1
|
Lindo J, Nogueira C, Soares R, Cunha N, Almeida MR, Rodrigues L, Coelho P, Rodrigues F, Cunha RA, Gonçalves T. Genetic Polymorphisms of P2RX7 but Not of ADORA2A Are Associated with the Severity of SARS-CoV-2 Infection. Int J Mol Sci 2024; 25:6135. [PMID: 38892324 PMCID: PMC11173306 DOI: 10.3390/ijms25116135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
SARS-CoV-2 infection ranges from mild to severe presentations, according to the intensity of the aberrant inflammatory response. Purinergic receptors dually control the inflammatory response: while adenosine A2A receptors (A2ARs) are anti-inflammatory, ATP P2X7 receptors (P2X7Rs) exert pro-inflammatory effects. The aim of this study was to assess if there were differences in allelic and genotypic frequencies of a loss-of-function SNP of ADORA2A (rs2298383) and a gain-of-function single nucleotide polymorphism (SNP) of P2RX7 (rs208294) in the severity of SARS-CoV-2-associated infection. Fifty-five individuals were enrolled and categorized according to the severity of the infection. Endpoint genotyping was performed in blood cells to screen for both SNPs. The TT genotype (vs. CT + CC) and the T allele (vs. C allele) of P2RX7 SNP were found to be associated with more severe forms of COVID-19, whereas the association between ADORA2A SNP and the severity of infection was not significantly different. The T allele of P2RX7 SNP was more frequent in people with more than one comorbidity and with cardiovascular conditions and was associated with colorectal cancer. Our findings suggest a more prominent role of P2X7R rather than of A2AR polymorphisms in SARS-CoV-2 infection, although larger population-based studies should be performed to validate our conclusions.
Collapse
Affiliation(s)
- Jorge Lindo
- FMUC—Faculty of Medicine, University Coimbra, 3004-504 Coimbra, Portugal; (J.L.); (C.N.); (R.S.); (M.R.A.)
- CNC-UC—Center for Neuroscience and Cell Biology, University Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University Coimbra, 3004-504 Coimbra, Portugal
| | - Célia Nogueira
- FMUC—Faculty of Medicine, University Coimbra, 3004-504 Coimbra, Portugal; (J.L.); (C.N.); (R.S.); (M.R.A.)
- CNC-UC—Center for Neuroscience and Cell Biology, University Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University Coimbra, 3004-504 Coimbra, Portugal
| | - Rui Soares
- FMUC—Faculty of Medicine, University Coimbra, 3004-504 Coimbra, Portugal; (J.L.); (C.N.); (R.S.); (M.R.A.)
- CNC-UC—Center for Neuroscience and Cell Biology, University Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University Coimbra, 3004-504 Coimbra, Portugal
- Clinical Pathology Service, Portuguese Oncology Institute of Coimbra, 3004-011 Coimbra, Portugal;
| | - Nuno Cunha
- Clinical Pathology Service, Portuguese Oncology Institute of Coimbra, 3004-011 Coimbra, Portugal;
| | - Maria Rosário Almeida
- FMUC—Faculty of Medicine, University Coimbra, 3004-504 Coimbra, Portugal; (J.L.); (C.N.); (R.S.); (M.R.A.)
- CNC-UC—Center for Neuroscience and Cell Biology, University Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University Coimbra, 3004-504 Coimbra, Portugal
| | - Lisa Rodrigues
- CNC-UC—Center for Neuroscience and Cell Biology, University Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University Coimbra, 3004-504 Coimbra, Portugal
| | - Patrícia Coelho
- IPCB/ESALD—Instituto Politécnico de Castelo Branco, Escola Superior de Saúde Dr. Lopes Dias, SPRINT-IPCB—Sport Physical Activity and Health Research & Innovation Center, 6000-767 Castelo Branco, Portugal; (P.C.); (F.R.)
| | - Francisco Rodrigues
- IPCB/ESALD—Instituto Politécnico de Castelo Branco, Escola Superior de Saúde Dr. Lopes Dias, SPRINT-IPCB—Sport Physical Activity and Health Research & Innovation Center, 6000-767 Castelo Branco, Portugal; (P.C.); (F.R.)
| | - Rodrigo A. Cunha
- FMUC—Faculty of Medicine, University Coimbra, 3004-504 Coimbra, Portugal; (J.L.); (C.N.); (R.S.); (M.R.A.)
- CNC-UC—Center for Neuroscience and Cell Biology, University Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University Coimbra, 3004-504 Coimbra, Portugal
| | - Teresa Gonçalves
- FMUC—Faculty of Medicine, University Coimbra, 3004-504 Coimbra, Portugal; (J.L.); (C.N.); (R.S.); (M.R.A.)
- CNC-UC—Center for Neuroscience and Cell Biology, University Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
2
|
Magni L, Yu H, Christensen NM, Poulsen MH, Frueh A, Deshar G, Johansen AZ, Johansen JS, Pless SA, Jørgensen NR, Novak I. Human P2X7 receptor variants Gly150Arg and Arg276His polymorphisms have differential effects on risk association and cellular functions in pancreatic cancer. Cancer Cell Int 2024; 24:148. [PMID: 38664691 PMCID: PMC11044319 DOI: 10.1186/s12935-024-03339-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND The purinergic P2X7 receptor (P2X7R) plays an important role in the crosstalk between pancreatic stellate cells (PSCs) and cancer cells, thus promoting progression of pancreatic ductal adenocarcinoma (PDAC). Single nucleotide polymorphisms (SNPs) in the P2X7R have been reported for several cancers, but have not been explored in PDAC. MATERIALS AND METHODS Blood samples from PDAC patients and controls were genotyped for 11 non-synonymous SNPs in P2X7R and a risk analysis was performed. Relevant P2X7R-SNP GFP variants were expressed in PSCs and cancer cells and their function was assayed in the following tests. Responses in Ca2+ were studied with Fura-2 and dye uptake with YO-PRO-1. Cell migration was monitored by fluorescence microscopy. Released cytokines were measured with MSD assay. RESULTS Risk analysis showed that two SNPs 474G>A and 853G>A (rs28360447, rs7958316), that lead to the Gly150Arg and Arg276His variants, had a significant but opposite risk association with PDAC development, protecting against and predisposing to the disease, respectively. In vitro experiments performed on cancer cells and PSCs expressing the Gly150Arg variant showed reduced intracellular Ca2+ response, fluorescent dye uptake, and cell migration, while the Arg276His variant reduced dye uptake but displayed WT-like Ca2+ responses. As predicted, P2X7R was involved in cytokine release (IL-6, IL-1β, IL-8, TNF-α), but the P2X7R inhibitors displayed varied effects. CONCLUSION In conclusion, we provide evidence for the P2X7R SNPs association with PDAC and propose that they could be considered as potential biomarkers.
Collapse
Affiliation(s)
- Lara Magni
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen Ø, Denmark
| | - Haoran Yu
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen Ø, Denmark
| | - Nynne M Christensen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen Ø, Denmark
| | - Mette H Poulsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Alexander Frueh
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen Ø, Denmark
| | - Ganga Deshar
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen Ø, Denmark
| | - Astrid Z Johansen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte Hospital, Herlev, Denmark
| | - Julia S Johansen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte Hospital, Herlev, Denmark
- Department of Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Stephan A Pless
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Niklas R Jørgensen
- Department of Clinical Biochemistry, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ivana Novak
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen Ø, Denmark.
| |
Collapse
|
3
|
Zuo C, Xu YS, He PF, Zhang WJ. ATP ion channel P2X7 receptor as a regulatory molecule in the progression of colorectal cancer. Eur J Med Chem 2023; 261:115877. [PMID: 37857146 DOI: 10.1016/j.ejmech.2023.115877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
Large amounts of adenosine triphosphate (ATP), a natural P2X7 receptor activator, are released during colorectal carcinogenesis. P2X7 receptor activation regulates the activity of colorectal cancer (CRC) cells by mediating intracellular signal transduction. Importantly, the opening and activation of membrane pores of P2X7 receptor are different, which can play a dual role in promoting or inhibiting the progression of CRC. These can also depend on P2X7 receptor to regulate the activities of immune cells in the microenvironment, play the functions of immune regulation, immune escape and immune monitoring. While the use of P2X7 receptor antagonists (such as BBG, A438079 and A740003) can play a certain inhibitory pharmacological role on the activity of CRC. Therefore, in this paper, the mechanism and immunomodulatory function of P2X7 receptor involved in the progression of CRC were discussed. Moreover, we discussed the effect of antagonizing the activity of P2X7 receptor on the progression of CRC. So P2X7 receptor may be a new pharmacological molecular target for the treatment of CRC.
Collapse
Affiliation(s)
- Cheng Zuo
- Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Yong-Sheng Xu
- Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Peng-Fei He
- Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China.
| |
Collapse
|
4
|
Wang Z, Zhu S, Tan S, Zeng Y, Zeng H. The P2 purinoceptors in prostate cancer. Purinergic Signal 2023; 19:255-263. [PMID: 35771310 PMCID: PMC9984634 DOI: 10.1007/s11302-022-09874-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/25/2022] [Indexed: 02/08/2023] Open
Abstract
P2 purinoceptors are composed of ligand-gated ion channel type (P2X receptor) and G protein-coupled metabolite type (P2Y receptor). Both these receptors have played important roles in the prostate cancer microenvironment in recent years. P2X and P2Y receptors can contribute to prostate cancer's growth and invasiveness. However, the comprehensive mechanisms have yet to be identified. By summarizing the relevant studies, we believe that P2X and P2Y receptors play a dual role in cancer cell growth depending on the prostate cancer microenvironment and different downstream signalling pathways. We also summarized how different signalling pathways contribute to tumor invasiveness and metastasis through P2X and P2Y receptors, focusing on understanding the specific mechanisms led by P2X4, P2X7, and P2Y2. Statins may reduce and prevent tumor progression through P2X7 so that P2X purinergic receptors may have clinical implications in the management of prostate cancer. Furthermore, P2X7 receptors can aid in the early detection of prostate cancer. We hope that this review will provide new insights for future mechanistic and clinical investigations into the role of P2 purinergic receptors in prostate cancer.
Collapse
Affiliation(s)
- Zilin Wang
- The Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Sha Zhu
- The Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Sirui Tan
- Department of Abdominal Cancer, Medical School, West China Hospital, Sichuan University, Cancer Center, Chengdu, West China, China
| | - Yuhao Zeng
- The Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Zeng
- The Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Song H, Arredondo Carrera HM, Sprules A, Ji Y, Zhang T, He J, Lawrence E, Gartland A, Luo J, Wang N. C-terminal variants of the P2X7 receptor are associated with prostate cancer progression and bone metastasis - evidence from clinical and pre-clinical data. Cancer Commun (Lond) 2023; 43:400-404. [PMID: 36582013 PMCID: PMC10009667 DOI: 10.1002/cac2.12391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 10/03/2022] [Accepted: 11/02/2022] [Indexed: 12/31/2022] Open
Affiliation(s)
- Haiping Song
- Department of Internal Medicine-Oncology, Qingdao Tumor Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, Shandong, 266042, P. R. China
| | - Hector Manuel Arredondo Carrera
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, Sheffield, South Yorkshire, S10 2RX, UK
| | - Alexandria Sprules
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, Sheffield, South Yorkshire, S10 2RX, UK
| | - Ying Ji
- Department of Internal Medicine-Oncology, Qingdao Tumor Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, Shandong, 266042, P. R. China
| | - Tongsong Zhang
- Department of Internal Medicine-Oncology, Qingdao Tumor Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, Shandong, 266042, P. R. China
| | - Jiepei He
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, Sheffield, South Yorkshire, S10 2RX, UK
| | - Eleanor Lawrence
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, Sheffield, South Yorkshire, S10 2RX, UK
| | - Alison Gartland
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, Sheffield, South Yorkshire, S10 2RX, UK
| | - Jian Luo
- Yangzhi Rehabilitation Hospital (Sunshine Rehabilitation Centre), Tongji University School of Medicine, Shanghai, 201619, P. R. China
| | - Ning Wang
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, Sheffield, South Yorkshire, S10 2RX, UK
| |
Collapse
|
6
|
Maynard JP, Sfanos KS. P2 purinergic receptor dysregulation in urologic disease. Purinergic Signal 2022; 18:267-287. [PMID: 35687210 PMCID: PMC9184359 DOI: 10.1007/s11302-022-09875-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/25/2022] [Indexed: 11/25/2022] Open
Abstract
P2 purinergic receptors are involved in the normal function of the kidney, bladder, and prostate via signaling that occurs in response to extracellular nucleotides. Dysregulation of these receptors is common in pathological states and often associated with disease initiation, progression, or aggressiveness. Indeed, P2 purinergic receptor expression is altered across multiple urologic disorders including chronic kidney disease, polycystic kidney disease, interstitial cystitis, urinary incontinence, overactive bladder syndrome, prostatitis, and benign prostatic hyperplasia. P2 purinergic receptors are likewise indirectly associated with these disorders via receptor-mediated inflammation and pain, a common characteristic across most urologic disorders. Furthermore, select P2 purinergic receptors are overexpressed in urologic cancer including renal cell carcinoma, urothelial carcinoma, and prostate adenocarcinoma, and pre-clinical studies depict P2 purinergic receptors as potential therapeutic targets. Herein, we highlight the compelling evidence for the exploration of P2 purinergic receptors as biomarkers and therapeutic targets in urologic cancers and other urologic disease. Likewise, there is currently optimism for P2 purinergic receptor-targeted therapeutics for the treatment of inflammation and pain associated with urologic diseases. Further exploration of the common pathways linking P2 purinergic receptor dysregulation to urologic disease might ultimately help in gaining new mechanistic insight into disease processes and therapeutic targeting.
Collapse
Affiliation(s)
- Janielle P Maynard
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA.
| | - Karen S Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
7
|
Qiao C, Tang Y, Li Q, Zhu X, Peng X, Zhao R. ATP-gated P2X7 receptor as a potential target for prostate cancer. Hum Cell 2022; 35:1346-1354. [PMID: 35657562 DOI: 10.1007/s13577-022-00729-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/18/2022] [Indexed: 12/24/2022]
Abstract
Prostate cancer is the most common malignancy of the male genitourinary system and is one of the leading causes of male cancer death. The P2X7 receptor is an important member of purine receptor family. It is a gated ion channel with adenosine triphosphate (ATP) as the ligand, which exists in a variety of immune tissues and cells and can be involved in tumorigenesis and tumor progression. Studies have shown that the P2X7 receptor is abnormally expressed in prostate cancer, and is related to the level of prostate-specific antigen, P2X7 receptor may be an early biomarker of prostate cancer. The P2X7 receptor is essential in the occurrence and development of prostate cancer. The P2X7 receptor mainly affects the invasion and metastasis of prostate cancer cells through epithelial mesenchymal transition/invasion-related genes and the PI3K/AKT and ERK1/2 signaling pathways. The P2X7 receptor could be a promising therapeutic target for prostate cancer.
Collapse
Affiliation(s)
- Cuicui Qiao
- School of Laboratory Medicine, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Yiqing Tang
- School of Laboratory Medicine, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Qianqian Li
- School of Laboratory Medicine, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Xiaodi Zhu
- School of Laboratory Medicine, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Xiaoxiang Peng
- School of Laboratory Medicine, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Ronglan Zhao
- School of Laboratory Medicine, Weifang Medical University, Weifang, 261053, Shandong, China.
| |
Collapse
|
8
|
P2X7 promotes metastatic spreading and triggers release of miRNA-containing exosomes and microvesicles from melanoma cells. Cell Death Dis 2021; 12:1088. [PMID: 34789738 PMCID: PMC8599616 DOI: 10.1038/s41419-021-04378-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/14/2021] [Accepted: 10/29/2021] [Indexed: 12/21/2022]
Abstract
Tumor growth and metastatic spreading are heavily affected by the P2X7 receptor as well as microvesicles and exosomes release into the tumor microenvironment. P2X7 receptor stimulation is known to trigger vesicular release from immune and central nervous system cells. However, P2X7 role in microvesicles and exosomes delivery from tumor cells was never analyzed in depth. Here we show that P2X7 is overexpressed in patients affected by metastatic malignant melanoma and that its expression closely correlates with reduced overall survival. Antagonism of melanoma cell-expressed P2X7 receptor inhibited in vitro anchorage-independent growth and migration and in vivo dissemination and lung metastasis formation. P2X7 stimulation triggered the release of miRNA-containing microvesicles and exosomes from melanoma cells, profoundly altering the nature of their miRNA content, as well as their dimensions and quantity. Among the more than 200 miRNAs that we found up-or-down-modulated for each vesicular fraction tested, we identified three miRNAs, miR-495-3p, miR-376c-3p, and miR-6730-3p, that were enriched in both the exosome and microvesicle fraction in a P2X7-dependent fashion. Interestingly, upon transfection, these miRNAs promoted melanoma cell growth or migration, and their vesicular release was minimized by P2X7 antagonism. Our data unveil an exosome/microvesicle and miRNA-dependent mechanism for the pro-metastatic activity of the P2X7 receptor and highlight this receptor as a suitable prognostic biomarker and therapeutic target in malignant melanoma.
Collapse
|
9
|
To inhibit or to boost the ATP/P2RX7 pathway to fight cancer-that is the question. Purinergic Signal 2021; 17:619-631. [PMID: 34347213 DOI: 10.1007/s11302-021-09811-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Despite new biological insights and recent therapeutic advances, many tumors remain at baseline during treatments. Therefore, there is an urgent need to find new therapeutic strategies to improve the care of patients with solid tumors. P2RX7 receptor (P2XR7), an ATP-gated ion channel characterized by its ability to form large pore within the cell membrane, is described by most of the investigators as a "chef d'orchestre" of the antitumor immune response. The purpose of this review is to detail the recent information concerning different cellular mechanisms linking P2RX7 to hallmarks of cancer and to discuss different progresses in elucidating how activation of the ATP/P2RX7/NLRP3/IL-18 pathway is a very promising approach to fight cancer progression by increasing antitumor immune responses.
Collapse
|
10
|
Zhang WJ. Effect of P2X purinergic receptors in tumor progression and as a potential target for anti-tumor therapy. Purinergic Signal 2021; 17:151-162. [PMID: 33420658 PMCID: PMC7954979 DOI: 10.1007/s11302-020-09761-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
The development of tumors is a complex pathological process involving multiple factors, multiple steps, and multiple genes. Their prevention and treatment have always been a difficult problem at present. A large number of studies have proved that the tumor microenvironment plays an important role in the progression of tumors. The tumor microenvironment is the place where tumor cells depend for survival, and it plays an important role in regulating the growth, proliferation, apoptosis, migration, and invasion of tumor cells. P2X purinergic receptors, which depend on the ATP ion channel, can be activated by ATP in the tumor microenvironment, and by mediating tumor cells and related cells (such as immune cells) in the tumor microenvironment. They play an important regulatory role on the effects of the skeleton, membrane fluidity, and intracellular molecular metabolism of tumor cells. Therefore, here, we outlined the biological characteristics of P2X purinergic receptors, described the effect of tumor microenvironment on tumor progression, and discussed the effect of ATP on tumor. Moreover, we explored the role of P2X purinergic receptors in the development of tumors and anti-tumor therapy. These data indicate that P2X purinergic receptors may be used as another potential pharmacological target for tumor prevention and treatment.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang, 343000, Jiangxi, China.
| |
Collapse
|
11
|
Pasqualetti F, Gonnelli A, Orlandi P, Palladino E, Giannini N, Gadducci G, Mattioni R, Montrone S, Calistri E, Mazzanti CM, Franceschi S, Ortenzi V, Scatena C, Zavaglia K, Fanelli GN, Morganti R, Santonocito O, Bocci G, Naccarato GA, Paiar F. Association of XRCC3 rs1799794 polymorphism with survival of glioblastoma multiforme patients treated with combined radio-chemotherapy. Invest New Drugs 2021; 39:1159-1165. [PMID: 33558989 DOI: 10.1007/s10637-021-01075-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/25/2021] [Indexed: 11/29/2022]
Abstract
This study reports the results of a monocentric prospective analysis conducted with the aim of evaluating the impact of XRCC1 rs25487, XRCC3 rs861539, XRCC3 rs1799794, RAD51 rs1801320 and GSTP-1 rs1695 single nucleotide polymorphisms (SNP) on patients with high-grade glioma treated with concomitant radio-chemotherapy. From October 2010 to August 2019, a total of 75 patients aged ≥18 years, with histological diagnosis of high-grade glioma, isocitrate dehydrogenase (IDH) 1/2 wild type and treated with radio-chemotherapy and sequential chemotherapy with temozolomide (TMZ) were prospectively recruited. The local ethic committee approved this study (Comitato Etico di Area Vasta Nord Ovest [CEAVNO]; protocol 3304/2011). After a median follow up of 25 months (range: 7-98 months), median progression-free survival (PFS) and overall survival (OS) were 11 months (CI95%: 8-14 months) and 18 months (CI95%: 15-21 months), respectively. In univariate and multivariate Cox regression analysis, a statistically significant association with PFS and OS was found with XRCC3 rs1799794 SNP. The study suggests that XRCC3 rs1799794 SNP can be associated with different PFS and OS in glioblastoma patients treated with radio-chemotherapy.
Collapse
Affiliation(s)
| | - Alessandra Gonnelli
- Radiation Oncology Unit, Pisa University Hospital, Via Roma 67, 56123, Pisa, Italy
| | - Paola Orlandi
- Department of Clinical and Experimental Medicine, University of Pisa, I-56126, Pisa, Italy
| | - Eleonora Palladino
- Radiation Oncology Unit, Pisa University Hospital, Via Roma 67, 56123, Pisa, Italy
| | - Noemi Giannini
- Radiation Oncology Unit, Pisa University Hospital, Via Roma 67, 56123, Pisa, Italy
| | - Giovanni Gadducci
- Radiation Oncology Unit, Pisa University Hospital, Via Roma 67, 56123, Pisa, Italy
| | - Roberto Mattioni
- Radiation Oncology Unit, Pisa University Hospital, Via Roma 67, 56123, Pisa, Italy
| | - Sabrina Montrone
- Radiation Oncology Unit, Pisa University Hospital, Via Roma 67, 56123, Pisa, Italy
| | - Elisa Calistri
- Radiation Oncology Unit, Pisa University Hospital, Via Roma 67, 56123, Pisa, Italy
| | - Chiara Maria Mazzanti
- Laboratory of Genomics and Transcriptomics, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Sara Franceschi
- Laboratory of Genomics and Transcriptomics, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Valerio Ortenzi
- Department of Translational Research and new technologies in Medicine and Surgery, University of Pisa, 56100, Pisa, Italy
| | - Cristian Scatena
- Laboratory of Genomics and Transcriptomics, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Katia Zavaglia
- Division of Molecular Genetics, Department of Laboratory Medicine, Pisa University Hospital, Pisa, Italy
| | - Giuseppe Nicolo Fanelli
- Department of Translational Research and new technologies in Medicine and Surgery, University of Pisa, 56100, Pisa, Italy
| | - Riccardo Morganti
- Section of Statistics, Azienda Ospedaliero-Universitaria Pisana, Pisa University Hospital, Pisa, Italy
| | - Orazio Santonocito
- Nurosurgery Unit, Area Vasta-NordOvest, Livorno General Hospital, Livorno, Italy
| | - Guido Bocci
- Department of Clinical and Experimental Medicine, University of Pisa, I-56126, Pisa, Italy
| | - Giuseppe Antonio Naccarato
- Department of Translational Research and new technologies in Medicine and Surgery, University of Pisa, 56100, Pisa, Italy
| | - Fabiola Paiar
- Radiation Oncology Unit, Pisa University Hospital, Via Roma 67, 56123, Pisa, Italy
| |
Collapse
|
12
|
Abstract
The P2X7 receptor for extracellular ATP is a well-established mediator of tumoral development and progression both in solid cancers and hematological malignancies. The human P2X7 gene is highly polymorphic, and several splice variants of the receptor have been identified in time. P2X7 single-nucleotide polymorphisms (SNPs) have been broadly analyzed by studies relating them to pathologies as different as infectious, inflammatory, nervous, and bone diseases, among which cancer is included. Moreover, in the last years, an increasing number of reports concentrated on P2X7 splice variants’ different roles and their implications in pathological conditions, including oncogenesis. Here, we give an overview of established and recent literature demonstrating a role for human P2X7 gene products in oncological conditions, mainly focusing on current data emerging on P2X7 isoform B and nfP2X7. We explored the role of these and other genetic variants of P2X7 in cancer insurgence, dissemination, and progression, as well as the effect of chemotherapy on isoforms expression. The described literature strongly suggests that P2X7 variants are potential new biomarkers and therapeutical targets in oncological conditions and that their study in carcinogenesis deserves to be further pursued.
Collapse
|
13
|
Zhang WJ, Luo C, Pu FQ, Zhu JF, Zhu Z. The role and pharmacological characteristics of ATP-gated ionotropic receptor P2X in cancer pain. Pharmacol Res 2020; 161:105106. [DOI: 10.1016/j.phrs.2020.105106] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023]
|
14
|
Lara R, Adinolfi E, Harwood CA, Philpott M, Barden JA, Di Virgilio F, McNulty S. P2X7 in Cancer: From Molecular Mechanisms to Therapeutics. Front Pharmacol 2020; 11:793. [PMID: 32581786 PMCID: PMC7287489 DOI: 10.3389/fphar.2020.00793] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022] Open
Abstract
P2X7 is a transmembrane receptor expressed in multiple cell types including neurons, dendritic cells, macrophages, monocytes, B and T cells where it can drive a wide range of physiological responses from pain transduction to immune response. Upon activation by its main ligand, extracellular ATP, P2X7 can form a nonselective channel for cations to enter the cell. Prolonged activation of P2X7, via high levels of extracellular ATP over an extended time period can lead to the formation of a macropore, leading to depolarization of the plasma membrane and ultimately to cell death. Thus, dependent on its activation state, P2X7 can either drive cell survival and proliferation, or induce cell death. In cancer, P2X7 has been shown to have a broad range of functions, including playing key roles in the development and spread of tumor cells. It is therefore unsurprising that P2X7 has been reported to be upregulated in several malignancies. Critically, ATP is present at high extracellular concentrations in the tumor microenvironment (TME) compared to levels observed in normal tissues. These high levels of ATP should present a survival challenge for cancer cells, potentially leading to constitutive receptor activation, prolonged macropore formation and ultimately to cell death. Therefore, to deliver the proven advantages for P2X7 in driving tumor survival and metastatic potential, the P2X7 macropore must be tightly controlled while retaining other functions. Studies have shown that commonly expressed P2X7 splice variants, distinct SNPs and post-translational receptor modifications can impair the capacity of P2X7 to open the macropore. These receptor modifications and potentially others may ultimately protect cancer cells from the negative consequences associated with constitutive activation of P2X7. Significantly, the effects of both P2X7 agonists and antagonists in preclinical tumor models of cancer demonstrate the potential for agents modifying P2X7 function, to provide innovative cancer therapies. This review summarizes recent advances in understanding of the structure and functions of P2X7 and how these impact P2X7 roles in cancer progression. We also review potential therapeutic approaches directed against P2X7.
Collapse
Affiliation(s)
- Romain Lara
- Biosceptre (UK) Limited, Cambridge, United Kingdom
| | - Elena Adinolfi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Catherine A Harwood
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Mike Philpott
- Centre for Cutaneous Research, Blizard Institute, Bart's & The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | | | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | | |
Collapse
|
15
|
Zhang WJ, Hu CG, Zhu ZM, Luo HL. Effect of P2X7 receptor on tumorigenesis and its pharmacological properties. Biomed Pharmacother 2020; 125:109844. [PMID: 32004973 DOI: 10.1016/j.biopha.2020.109844] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/27/2019] [Accepted: 01/13/2020] [Indexed: 12/20/2022] Open
Abstract
The occurrence and development of tumors is a multi-factor, multi-step, multi-gene pathological process, and its treatment has been the most difficult problem in the field of medicine today. Therefore, exploring the relevant factors involved in the pathogenesis of tumors, improving the diagnostic rate, treatment rate, and prognosis survival rate of tumors have become an urgent problem to be solved. A large number of studies have shown that the P2X7 receptor (P2X7R) and the tumor microenvironment play an important role in regulating the growth, apoptosis, migration and invasion of tumor cells. P2X7R is an ATP ligand-gated cationic channel receptor, which exists in most tissues of the human body. The main function of P2X7R is to regulate the relevant cells (such as macrophages, lymphocytes, and glial cells) to release damaging factors and induce apoptosis and cell death. In recent years, with continuous research and exploration of P2X7R, it has been found that P2X7R exists on the surface of most tumor cells and plays an important role in tumor pathogenesis. The activation of the P2X7R can open the ion channels on the tumor cell membrane (sodium ion, calcium ion influx and potassium ion outflow), trigger rearrangement of the cytoskeleton and changes in membrane fluidity, allow small molecule substances to enter the cell, activate enzymes and kinases in related signaling pathways in cells (such as PKA, PKC, ERK1/2, AKT, and JNK), thereby affecting the development of tumor cells, and can also indirectly affect the growth, apoptosis and migration of tumor cells through tumor microenvironment. At present, P2X7R has been widely recognized for its important role in tumorigenesis and development. In this paper, we give a comprehensive description of the structure and function of the P2X7R gene. We also clarified the concept of tumor microenvironment and its effect on tumors, discussed the relevant pathological mechanisms in the development of tumors, and revealed the intrinsic relationship between P2X7R and tumors. We explored the pharmacological properties of P2X7R antagonists or inhibitors in reducing its expression as targeted therapy for tumors.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province, 343000, China
| | - Ce-Gui Hu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province, 343000, China
| | - Zheng-Ming Zhu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province, 343000, China
| | - Hong-Liang Luo
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province, 343000, China.
| |
Collapse
|
16
|
Identification of rs11615992 as a novel regulatory SNP for human P2RX7 by allele-specific expression. Mol Genet Genomics 2019; 295:23-30. [PMID: 31410611 DOI: 10.1007/s00438-019-01598-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 07/26/2019] [Indexed: 12/12/2022]
Abstract
P2RX7 (purinergic receptor P2X 7) is an important membrane ion channel and involved in multiple physiological processes. One non-synonymous SNP on P2RX7, rs3751143, had been proven to reduce ion channel function and further associated with multiple diseases. However, it was still unclear whether there were other cis-regulatory elements for P2RX7, which might further contribute to related diseases. Allele-specific expression (ASE) is a robust and sensitive approach to identify the potential functional region in human genome. In the current study, we measured ASE on rs3751143 in lung tissues and observed a consistent excess of A allele over C (P = 0.001), which indicated that SNP(s) in linkage disequilibrium (LD) could regulate P2RX7 expression. By analyzing the 1000 genomes project data for Chinese, one SNP locating ~ 5 kb away and downstream of P2RX7, rs11615992, was disclosed to be in strong LD with rs3751143. The dual-luciferase assay confirmed that rs11615992 could alter target gene expression in lung cell line. Through chromosome conformation capture, it was verified that the region surrounding rs11615992 could interact with P2RX7 promoter and effect as an enhancer. By chromatin immunoprecipitation, the related transcription factor POU2F1 (POU class 2 homeobox 1) was recognized to bind the region spanning rs11615992. Our work identified a novel long-distance cis-regulatory SNP for P2RX7, which might contribute to multiple diseases.
Collapse
|
17
|
Dreussi E, Ecca F, Scarabel L, Gagno S, Toffoli G. Immunogenetics of prostate cancer: a still unexplored field of study. Pharmacogenomics 2018; 19:263-283. [PMID: 29325503 DOI: 10.2217/pgs-2017-0163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The immune system is a double-edged sword with regard to the prostate cancer (PCa) battle. Immunogenetics, the study of the potential role of immune-related polymorphisms, is taking its first steps in the treatment of this malignancy. This review summarizes the most recent papers addressing the potential of immunogenetics in PCa, reporting immune-related polymorphisms associated with tumor aggressiveness, treatment toxicity and patients' prognosis. With some peculiarities, RNASEL, IL-6, IL-10, IL-1β and MMP7 have arisen as the most significant biomarkers in PCa treatment and management, having a potential clinical role. Validation prospective clinical studies are required to translate immunogenetics into precision treatment of PCa.
Collapse
Affiliation(s)
- Eva Dreussi
- Department of Experimental & Clinical Pharmacology, Centro di Riferimento Oncologico, National Cancer Institute, Aviano, 33081, Italy
| | - Fabrizio Ecca
- Department of Experimental & Clinical Pharmacology, Centro di Riferimento Oncologico, National Cancer Institute, Aviano, 33081, Italy
| | - Lucia Scarabel
- Department of Experimental & Clinical Pharmacology, Centro di Riferimento Oncologico, National Cancer Institute, Aviano, 33081, Italy
| | - Sara Gagno
- Department of Experimental & Clinical Pharmacology, Centro di Riferimento Oncologico, National Cancer Institute, Aviano, 33081, Italy
| | - Giuseppe Toffoli
- Department of Experimental & Clinical Pharmacology, Centro di Riferimento Oncologico, National Cancer Institute, Aviano, 33081, Italy
| |
Collapse
|
18
|
Single nucleotide polymorphisms associated with P2X7R function regulate the onset of gouty arthritis. PLoS One 2017; 12:e0181685. [PMID: 28797095 PMCID: PMC5552250 DOI: 10.1371/journal.pone.0181685] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 07/04/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Gout is an inflammatory disease that is caused by the increased production of Interleukin-1β (IL-1β) stimulated by monosodium urate (MSU) crystals. However, some hyperuricemia patients, even gouty patients with tophi in the joints, never experience gout attack, which indicates that pathogenic pathways other than MSU participate in the secretion of IL-1β in the pathogenesis of acute gouty arthritis. The ATP-P2X7R-IL-1β axis may be one of these pathways. OBJECTIVE This study examines the role of Adenosine triphosphate (ATP) in the pathogenesis of gout and the association of ATP receptor (P2X7R) function with single nucleotide polymorphisms and gout arthritis. METHODS Non-synonymous single nucleotide polymorphisms (SNP) loci of P2X7R in Chinese people were screened to compare the frequencies of different alleles and genotype distribution of selective SNPs in 117 gouty patients and 95 hyperuricemia patients. Peripheral white blood cells were purified from the peripheral blood of 43 randomly selected gout patients and 36 hyperuricemia patients from the total group. Cells were cultured with MSU or MSU + ATP, and supernatants were collected for the detection of IL-1β concentrations using enzyme-linked immunosorbent assay (ELISA). RESULTS 1. Eight SNP loci, including rs1653624, rs10160951, rs1718119, rs7958316, rs16950860, rs208294, rs17525809 and rs2230912, were screened and detected, and rs1653624, rs7958316 and rs17525809 were associated with gout arthritis. 2. IL-1β concentrations in supernatants after MSU + ATP stimulation were significantly higher in gouty patients than in the hyperuricemia group [(131.08 ± 176.11) pg/ml vs. (50.84 ± 86.10) pg/ml]; Patients (including gout and hyperuricemia) carrying the susceptibility genotype AA or AT of rs1653624 exhibited significantly higher concentrations of IL-1β than patients carrying the non-susceptibility genotype TT [(104.20 ± 164.25) pg/ml vs. (21.90 ± 12.14) pg/ml]; However, no differences were found with MSU stimulation alone. CONCLUSIONS ATP promotes the pathogenesis of gouty arthritis via increasing the secretion of IL-1 β, and its receptor (P2X7R) function associated single nucleotide polymorphisms may be related to gouty arthritis, which indicates that ATP-P2X7R signaling pathway plays a significant regulatory role in the pathogenesis of gout.
Collapse
|
19
|
Pasqualetti G, Seghieri M, Santini E, Rossi C, Vitolo E, Giannini L, Malatesta MG, Calsolaro V, Monzani F, Solini A. P2X 7 Receptor and APOE Polymorphisms and Survival from Heart Failure: A Prospective Study in Frail Patients in a Geriatric Unit. Aging Dis 2017; 8:434-441. [PMID: 28840058 PMCID: PMC5524806 DOI: 10.14336/ad.2016.1202] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/02/2016] [Indexed: 11/29/2022] Open
Abstract
Heart failure (HF) is one of the most frequent cause of hospitalization in elderly and often coexists with concurrent geriatric syndromes, like cognitive disturbances; various pathophysiological mechanisms are shared by HF and cognitive decline, notably a substrate of low-grade inflammation. We investigated whether SNPs in the purinergic receptor (P2X7R) and apolipoprotein (APO) E genes, both involved in a series of inflammatory responses, are associated to HF or cognitive impairment and are able to predict post-discharge mortality in the elderly. We prospectively analyzed 198 patients (age 85 ± 8 years, predominantly females) admitted to a Geriatric unit for acute HF, whose diagnosis was based on clinical signs, brain natriuretic peptide (BNP) values and ecocardiography in uncertain diagnosis (BNP values between 100 and 400 pg/mL); cognitive performance was assesed by Short Portable Mental Status Questionnaire (SPMSQ). In all the participants, SNPs rs208294 and rs3751143 for P2X7R gene and rs429558 and rs7412 for APOE gene were assessed. Information on all-cause mortality was adjudicated by medical records review 36 months after discharge. We found no relationship between P2X7R and APOE polymorphisms and 36-month post-discharge mortality; a better outcome for overall survival was observed in patients with BNP values below the median (281 pg/mL) (p=0.002) persisting after adjustment for renal function and age, and in those with cognitive impairment (p<0.001). Patients harboring APOE-ε4 genotype showed higher BNP concentrations than noncarriers (1289.9 ± 226.9 vs 580.5 ± 90.2 pg/mL respectively,p=0.004), whereas none of the studied SNPs were associated to impairment in cognitive performance. In conclusion, neither P2X7R or APOE genotype seem to predict long-term mortality in elderly patients. Interestingly, APOE-ε4 genotype was associated to higher BNP values, suggesting a putative interaction between genetic and biochemical markers in identifying people at risk for HF.
Collapse
Affiliation(s)
- Giuseppe Pasqualetti
- Department of Clinical and Experimental Medicine University of Pisa, Pisa, Italy
| | - Marta Seghieri
- Department of Clinical and Experimental Medicine University of Pisa, Pisa, Italy
| | - Eleonora Santini
- Department of Clinical and Experimental Medicine University of Pisa, Pisa, Italy
| | - Chiara Rossi
- Department of Clinical and Experimental Medicine University of Pisa, Pisa, Italy
| | - Edoardo Vitolo
- Department of Clinical and Experimental Medicine University of Pisa, Pisa, Italy
| | - Livia Giannini
- Department of Clinical and Experimental Medicine University of Pisa, Pisa, Italy
| | | | - Valeria Calsolaro
- Department of Clinical and Experimental Medicine University of Pisa, Pisa, Italy
| | - Fabio Monzani
- Department of Clinical and Experimental Medicine University of Pisa, Pisa, Italy
| | - Anna Solini
- Department of Clinical and Experimental Medicine University of Pisa, Pisa, Italy
| |
Collapse
|
20
|
Di Virgilio F, Adinolfi E. Extracellular purines, purinergic receptors and tumor growth. Oncogene 2016; 36:293-303. [PMID: 27321181 PMCID: PMC5269532 DOI: 10.1038/onc.2016.206] [Citation(s) in RCA: 375] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/02/2016] [Accepted: 05/02/2016] [Indexed: 12/13/2022]
Abstract
Virtually, all tumor cells as well as all immune cells express plasma membrane receptors for extracellular nucleosides (adenosine) and nucleotides (ATP, ADP, UTP, UDP and sugar UDP). The tumor microenvironment is characterized by an unusually high concentration of ATP and adenosine. Adenosine is a major determinant of the immunosuppressive tumor milieu. Sequential hydrolysis of extracellular ATP catalyzed by CD39 and CD73 is the main pathway for the generation of adenosine in the tumor interstitium. Extracellular ATP and adenosine mold both host and tumor responses. Depending on the specific receptor activated, extracellular purines mediate immunosuppression or immunostimulation on the host side, and growth stimulation or cytotoxicity on the tumor side. Recent progress in this field is providing the key to decode this complex scenario and to lay the basis to harness the potential benefits for therapy. Preclinical data show that targeting the adenosine-generating pathway (that is, CD73) or adenosinergic receptors (that is, A2A) relieves immunosuppresion and potently inhibits tumor growth. On the other hand, growth of experimental tumors is strongly inhibited by targeting the P2X7 ATP-selective receptor of cancer and immune cells. This review summarizes the recent data on the role played by extracellular purines (purinergic signaling) in host-tumor interaction and highlights novel therapeutic options stemming from recent advances in this field.
Collapse
Affiliation(s)
- F Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - E Adinolfi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
21
|
P2 receptors in cancer progression and metastatic spreading. Curr Opin Pharmacol 2016; 29:17-25. [PMID: 27262778 DOI: 10.1016/j.coph.2016.05.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/27/2016] [Accepted: 05/08/2016] [Indexed: 10/21/2022]
Abstract
Tumor microenvironment is nucleoside and nucleotide rich. Adenosine is a key determinant of the highly immunosuppressive tumor interstitium. Extracellular ATP also affects anti-tumor immunity, albeit its effects on host-tumor interaction are incompletely understood. We give here an overview of recent literature covering the role of nucleotide-selective (P2) plasma membrane receptors in tumor growth and progression. P2 receptors are expressed on both host and cancer cells, where depending on the receptor subtype, the inflammatory infiltrate and the tumor cell type they may drive an anti-tumor response or promote tumor progression. It is anticipated that knowledge of the pharmacology, biochemistry and functional activity of the P2 receptors will allow a better understanding of host-tumor interaction and the development of innovative anti-cancer therapy.
Collapse
|
22
|
De Marchi E, Orioli E, Dal Ben D, Adinolfi E. P2X7 Receptor as a Therapeutic Target. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 104:39-79. [PMID: 27038372 DOI: 10.1016/bs.apcsb.2015.11.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
P2X7 receptor is an ATP-gated cation channel that upon agonist interaction leads to cellular influx of Na(+) and Ca(2+) and efflux of K(+). P2X7 is expressed by a wide variety of cells and its activation mediates a large number of biological processes like inflammation, neuromodulation, cell death or cell proliferation and it has been associated to related pathological conditions including infectious, inflammatory, autoimmune, neurological, and musculoskeletal disorders and, in the last years, to cancer. This chapter describes structural features of P2X7, chemical properties of its agonist, antagonist, and allosteric modulators and summarizes recent advances on P2X7 receptor as therapeutic target in the aforementioned diseases. We also give an overview on recent literature suggesting that P2X7 single-nucleotide polymorphisms could be exploited as diagnostic biomarkers for the development of tailored therapies.
Collapse
Affiliation(s)
- Elena De Marchi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Elisa Orioli
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Diego Dal Ben
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | - Elena Adinolfi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy.
| |
Collapse
|