PDGFA might play a role in ovarian cancer progression.
Collapse
|
12
|
Lv J, Chen FK, Liu C, Liu PJ, Feng ZP, Jia L, Yang ZX, Hou F, Deng ZY. Zoledronic acid inhibits thyroid cancer stemness and metastasis by repressing M2-like tumor-associated macrophages induced Wnt/β-catenin pathway. Life Sci 2020; 256:117925. [PMID: 32522570 DOI: 10.1016/j.lfs.2020.117925] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/22/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023]
Abstract
AIMS This study aims to explore the effect and underlying mechanism of zoledronic acid (ZA) on the incidence of thyroid cancer (TC) tumorigenesis. MATERIALS AND METHODS Human mononuclear cells THP-1 were differentiated into M2-like tumor associated macrophages (TAMs) by incubation with PMA followed by additional incubation of IL-4 and IL-13. TC cells TPC-1 and IHH4 were co-cultured with M2-like TAMs. Identification of M2-like TAMs markers were determined by immunohistochemistry or flow cytometry. Cell proliferation, stemness and migration/invasion ability were measured by colony, sphere formation assay and transwell assay, respectively. The expression levels of cell stemness, EMT and Wnt/β-catenin pathway-related factors were verified by qRT-PCR, Western blotting, and immunofluorescence. A subcutaneous tumor model was established in nude mice to examine the in vivo effects of ZA. KEY FINDINGS M2-like TAMs were enriched in TC tissues, and they promoted the colony/sphere formation, accompanied with a down-regulated expression in E-cadherin and an up-regulated expression in N-cadherin, Vimentin and other stemness-associated markers (CD133, Oct4, c-Myc) in TC cells. The effects were suppressed when ZA co-treatment was given, because ZA inhibited the polarization of M2-like TAMs and β-catenin entry into the nucleus. Moreover, in agreement with in vitro data, ZA also limited subcutaneous tumor formation and macrophage enrichment in nude mice. SIGNIFICANCE ZA suppressed M2-like TAMs induced TC cell proliferation, stemness and metastasis through inhibiting M2-like TAMs polarization and Wnt/β-catenin pathway, which sheds light on the mechanisms of TC and provides avenues for the development of clinical therapy to TC.
Collapse
Affiliation(s)
- Juan Lv
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan Province, China
| | - Fu-Kun Chen
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan Province, China
| | - Chao Liu
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan Province, China
| | - Peng-Jie Liu
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan Province, China
| | - Zhi-Ping Feng
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan Province, China
| | - Li Jia
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan Province, China
| | - Zhi-Xian Yang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan Province, China
| | - Fei Hou
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan Province, China
| | - Zhi-Yong Deng
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan Province, China.
| |
Collapse
|
13
|
Mulholland BS, Forwood MR, Morrison NA. Monocyte Chemoattractant Protein-1 (MCP-1/CCL2) Drives Activation of Bone Remodelling and Skeletal Metastasis. Curr Osteoporos Rep 2019; 17:538-547. [PMID: 31713180 PMCID: PMC6944672 DOI: 10.1007/s11914-019-00545-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to explore the role of monocyte chemoattractant protein-1 (MCP-1 or CCL2) in the processes that underpin bone remodelling, particularly the action of osteoblasts and osteoclasts, and its role in the development and metastasis of cancers that target the bone. RECENT FINDINGS MCP-1 is a key mediator of osteoclastogenesis, being the highest induced gene during intermittent treatment with parathyroid hormone (iPTH), but also regulates catabolic effects of continuous PTH on bone including monocyte and macrophage recruitment, osteoclast formation and bone resorption. In concert with PTH-related protein (PTHrP), MCP-1 mediates the interaction between tumour-derived factors and host-derived chemokines to promote skeletal metastasis. In breast and prostate cancers, an osteolytic cascade is driven by tumour cell-derived PTHrP that upregulates MCP-1 in osteoblastic cells. This relationship between PTHrP and osteoblastic expression of MCP-1 may drive the colonisation of disseminated breast cancer cells in the bone. There is mounting evidence to suggest a pivotal role of MCP-1 in many diseases and an important role in the establishment of comorbidities. Coupled with its role in bone remodelling and the regulation of bone turnover, there is the potential for pathological relationships between bone disorders and bone-related cancers driven by MCP-1. MCP-1's role in bone remodelling and bone-related cancers highlights its potential as a novel anti-resorptive and anti-metastatic target.
Collapse
Affiliation(s)
- Bridie S Mulholland
- School of Medical Science and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Mark R Forwood
- School of Medical Science and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Nigel A Morrison
- School of Medical Science and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, 4222, Australia.
| |
Collapse
|
14
|
Monteran L, Erez N. The Dark Side of Fibroblasts: Cancer-Associated Fibroblasts as Mediators of Immunosuppression in the Tumor Microenvironment. Front Immunol 2019; 10:1835. [PMID: 31428105 PMCID: PMC6688105 DOI: 10.3389/fimmu.2019.01835] [Citation(s) in RCA: 473] [Impact Index Per Article: 78.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are prominent components of the microenvironment in most types of solid tumors, and were shown to facilitate cancer progression by supporting tumor cell growth, extracellular matrix remodeling, promoting angiogenesis, and by mediating tumor-promoting inflammation. In addition to an inflammatory microenvironment, tumors are characterized by immune evasion and an immunosuppressive milieu. In recent years, CAFs are emerging as central players in immune regulation that shapes the tumor microenvironment. CAFs contribute to immune escape of tumors via multiple mechanisms, including secretion of multiple cytokines and chemokines and reciprocal interactions that mediate the recruitment and functional differentiation of innate and adaptive immune cells. Moreover, CAFs directly abrogate the function of cytotoxic lymphocytes, thus inhibiting killing of tumor cells. In this review, we focus on recent advancements in our understanding of how CAFs drive the recruitment and functional fate of tumor-infiltrating immune cells toward an immunosuppressive microenvironment, and provide outlook on future therapeutic implications that may lead to integration of preclinical findings into the design of novel combination strategies, aimed at impairing the tumor-supportive function of CAFs.
Collapse
Affiliation(s)
- Lea Monteran
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Neta Erez
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
15
|
Xu S, Liu C, Ji H. Concise Review: Therapeutic Potential of the Mesenchymal Stem Cell Derived Secretome and Extracellular Vesicles for Radiation-Induced Lung Injury: Progress and Hypotheses. Stem Cells Transl Med 2019; 8:344-354. [PMID: 30618085 PMCID: PMC6431606 DOI: 10.1002/sctm.18-0038] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 11/27/2018] [Indexed: 12/15/2022] Open
Abstract
Radiation-induced lung injury (RILI) is a common complication in radiotherapy of thoracic tumors and limits the therapeutic dose of radiation that can be given to effectively control tumors. RILI develops through a complex pathological process, resulting in induction and activation of various cytokines, infiltration by inflammatory cells, cytokine-induced activation of fibroblasts, and subsequent tissue remodeling by activated fibroblasts, ultimately leading to impaired lung function and respiratory failure. Increasing evidence shows that mesenchymal stem cells (MSCs) may play a main role in modulating inflammation and immune responses, promoting survival and repair of damaged resident cells and enhancing regeneration of damaged tissue through soluble paracrine factors and therapeutic extracellular vesicles. Therefore, the use of the MSC-derived secretome and exosomes holds promising potential for RILI therapy. Here, we review recent progress on the potential mechanisms of MSC therapy for RILI, with an emphasis on soluble paracrine factors of MSCs. Hypotheses on how MSC derived exosomes or MSC-released exosomal miRNAs could attenuate RILI are also proposed. Problems and translational challenges of the therapies based on the MSC-derived secretome and exosomes are further summarized and underline the need for caution on rapid clinical translation. Stem Cells Translational Medicine 2019;8:344-354.
Collapse
Affiliation(s)
- Siguang Xu
- Institute of Lung and Molecular TherapyXinxiang Medical UniversityXinxiangHenanPeople's Republic of China
| | - Cong Liu
- Institute of Lung and Molecular TherapyXinxiang Medical UniversityXinxiangHenanPeople's Republic of China
| | - Hong‐Long Ji
- Department of Cellular and Molecular BiologyUniversity of Texas Health Science Center at TylerTylerTexasUSA
- Texas Lung Injury InstituteUniversity of Texas Health Science Center at TylerTylerTexasUSA
| |
Collapse
|
16
|
van Dalen FJ, van Stevendaal MHME, Fennemann FL, Verdoes M, Ilina O. Molecular Repolarisation of Tumour-Associated Macrophages. Molecules 2018; 24:molecules24010009. [PMID: 30577495 PMCID: PMC6337345 DOI: 10.3390/molecules24010009] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 12/21/2022] Open
Abstract
The tumour microenvironment (TME) is composed of extracellular matrix and non-mutated cells supporting tumour growth and development. Tumour-associated macrophages (TAMs) are among the most abundant immune cells in the TME and are responsible for the onset of a smouldering inflammation. TAMs play a pivotal role in oncogenic processes as tumour proliferation, angiogenesis and metastasis, and they provide a barrier against the cytotoxic effector function of T lymphocytes and natural killer (NK) cells. However, TAMs are highly plastic cells that can adopt either pro- or anti-inflammatory roles in response to environmental cues. Consequently, TAMs represent an attractive target to recalibrate immune responses in the TME. Initial TAM-targeted strategies, such as macrophage depletion or disruption of TAM recruitment, have shown beneficial effects in preclinical models and clinical trials. Alternatively, reprogramming TAMs towards a proinflammatory and tumouricidal phenotype has become an attractive strategy in immunotherapy. This work summarises the molecular wheelwork of macrophage biology and presents an overview of molecular strategies to repolarise TAMs in immunotherapy.
Collapse
Affiliation(s)
- Floris J van Dalen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands.
| | - Marleen H M E van Stevendaal
- Department of Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
| | - Felix L Fennemann
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands.
| | - Martijn Verdoes
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands.
| | - Olga Ilina
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|
17
|
Zhang Q, Chai S, Wang W, Wan C, Zhang F, Li Y, Wang F. Macrophages activate mesenchymal stem cells to acquire cancer-associated fibroblast-like features resulting in gastric epithelial cell lesions and malignant transformation in vitro. Oncol Lett 2018; 17:747-756. [PMID: 30655826 PMCID: PMC6313054 DOI: 10.3892/ol.2018.9703] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 02/13/2018] [Indexed: 12/15/2022] Open
Abstract
The majority of premalignant gastric lesions develop in the mucosa that has been modified by chronic inflammation. As components of the gastritis microenvironment, mesenchymal stem cells (MSCs) and macrophages are critically involved in the initiation and development of the chronic gastritis-associated gastric epithelial lesions/malignancy process. However, in this process, the underlying mechanism of macrophages interacting with MSCs, particularly the effect of macrophages on MSCs phenotype and function remains to be elucidated. The present study revealed that human umbilical cord-derived MSCs were induced to differentiate into cancer-associated fibroblasts (CAFs) phenotype by co-culture with macrophages (THP-1 cells) in vitro, and which resulted in gastric epithelial lesions/potential malignancy via epithelial-mesenchymal transition-like changes. The results of the present study indicated that macrophages could induce MSCs to acquire CAF-like features and a pro-inflammatory phenotype to remodel the inflammatory microenvironment, which could potentiate oncogenic transformation of gastric epithelium cells. The present study provides potential targets and options for inflammation-associated gastric cancer prevention and intervention.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Shuo Chai
- Clinical Laboratory and Diagnostic Center, Department of Clinical Laboratory Science, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Wei Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Chengcheng Wan
- Clinical Laboratory and Diagnostic Center, Department of Clinical Laboratory Science, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Feng Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Yuyun Li
- Clinical Laboratory and Diagnostic Center, Department of Clinical Laboratory Science, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Fengchao Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| |
Collapse
|
18
|
PD-1 blockade in combination with zoledronic acid to enhance the antitumor efficacy in the breast cancer mouse model. BMC Cancer 2018; 18:669. [PMID: 29921237 PMCID: PMC6009040 DOI: 10.1186/s12885-018-4412-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/19/2018] [Indexed: 01/20/2023] Open
Abstract
Background Blockade of PD-1 receptor may provide proof of concepts for the activity of an immune-modulation approach for the treatment of breast cancer (BC). Zoledronic acid (ZA) has been proven to inhibit angiogenesis, invasion, and adhesion of tumor cells. The aim of this study was to investigate the potential of monoclonal antibody against T cell checkpoint PD-1 in combination with chemotherapeutic drug ZA in BC mouse model. Methods The 4 T1-fLuc mouse BC model was used in this study. The anti-tumor efficacy of anti-PD-1 antibody alone or in combination with ZA was monitored by measuring bioluminescence imaging (BLI) and tumor volume. At the end of study, the flow cytometry was used to determine the immune cell population in tumors after different treatment. Results The results showed that mice treated with the combination therapy of anti-PD-1 antibody plus ZA exhibited better antitumor response compared to untreated controls or single therapy with no obvious toxicity. Conclusion Our study provides preclinical evidence for the enhanced BC treatment benefit through targeting co-signal molecules by combining anti-PD-1 antibody plus ZA treatment.
Collapse
|
19
|
Self-assembling nanoparticles encapsulating zoledronic acid inhibit mesenchymal stromal cells differentiation, migration and secretion of proangiogenic factors and their interactions with prostate cancer cells. Oncotarget 2018; 8:42926-42938. [PMID: 28477013 PMCID: PMC5522116 DOI: 10.18632/oncotarget.17216] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 03/22/2017] [Indexed: 12/16/2022] Open
Abstract
Zoledronic Acid (ZA) rapidly concentrates into the bone and reduces skeletal-related events and pain in bone metastatic prostate cancer (PCa), but exerts only a limited or absent impact as anti-cancer activity. Recently, we developed self-assembling nanoparticles (NPS) encapsulating zoledronic acid (NZ) that allowed a higher intratumor delivery of the drug compared with free zoledronic acid (ZA) in in vivo cancer models of PCa. Increasing evidence suggests that Bone Marrow (BM) Mesenchymal stromal cells (BM-MSCs) are recruited into the stroma of developing tumors where they contribute to progression by enhancing tumor growth and metastasis. We demonstrated that treatment with NZ decreased migration and differentiation into adipocytes and osteoblasts of MSCs and inhibited osteoclastogenesis. Treatment with NZ reduced the capability of MSCs to promote the migration and the clonogenic growth of the prostate cancer cell lines PC3 and DU145. The levels of Interleukin-6 and of the pro-angiogenic factors VEGF and FGF-2 were significantly reduced in MSC-CM derived from MSCs treated with NZ, and CCL5 secretion was almost totally abolished. Moreover, treatment of MSCs with supernatants from PC3 cells, leading to tumor-educated MSCs (TE-MSCs), increased the secretion of IL-6, CCL5, VEGF and FGF-2 by MSCs and increased their capability to increase PC3 cells clonogenic growth. Treatment with NZ decreased cytokine secretion and the pro-tumorigenic effects also of TE-MSCS. In conclusion, demonstrating that NZ is capable to inhibit the cross talk between MSCs and PCa, this study provides a novel insight to explain the powerful anticancer activity of NZ on PCa.
Collapse
|
20
|
Cuyàs E, Corominas-Faja B, Martín MMS, Martin-Castillo B, Lupu R, Brunet J, Bosch-Barrera J, Menendez JA. BRCA1 haploinsufficiency cell-autonomously activates RANKL expression and generates denosumab-responsive breast cancer-initiating cells. Oncotarget 2018; 8:35019-35032. [PMID: 28388533 PMCID: PMC5471031 DOI: 10.18632/oncotarget.16558] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/27/2017] [Indexed: 12/13/2022] Open
Abstract
Denosumab, a monoclonal antibody to the receptor activator of nuclear factor-κB ligand (RANKL), might be a novel preventative therapy for BRCA1-mutation carriers at high risk of developing breast cancer. Beyond its well-recognized bone-targeted activity impeding osteoclastogenesis, denosumab has been proposed to interfere with the cross-talk between RANKL-producing sensor cells and cancer-initiating RANK+ responder cells that reside within premalignant tissues of BRCA1-mutation carriers. We herein tested the alternative but not mutually exclusive hypothesis that BRCA1 deficiency might cell-autonomously activate RANKL expression to generate cellular states with cancer stem cell (CSC)-like properties. Using isogenic pairs of normal-like human breast epithelial cells in which the inactivation of a single BRCA1 allele results in genomic instability, we assessed the impact of BRCA1 haploinsufficiency on the expression status of RANK and RANKL. RANK expression remained unaltered but RANKL was dramatically up-regulated in BRCA1mut/+ haploinsufficient cells relative to isogenic BRCA1+/+ parental cells. Neutralizing RANKL with denosumab significantly abrogated the ability of BRCA1 haploinsufficient cells to survive and proliferate as floating microtumors or "mammospheres" under non-adherent/non-differentiating conditions, an accepted surrogate of the relative proportion and survival of CSCs. Intriguingly, CSC-like states driven by epithelial-to-mesenchymal transition or HER2 overexpression traits responded to some extent to denosumab. We propose that breast epithelium-specific mono-allelic inactivation of BRCA1 might suffice to cell-autonomously generate RANKL-addicted, denosumab-responsive CSC-like states. The convergent addiction to a hyperactive RANKL/RANK axis of CSC-like states from genetically diverse breast cancer subtypes might inaugurate a new era of cancer prevention and treatment based on denosumab as a CSC-targeted agent.
Collapse
Affiliation(s)
- Elisabet Cuyàs
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Catalonia, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Bruna Corominas-Faja
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Catalonia, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - María Muñoz-San Martín
- Neuroimmunology and Multiple Sclerosis Unit, Dr. Josep Trueta University Hospital, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Begoña Martin-Castillo
- Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain.,Unit of Clinical Research, Catalan Institute of Oncology, Girona, Catalonia, Spain
| | - Ruth Lupu
- Mayo Clinic, Department of Laboratory Medicine and Pathology, Division of Experimental Pathology, Rochester, MN, USA.,Mayo Clinic Cancer Center, Rochester, MN, USA
| | - Joan Brunet
- Deparment of Medical Oncology, Catalan Institute of Oncology, Girona, Catalonia, Spain.,Department of Medical Sciences, Medical School, University of Girona, Girona, Spain
| | - Joaquim Bosch-Barrera
- Deparment of Medical Oncology, Catalan Institute of Oncology, Girona, Catalonia, Spain.,Department of Medical Sciences, Medical School, University of Girona, Girona, Spain
| | - Javier A Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Catalonia, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| |
Collapse
|
21
|
Comito G, Pons Segura C, Taddei ML, Lanciotti M, Serni S, Morandi A, Chiarugi P, Giannoni E. Zoledronic acid impairs stromal reactivity by inhibiting M2-macrophages polarization and prostate cancer-associated fibroblasts. Oncotarget 2018; 8:118-132. [PMID: 27223431 PMCID: PMC5352046 DOI: 10.18632/oncotarget.9497] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/05/2016] [Indexed: 01/11/2023] Open
Abstract
Zoledronic acid (ZA) is a biphosphonate used for osteoporosis treatment and also proved to be effective to reduce the pain induced by bone metastases when used as adjuvant therapy in solid cancers. However, it has been recently proposed that ZA could have direct anti-tumour effects, although the molecular mechanism is unknown. We herein unravel a novel anti-tumour activity of ZA in prostate cancer (PCa), by targeting the pro-tumorigenic properties of both stromal and immune cells. Particularly, we demonstrate that ZA impairs PCa-induced M2-macrophages polarization, reducing their pro-invasive effect on tumour cells and their pro-angiogenic features. Crucially, ZA administration reverts cancer associated fibroblasts (CAFs) activation by targeting the mevalonate pathway and RhoA geranyl-geranylation, thereby impairing smooth muscle actin-α fibers organization, a prerequisite of fibroblast activation. Moreover, ZA prevents the M2 macrophages-mediated activation of normal fibroblast, highlighting the broad efficacy of this drug on tumour microenvironment. These results are confirmed in a metastatic xenograft PCa mouse model in which ZA-induced stromal normalization impairs cancer-stromal cells crosstalk, resulting in a significant reduction of primary tumour growth and metastases. Overall these findings reinforce the efficacy of ZA as a potential therapeutic approach to reduce cancer aggressiveness, by abrogating the supportive role of tumour microenvironment.
Collapse
Affiliation(s)
- Giuseppina Comito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Coral Pons Segura
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Maria Letizia Taddei
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Michele Lanciotti
- Department of Urology, University of Florence, Careggi Hospital, Urologic Clinic San Luca, 50100 Florence, Italy
| | - Sergio Serni
- Department of Urology, University of Florence, Careggi Hospital, Urologic Clinic San Luca, 50100 Florence, Italy
| | - Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy.,Tuscany Tumor Institute and "Center for Research, Transfer and High Education DenoTHE", 50134 Florence, Italy
| | - Elisa Giannoni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| |
Collapse
|
22
|
Fanale D, Amodeo V, Bazan V, Insalaco L, Incorvaia L, Barraco N, Castiglia M, Rizzo S, Santini D, Giordano A, Castorina S, Russo A. Can the microRNA expression profile help to identify novel targets for zoledronic acid in breast cancer? Oncotarget 2017; 7:29321-32. [PMID: 27081088 PMCID: PMC5045398 DOI: 10.18632/oncotarget.8722] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 03/31/2016] [Indexed: 01/27/2023] Open
Abstract
Zoledronic acid (ZOL), belonging to third generation bisphosphonate family, is a potent inhibitor of osteoclast-mediated bone resorption, widely used to effectively prevent osteolysis in breast cancer patients who develop bone metastases. Low doses of ZOL have been shown to exhibit a direct anticancer role, by inhibiting cell adhesion, invasion, cytoskeleton remodelling and proliferation in MCF-7 breast cancer cells. In order to identify the molecular mechanisms and signaling pathways underlying the anticancer activity exerted by ZOL, we analyzed for the first time the microRNA expression profile in breast cancer cells. A large-scale microarray analysis of 377 miRNAs was performed on MCF7 cells treated with 10 μM ZOL for 24 h compared to untreated cells. Furthermore, the expression of specific ZOL-induced miRNAs was analyzed in MCF-7 and SkBr3 cells through Real-time PCR. Low-dose treatment with ZOL significantly altered expression of 54 miRNAs. Nine upregulated and twelve downregulated miRNAs have been identified after 24 h of treatment. Also, ZOL induced expression of 11 specific miRNAs and silenced expression of 22 miRNAs. MiRNA data analysis revealed the involvement of differentially expressed miRNAs in PI3K/Akt, MAPK, Wnt, TGF-β, Jak-STAT and mTOR signaling pathways, and regulation of actin cytoskeleton. Our results have been shown to be perfectly coherent with the recent findings reported in literature concerning changes in expression of some miRNAs involved in bone metastasis formation, progression, therapy resistance in breast cancer. In conclusion, this data supports the hypothesis that ZOL-induced modification of the miRNA expression profile contributes to the anticancer efficacy of this agent.
Collapse
Affiliation(s)
- Daniele Fanale
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Valeria Amodeo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Viviana Bazan
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Lavinia Insalaco
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Lorena Incorvaia
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Nadia Barraco
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Marta Castiglia
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Sergio Rizzo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Daniele Santini
- University Campus Bio-Medico, Department of Medical Oncology, Rome, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Sergio Castorina
- Fondazione Mediterranea "G.B. Morgagni", Catania, Italy.,Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| |
Collapse
|
23
|
Cai XJ, Wang Z, Cao JW, Ni JJ, Xu YY, Yao J, Xu H, Liu F, Yang GY. Anti-angiogenic and anti-tumor effects of metronomic use of novel liposomal zoledronic acid depletes tumor-associated macrophages in triple negative breast cancer. Oncotarget 2017; 8:84248-84257. [PMID: 29137420 PMCID: PMC5663592 DOI: 10.18632/oncotarget.20539] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/30/2017] [Indexed: 12/26/2022] Open
Abstract
Zoledronic acid (ZOL) has been used as an adjuvant therapy for breast cancer. It is suggested that ZOL might be associated with inhibition of macrophages, which in turn reduces tumor growth, metastasis and tumor angiogenesis. Moreover, metronomic therapy can inhibit tumor angiogenesis and tumor immune cells. Previously we developed ZOL based cationic liposomes that allowed a higher intratumor delivery of drug compared with free ZOL in vivo. Therefore, in this study, Asn-Gly-Arg (NGR) and PEG2000 were used as ligands to modify the surface of liposomes (NGR-PEG-LP-ZOL) in metronomic therapy to clear the tumor-associated macrophages (TAMs) and inhibit the formation of tumor angiogenesis, achieving the purpose of anti-tumor growth. Our data showed that NGR-PEG-LP-ZOL metronomic therapy has the strongest inhibitory effect on tumor growth. Further, NGR-PEG-LP-ZOL metronomic therapy could significantly impair TAMs by inhibiting the expression of CD206 antibody in tumor tissues, decreasing the expression of cytokine related gene expression of TAMs, as well as reducing the percentage of TAMs in tumor tissues. In addition, NGR-PEG-LP-ZOL metronomic therapy could significantly inhibit the expression of tumor neovascular specific antibody CD31 and reduce the microvessel density. In conclusion, our study demonstrated that NGR-PEG-LP-ZOL metronomic therapy could impair TAMs by inhibiting tumor angiogenesis and enhance the antitumor effect of ZOL.
Collapse
Affiliation(s)
- Xin-Jun Cai
- Department of Pharmacy, Zhe Jiang Chinese Medicine and Western Medicine Integrated Hospital, Hangzhou 310003, People's Republic of China
| | - Zeng Wang
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou 310022, People's Republic of China
| | - Jia-Wei Cao
- Department of Pharmacy, Zhe Jiang Chinese Medicine and Western Medicine Integrated Hospital, Hangzhou 310003, People's Republic of China
| | - Jian-Jun Ni
- Department of Pharmacy, Zhe Jiang Chinese Medicine and Western Medicine Integrated Hospital, Hangzhou 310003, People's Republic of China
| | - Ying-Ying Xu
- Department of Pharmacy, Zhe Jiang Chinese Medicine and Western Medicine Integrated Hospital, Hangzhou 310003, People's Republic of China
| | - Jun Yao
- Department of Pharmacy, Zhe Jiang Chinese Medicine and Western Medicine Integrated Hospital, Hangzhou 310003, People's Republic of China
| | - Hong Xu
- Department of Gastroenterology and Hepatology, Integrated Chinese and Western Medicine Hospital of Zhejiang Province, Hangzhou 310003, People's Republic of China
| | - Fang Liu
- Department of Acupuncture, Integrated Chinese and Western Medicine Hospital of Zhejiang Province, Hangzhou 310003, People's Republic of China
| | - Gao-Yi Yang
- Department of Ultrasound, Integrated Chinese and Western Medicine Hospital of Zhejiang Province, Hangzhou 310003, People's Republic of China
| |
Collapse
|
24
|
Ramamonjisoa N, Ackerstaff E. Characterization of the Tumor Microenvironment and Tumor-Stroma Interaction by Non-invasive Preclinical Imaging. Front Oncol 2017; 7:3. [PMID: 28197395 PMCID: PMC5281579 DOI: 10.3389/fonc.2017.00003] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/05/2017] [Indexed: 12/13/2022] Open
Abstract
Tumors are often characterized by hypoxia, vascular abnormalities, low extracellular pH, increased interstitial fluid pressure, altered choline-phospholipid metabolism, and aerobic glycolysis (Warburg effect). The impact of these tumor characteristics has been investigated extensively in the context of tumor development, progression, and treatment response, resulting in a number of non-invasive imaging biomarkers. More recent evidence suggests that cancer cells undergo metabolic reprograming, beyond aerobic glycolysis, in the course of tumor development and progression. The resulting altered metabolic content in tumors has the ability to affect cell signaling and block cellular differentiation. Additional emerging evidence reveals that the interaction between tumor and stroma cells can alter tumor metabolism (leading to metabolic reprograming) as well as tumor growth and vascular features. This review will summarize previous and current preclinical, non-invasive, multimodal imaging efforts to characterize the tumor microenvironment, including its stromal components and understand tumor-stroma interaction in cancer development, progression, and treatment response.
Collapse
Affiliation(s)
- Nirilanto Ramamonjisoa
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ellen Ackerstaff
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
25
|
Cheng HL, Lin CW, Yang JS, Hsieh MJ, Yang SF, Lu KH. Zoledronate blocks geranylgeranylation not farnesylation to suppress human osteosarcoma U2OS cells metastasis by EMT via Rho A activation and FAK-inhibited JNK and p38 pathways. Oncotarget 2016; 7:9742-58. [PMID: 26848867 PMCID: PMC4891081 DOI: 10.18632/oncotarget.7138] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/20/2016] [Indexed: 12/14/2022] Open
Abstract
Zoledronate is a standard treatment for preventing skeletal complications of osteoporosis and some types of cancer associated with bone metastases, but we little know whether the effect of zoledronate on metastasis of osteosarcoma. Here, we investigated the inhibitory effects of zoledronate on cell viability, motility, migration and invasion of 4 osteosarcoma cell lines (Saos2, MG-63, HOS and U2OS) by affecting cell morphology, epithelial-mesenchymal transition (EMT) and cytoskeletal organization as well as induction of E-cadherin and reduction of N-cadherin with activation of transcription factors Slug and Twist, especially in U2OS cells. Zoledronate decreased JNK and p38 phosphorylation and upper streams of focal adhesion kinase (FAK) and Src to suppress the motility, invasiveness and migration of U2OS cells. In addition to zoledronate-inhibited Rho A and Cdc42 membrane translocation and GTPγS activities, the anti-metastatic effects in U2OS cells including inhibition of adhesion were reversed by geranylgeraniol, but not farnesol. In conclusion, Zoledronate blocks geranylgeranylation not farnesylation to suppress human osteosarcoma U2OS cell-matrix and cell-cell interactions, migration potential, the invasive activity, and the adhesive ability by EMT via Rho A activation and FAK-inhibited JNK and p38 pathways.
Collapse
Affiliation(s)
- Hsin-Lin Cheng
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Jia-Sin Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Ming-Ju Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan.,Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Ko-Hsiu Lu
- Department of Orthopedics, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| |
Collapse
|
26
|
Motegi SI, Ishikawa O. Mesenchymal stem cells: The roles and functions in cutaneous wound healing and tumor growth. J Dermatol Sci 2016; 86:83-89. [PMID: 27866791 DOI: 10.1016/j.jdermsci.2016.11.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/27/2016] [Accepted: 11/08/2016] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) are bone marrow-derived non-hematopoietic progenitor cells. MSCs are able to differentiate into various types of cells, including chondrocytes, adipocytes, osteocytes, myocytes, endothelial cells, and keratinocytes. There is increasing evidence that MSCs might be located external to the vasculature, and that perivascular cells in the skin, generally called as "pericytes", might include MSCs. It has been suggested that MSCs localized around blood vessels might migrate into wounds and contribute to the restoration of injured tissues. Many studies have demonstrated that intravenous or intradermal administration of MSCs enhanced cutaneous wound healing, such as acute incisional and excisional wounds, diabetic ulcers, radiation ulcers, and burns in animals and humans. Several mechanisms of the acceleration of wound healing by MSCs have been identified, including the enhancement of angiogenesis by secretion of pro-angiogenic factors and the differentiation into endothelial cells and/or pericytes, M2 macrophages polarization, the recruitment of endogenous stem/progenitor cells, extracellular matrix production and remodeling, and immunosuppressive effects. Since the microenvironments of wounds and/or injured tissues are similar to those of tumors, MSCs also play similar roles in malignant tumors, such as the enhancement of angiogenesis, M2 macrophages polarization, and immunosuppressive effects. In addition, the mechanisms of homing of MSCs might have a commonality in the pathogenesis of wound healing and tumors. Thus, the regulating factors of MSCs, including MFG-E8, could be a therapeutic target and lead to the establishment of new therapeutic approaches for both intractable wound healing and tumors.
Collapse
Affiliation(s)
- Sei-Ichiro Motegi
- Department of Dermatology, Gunma University Graduate School of Medicine, 3-39-22, Showa, Maebashi, Gunma 371-8511, Japan.
| | - Osamu Ishikawa
- Department of Dermatology, Gunma University Graduate School of Medicine, 3-39-22, Showa, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
27
|
Vacchelli E, Bloy N, Aranda F, Buqué A, Cremer I, Demaria S, Eggermont A, Formenti SC, Fridman WH, Fucikova J, Galon J, Spisek R, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Immunotherapy plus radiation therapy for oncological indications. Oncoimmunology 2016; 5:e1214790. [PMID: 27757313 DOI: 10.1080/2162402x.2016.1214790] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 07/15/2016] [Indexed: 02/08/2023] Open
Abstract
Malignant cells succumbing to some forms of radiation therapy are particularly immunogenic and hence can initiate a therapeutically relevant adaptive immune response. This reflects the intrinsic antigenicity of malignant cells (which often synthesize a high number of potentially reactive neo-antigens) coupled with the ability of radiation therapy to boost the adjuvanticity of cell death as it stimulates the release of endogenous adjuvants from dying cells. Thus, radiation therapy has been intensively investigated for its capacity to improve the therapeutic profile of several anticancer immunotherapies, including (but not limited to) checkpoint blockers, anticancer vaccines, oncolytic viruses, Toll-like receptor (TLR) agonists, cytokines, and several small molecules with immunostimulatory effects. Here, we summarize recent preclinical and clinical advances in this field of investigation.
Collapse
Affiliation(s)
- Erika Vacchelli
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Norma Bloy
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Fernando Aranda
- Group of Immune receptors of the Innate and Adaptive System, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS) , Barcelona, Spain
| | - Aitziber Buqué
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Isabelle Cremer
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 13, Center de Recherche des Cordeliers, Paris, France
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medical College , New York, NY, USA
| | | | | | - Wolf Hervé Fridman
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 13, Center de Recherche des Cordeliers, Paris, France
| | - Jitka Fucikova
- Sotio, Prague, Czech Republic; Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Jérôme Galon
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Laboratory of Integrative Cancer Immunology, Center de Recherche des Cordeliers, Paris, France
| | - Radek Spisek
- Sotio, Prague, Czech Republic; Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Eric Tartour
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; INSERM, U970, Paris, France; Paris-Cardiovascular Research Center (PARCC), Paris, France; Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou (HEGP), AP-HP, Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France; INSERM, U1015, CICBT1428, Villejuif, France
| | - Guido Kroemer
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France; Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
28
|
Yamada K, Uchiyama A, Uehara A, Perera B, Ogino S, Yokoyama Y, Takeuchi Y, Udey MC, Ishikawa O, Motegi SI. MFG-E8 Drives Melanoma Growth by Stimulating Mesenchymal Stromal Cell-Induced Angiogenesis and M2 Polarization of Tumor-Associated Macrophages. Cancer Res 2016; 76:4283-92. [PMID: 27197197 DOI: 10.1158/0008-5472.can-15-2812] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 05/05/2016] [Indexed: 02/07/2023]
Abstract
Secretion of the powerful angiogenic factor MFG-E8 by pericytes can bypass the therapeutic effects of anti-VEGF therapy, but the mechanisms by which MFG-E8 acts are not fully understood. In this study, we investigated how this factor acts to promote the growth of melanomas that express it. We found that mouse bone marrow-derived mesenchymal stromal cells (MSC) expressed a substantial amount of MFG-E8. To assess its expression from this cell type, we implanted melanoma cells and MSC derived from wild type (WT) or MFG-E8 deficient [knockout (KO)] into mice and monitored tumor growth. Tumor growth and M2 macrophages were each attenuated in subjects coimplanted with KO-MSC compared with WT-MSC. In both xenograft tumors and clinical specimens of melanoma, we found that MFG-E8 expression was heightened near blood vessels where MSC could be found. Through in vitro assays, we confirmed that WT-MSC-conditioned medium was more potent at inducing M2 macrophage polarization, compared with KO-MSC-conditioned medium. VEGF and ET-1 expression in KO-MSC was significantly lower than in WT-MSC, correlating in vivo with reduced tumor growth and numbers of pericytes and M2 macrophages within tumors. Overall, our results suggested that MFG-E8 acts at two levels, by increasing VEGF and ET-1 expression in MSC and by enhancing M2 polarization of macrophages, to increase tumor angiogenesis. Cancer Res; 76(14); 4283-92. ©2016 AACR.
Collapse
Affiliation(s)
- Kazuya Yamada
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akihiko Uchiyama
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akihito Uehara
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Buddhini Perera
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sachiko Ogino
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoko Yokoyama
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yuko Takeuchi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Mark C Udey
- Dermatology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Osamu Ishikawa
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sei-Ichiro Motegi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan.
| |
Collapse
|
29
|
Layek B, Sadhukha T, Prabha S. Glycoengineered mesenchymal stem cells as an enabling platform for two-step targeting of solid tumors. Biomaterials 2016; 88:97-109. [PMID: 26946263 DOI: 10.1016/j.biomaterials.2016.02.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/17/2016] [Accepted: 02/17/2016] [Indexed: 12/26/2022]
Abstract
Current tumor targeted drug and diagnostic delivery systems suffer from a lack of selectivity for tumor cells. Here, we propose a two-step tumor targeting strategy based on mesenchymal stem cells (MSCs), which actively traffic to tumors. We developed glycoengineering protocols to induce expression of non-natural azide groups on the surface of MSCs without affecting their viability or tumor homing properties. Glycoengineered MSCs demonstrated active tumor homing in subcutaneous and orthotopic lung and ovarian tumor models. Subsequent systemic administration of dibenzyl cyclooctyne (DBCO)-labeled fluorophores or nanoparticles to MSC pretreated mice resulted in enhanced tumor accumulation of these agents through bio-orthogonal copper-free click chemistry. Further, administration of glycoengineered MSCs along with paclitaxel-loaded DBCO-functionalized nanoparticles resulted in significant (p < 0.05) inhibition of tumor growth and improved survival (p < 0.0001) in an orthotopic metastatic ovarian tumor model. These results provide evidence for the potential of MSC-based two-step targeting strategy to improve the tumor specificity of diagnostic agents and drugs, and thus potentially improve the treatment outcomes for patients diagnosed with cancer.
Collapse
Affiliation(s)
- Buddhadev Layek
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN 55455, USA
| | - Tanmoy Sadhukha
- Albany Medical Research Inc., 21 Corporate Circle, Albany, NY 12203, USA
| | - Swayam Prabha
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN 55455, USA; Center for Translational Drug Delivery, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|