1
|
Coskun M, Altinova AE, Babayeva A, Sel AT, Yapar D, Karaca M, Yalcin MM, Akturk M, Toruner FB, Karakoc MA, Yetkin I. Leukocyte Telomere Length and Neuregulin-4 Levels in Female Patients with Acromegaly: The Relationship between Disease Activity and Body Fat Distribution. J Clin Med 2023; 12:4108. [PMID: 37373801 DOI: 10.3390/jcm12124108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
The study aimed to examine leukocyte telomere length (LTL) and serum neuregulin-4 levels and their relationship with disease activity, co-morbidities and body fat distribution in female acromegaly patients. Forty female patients with acromegaly and thirty-nine age and body mass index (BMI) similar healthy female volunteers were included in the study. Patients were classified into two groups: active acromegaly (AA) and controlled acromegaly (CA). The quantitative polymerase chain reaction (PCR) method was used to study LTL, and T/S ratio < 1 was accepted as shortened telomere length. Neuregulin-4 was studied by ELISA. There was no difference in median LTL between acromegaly and the control group (p = 0.530). The percentage of T/S < 1 in patients with acromegaly (60.0%) was similar to that of the control group (43.6%) (p = 0.144). However, serum neuregulin-4 was significantly higher in patients with acromegaly than those in the control group (p = 0.037). There were no significant differences concerning LTL, percentage of T/S < 1 and neuregulin-4 levels between active and controlled acromegaly groups (p > 0.05). Neuregulin-4 correlated positively with fasting glucose, triglyceride (TG), triglyceride/glucose (TyG) index, and lean body mass in the acromegaly group. A negative correlation was observed between LTL and neuregulin-4 in the control group (p = 0.039). When the factors affecting neuregulin-4 were evaluated by multivariate linear regression analysis with an enter method, TG (β: 0.316, p = 0.025) was independently and positively associated with neuregulin-4. Our findings indicate that acromegaly is associated with unchanged LTL and high neuregulin-4 levels in female patients. However, the relationship between acromegaly, the aging process, and neuregulin-4 involves complex mechanisms, and further studies are needed.
Collapse
Affiliation(s)
- Meric Coskun
- Department of Endocrinology and Metabolism, Faculty of Medicine, Gazi University, Ankara 06100, Turkey
| | - Alev Eroglu Altinova
- Department of Endocrinology and Metabolism, Faculty of Medicine, Gazi University, Ankara 06100, Turkey
| | - Afruz Babayeva
- Department of Endocrinology and Metabolism, Faculty of Medicine, Gazi University, Ankara 06100, Turkey
| | - Aydin Tuncer Sel
- Department of Endocrinology and Metabolism, Faculty of Medicine, Gazi University, Ankara 06100, Turkey
| | - Dilek Yapar
- Department of Public Health, Faculty of Medicine, Gazi University, Ankara 06100, Turkey
| | - Mine Karaca
- Department of Internal Medicine, Faculty of Medicine, Gazi University, Ankara 06100, Turkey
| | - Mehmet Muhittin Yalcin
- Department of Endocrinology and Metabolism, Faculty of Medicine, Gazi University, Ankara 06100, Turkey
| | - Mujde Akturk
- Department of Endocrinology and Metabolism, Faculty of Medicine, Gazi University, Ankara 06100, Turkey
| | - Fusun Balos Toruner
- Department of Endocrinology and Metabolism, Faculty of Medicine, Gazi University, Ankara 06100, Turkey
| | - Mehmet Ayhan Karakoc
- Department of Endocrinology and Metabolism, Faculty of Medicine, Gazi University, Ankara 06100, Turkey
| | - Ilhan Yetkin
- Department of Endocrinology and Metabolism, Faculty of Medicine, Gazi University, Ankara 06100, Turkey
| |
Collapse
|
2
|
Yang L, Vander Steen T, Espinoza I, Cuyàs E, Verdura S, Menendez JA, Lupu R. Nuclear moonlighting of the secreted growth factor heregulin drives endocrine-resistant breast cancer independently of HER2/HER3 signaling. Am J Cancer Res 2022; 12:2173-2188. [PMID: 35693067 PMCID: PMC9185626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/03/2022] [Indexed: 06/15/2023] Open
Abstract
The HER3/4 ligand heregulin-β2 (HRG) is a secreted growth factor that transactivates the ligand-less receptor HER2 to promote aggressive phenotypes in breast cancer. HRG can also localize to the nucleus of breast cancer cells, but both the nuclear translocation mechanism and the physiological role of nuclear HRG remain elusive. Here we show that nucleolin-driven nuclear moonlighting of HRG uncouples its role as a driver of endocrine resistance from its canonical HER network-activating role in breast cancer. Tandem affinity purification coupled to mass spectrometry identified the intracellular transporter nucleolin as a major HRG-binding protein. HRG interacts with nucleolin via a nuclear localization signal motif located at the N-terminal extracellular domain of HRG. Nucleolin interacts with HRG via aspartate/glutamate-rich acidic stretches located at the N-terminal domain of nucleolin. Depletion of nucleolin abolishes HRG nuclear translocation and decreases HRG mRNA and protein expression. Isolated deficiency of nuclear HRG abolishes the HRG-driven endocrine resistance phenotype in vitro and in mouse xenograft models, while preserving its capacity to activate the HRG/HER/MAPK autocrine signaling axis. Conversely, isolated deficiency of secreted HRG to bind HER2/3 receptors does not impair endocrine resistance. The discovery that the functions of dual compartment-resident HRG do not depend on the same effector (i.e., activation of HER2/3 receptors) establishes a new paradigm for the functional and therapeutic relevance of nuclear HRG in breast cancer.
Collapse
Affiliation(s)
- Lin Yang
- Precision Cancer Therapeutics Program, Center for Individualized Medicine, Mayo ClinicRochester, MN, USA
| | - Travis Vander Steen
- Department of Laboratory Medicine and Pathology, Division of Experimental Pathology, Mayo ClinicRochester, MN, USA
| | - Ingrid Espinoza
- Department of Preventive Medicine, John D. Bower School of Population Health, University of Mississippi Medical CenterJackson, MS, USA
- Cancer Institute, School of Medicine, University of Mississippi Medical CenterJackson, MS, USA
| | - Elisabet Cuyàs
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of OncologyGirona, Spain
- Girona Biomedical Research InstituteSalt, Girona, Spain
| | - Sara Verdura
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of OncologyGirona, Spain
- Girona Biomedical Research InstituteSalt, Girona, Spain
| | - Javier A Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of OncologyGirona, Spain
- Girona Biomedical Research InstituteSalt, Girona, Spain
| | - Ruth Lupu
- Department of Laboratory Medicine and Pathology, Division of Experimental Pathology, Mayo ClinicRochester, MN, USA
- Department of Biochemistry and Molecular Biology Laboratory, Mayo Clinic MinnesotaRochester, MN, USA
- Mayo Clinic Cancer CenterRochester, MN, USA
| |
Collapse
|
3
|
Wang Z, Wu X. Abnormal function of telomere protein TRF2 induces cell mutation and the effects of environmental tumor‑promoting factors (Review). Oncol Rep 2021; 46:184. [PMID: 34278498 PMCID: PMC8273685 DOI: 10.3892/or.2021.8135] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/14/2021] [Indexed: 01/30/2023] Open
Abstract
Recent studies have found that somatic gene mutations and environmental tumor-promoting factors are both indispensable for tumor formation. Telomeric repeat-binding factor (TRF)2 is the core component of the telomere shelterin complex, which plays an important role in chromosome stability and the maintenance of normal cell physiological states. In recent years, TRF2 and its role in tumor formation have gradually become a research hot topic, which has promoted in-depth discussions into tumorigenesis and treatment strategies, and has achieved promising results. Some cells bypass elimination, due to either aging, apoptosis via mutations or abnormal prolongation of the mitotic cycle, and enter the telomere crisis period, where large-scale DNA reorganization occurs repeatedly, which manifests as the precancerous cell cycle. Finally, at the end of the crisis cycle, the mutation activates either the expression level of telomerase or activates the alternative lengthening of telomere mechanism to extend the local telomeres. Under the protection of TRF2, chromosomes are gradually stabilized, immortal cells are formed and the stagewise mutation-driven transformation of normal cells to cancer cells is completed. In addition, TRF2 also shares the characteristics of environmental tumor-promoting factors. It acts on multiple signal transduction pathway-related proteins associated with cell proliferation, and affects peripheral angiogenesis, inhibits the immune recognition and killing ability of the microenvironment, and maintains the stemness characteristics of tumor cells. TRF2 levels are abnormally elevated by a variety of tumor control proteins, which are more conducive to the protection of telomeres and the survival of tumor cells. In brief, the various regulatory mechanisms which tumor cells rely on to survive are organically integrated around TRF2, forming a regulatory network, which is conducive to the optimization of the survival direction of heterogeneous tumor cells, and promotes their survival and adaptability. In terms of clinical application, TRF2 is expected to become a new type of cancer prognostic marker and a new tumor treatment target. Inhibition of TRF2 overexpression could effectively cut off the core network regulating tumor cell survival, reduce drug resistance, or bypass the mutation under the pressure of tumor treatment selection, which may represent a promising therapeutic strategy for the complete eradication of tumors in the clinical setting. Based on recent research, the aim of the present review was to systematically elaborate on the basic structure and functional characteristics of TRF2 and its role in tumor formation, and to analyze the findings indicating that TRF2 deficiency or overexpression could cause severe damage to telomere function and telomere shortening, and induce DNA damage response and chromosomal instability.
Collapse
Affiliation(s)
- Zhengyi Wang
- Good Clinical Practice Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610071, P.R. China
| | - Xiaoying Wu
- Ministry of Education and Training, Chengdu Second People's Hospital, Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|
4
|
Akincilar SC, Chan CHT, Ng QF, Fidan K, Tergaonkar V. Non-canonical roles of canonical telomere binding proteins in cancers. Cell Mol Life Sci 2021; 78:4235-4257. [PMID: 33599797 PMCID: PMC8164586 DOI: 10.1007/s00018-021-03783-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/28/2020] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
Reactivation of telomerase is a major hallmark observed in 90% of all cancers. Yet paradoxically, enhanced telomerase activity does not correlate with telomere length and cancers often possess short telomeres; suggestive of supplementary non-canonical roles that telomerase might play in the development of cancer. Moreover, studies have shown that aberrant expression of shelterin proteins coupled with their release from shortening telomeres can further promote cancer by mechanisms independent of their telomeric role. While targeting telomerase activity appears to be an attractive therapeutic option, this approach has failed in clinical trials due to undesirable cytotoxic effects on stem cells. To circumvent this concern, an alternative strategy could be to target the molecules involved in the non-canonical functions of telomeric proteins. In this review, we will focus on emerging evidence that has demonstrated the non-canonical roles of telomeric proteins and their impact on tumorigenesis. Furthermore, we aim to address current knowledge gaps in telomeric protein functions and propose future research approaches that can be undertaken to achieve this.
Collapse
Affiliation(s)
- Semih Can Akincilar
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Claire Hian Tzer Chan
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Qin Feng Ng
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Kerem Fidan
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Vinay Tergaonkar
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore.
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore.
| |
Collapse
|
5
|
Heregulin Drives Endocrine Resistance by Altering IL-8 Expression in ER-Positive Breast Cancer. Int J Mol Sci 2020; 21:ijms21207737. [PMID: 33086721 PMCID: PMC7589856 DOI: 10.3390/ijms21207737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 02/04/2023] Open
Abstract
Sustained HER2/HER3 signaling due to the overproduction of the HER3 ligand heregulin (HRG) is proposed as a key contributor to endocrine resistance in estrogen receptor-positive (ER+) breast cancer. The molecular mechanisms linking HER2 transactivation by HRG-bound HER3 to the acquisition of a hormone-independent phenotype in ER+ breast cancer is, however, largely unknown. Here, we explored the possibility that autocrine HRG signaling drives cytokine-related endocrine resistance in ER+ breast cancer cells. We used human cytokine antibody arrays to semi-quantitatively measure the expression level of 60 cytokines and growth factors in the extracellular milieu of MCF-7 cells engineered to overexpress full-length HRGβ2 (MCF-7/HRG cells). Interleukin-8 (IL-8), a chemokine closely linked to ER inaction, emerged as one the most differentially expressed cytokines. Cytokine profiling using structural deletion mutants lacking both the N-terminus and the cytoplasmic-transmembrane region of HRGβ2-which is not secreted and cannot transactivate HER2-or lacking a nuclear localization signal at the N-terminus-which cannot localize at the nucleus but is actively secreted and transactivates HER2-revealed that the HRG-driven activation of IL-8 expression in ER+ cells required HRG secretion and transactivation of HER2 but not HRG nuclear localization. The functional blockade of IL-8 with a specific antibody inversely regulated ERα-driven transcriptional activation in endocrine-sensitive MCF-7 cells and endocrine-resistant MCF-7/HRG cells. Overall, these findings suggest that IL-8 participates in the HRG-driven endocrine resistance program in ER+/HER2- breast cancer and might illuminate a potential clinical setting for IL8- or CXCR1/2-neutralizing antibodies.
Collapse
|
6
|
Mota JM, Collier KA, Barros Costa RL, Taxter T, Kalyan A, Leite CA, Chae YK, Giles FJ, Carneiro BA. A comprehensive review of heregulins, HER3, and HER4 as potential therapeutic targets in cancer. Oncotarget 2017; 8:89284-89306. [PMID: 29179520 PMCID: PMC5687690 DOI: 10.18632/oncotarget.18467] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 04/17/2017] [Indexed: 12/30/2022] Open
Abstract
Heregulins (HRGs) bind to the receptors HER3 or HER4, induce receptor dimerization, and trigger downstream signaling that leads to tumor progression and resistance to targeted therapies. Increased expression of HRGs has been associated with worse clinical prognosis; therefore, attempts to block HRG-dependent tumor growth have been pursued. This manuscript summarizes the function and signaling of HRGs and review the preclinical evidence of its involvement in carcinogenesis, prognosis, and treatment resistance in several malignancies such as colorectal cancer, non-small cell lung cancer, ovarian cancer, and breast cancer. Agents in preclinical development and clinical trials of novel therapeutics targeting HRG-dependent signaling are also discussed, including anti-HER3 and -HER4 antibodies, anti-metalloproteinase agents, and HRG fusion proteins. Although several trials have indicated an acceptable safety profile, translating preclinical findings into clinical practice remains a challenge in this field, possibly due to the complexity of downstream signaling and patterns of HRG, HER3 and HER4 expression in different cancer subtypes. Improving patient selection through biomarkers and understanding the resistance mechanisms may translate into significant clinical benefits in the near future.
Collapse
Affiliation(s)
- Jose Mauricio Mota
- Instituto do Câncer do Estado de São Paulo, Division of Oncology, Universidade de São Paulo, São Paulo, Brazil
| | - Katharine Ann Collier
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ricardo Lima Barros Costa
- Developmental Therapeutics Program, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Timothy Taxter
- Developmental Therapeutics Program, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Aparna Kalyan
- Developmental Therapeutics Program, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Caio A. Leite
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Young Kwang Chae
- Developmental Therapeutics Program, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Francis J. Giles
- Developmental Therapeutics Program, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Benedito A. Carneiro
- Developmental Therapeutics Program, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
7
|
Heregulin, a new interactor of the telosome/shelterin complex in human telomeres. Oncotarget 2016; 6:39408-21. [PMID: 26327598 PMCID: PMC4741835 DOI: 10.18632/oncotarget.4962] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 07/10/2015] [Indexed: 01/03/2023] Open
Abstract
Telomere length, shape and function depend on a complex of six core telomere-associated proteins referred to as the telosome or shelterin complex. We here demonstrate that the isoform β2 of the heregulin family of growth factors (HRGβ2) is a novel interactor of the telosome/shelterin complex in human telomeres. Analysis of protein-protein interactions using a high-throughput yeast two-hybrid (Y2H) screen identified RAP1, the only telomere protein that is conserved from yeasts to mammals, as a novel interacting partner of HRGβ2. Deletion analysis of RAP1 revealed that the linker domain, a region previously suggested to recruit negative regulators of telomere length, interacts specifically with HRGβ2. Co-immunoprecipitation and imaging experiments demonstrated that, in addition to RAP1, HRGβ2 could associate with the RAP1-associated telomeric repeat binding factor 2 (TRF2). Deletion analysis of HRGβ2 confirmed that a putative nuclear localization signal (NLS) was necessary for nuclear HRGβ2 to exert a negative regulation of telomere length whereas the N-terminus (extracellular) amino acids of HRGβ2 were sufficient to interact with RAP1/TRF2 and promote telomere shortening. Taken together, our studies identify nuclear HRGβ2 as one of the previously unknown regulators predicted to be recruited by the RAP1 linker domain to negatively regulate telomere length in human cells. Our current findings reveal that a new, but likely not the last, unexpected visitor has arrived to the “telosome/shelterin town”.
Collapse
|