1
|
Haga Y, Ray R, Ray RB. Silmitasertib in Combination With Cabozantinib Impairs Liver Cancer Cell Cycle Progression, Induces Apoptosis, and Delays Tumor Growth in a Preclinical Model. Mol Carcinog 2025; 64:72-82. [PMID: 39377735 DOI: 10.1002/mc.23827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024]
Abstract
The rising incidence of hepatocellular carcinoma (HCC) is a global problem. Several approved treatments, including immune therapy and multi-tyrosine kinase inhibitors, are used for treatment, although the results are not optimum. There is an unmet need to develop highly effective chemotherapies for HCC. Targeting multiple pathways to attack cancer cells is beneficial. Cabozantinib is an orally available bioactive multikinase inhibitor and has a modest effect on HCC treatment. Silmitasertib is an orally bioavailable, potent CK2 inhibitor with a direct role in DNA damage repair and is in clinical trials for other cancers. In this study, we planned to repurpose these existing drugs on HCC treatment. We observed a stronger antiproliferative effect of these two combined drugs on HCC cells generated from different etiologies as compared to the single treatment. Global RNA-seq analyses revealed a decrease in the expression of G2/M cell cycle transition genes in HCC cells following combination treatment, suggesting G2 phase cell arrest. We observed G2/M cell cycle phase arrest in HCC cells upon combination treatment compared to the single-treated or vehicle-treated control cells. The downregulation of CCNA2 and CDC25C following combination therapy further supported the observation. Subsequent analyses demonstrated that combination treatment inhibited 70 kDa ribosomal protein S6 kinase (p70S6K) phosphorylation, and increased Bim expression. Apoptosis of HCC cells were accompanied by increased poly (ADP-ribose) polymerase cleavage and caspase-9 activation. Next, we observed that a combination therapy significantly delayed the progression of HCC xenograft growth as compared to vehicle control. Together, our results suggested combining cabozantinib and silmitasertib would be a promising treatment option for HCC.
Collapse
Affiliation(s)
- Yuki Haga
- Department of Internal Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Ranjit Ray
- Department of Internal Medicine, Saint Louis University, St. Louis, Missouri, USA
- Department of Molecular Microbiology & Immunology, Saint Louis University, St. Louis, Missouri, USA
| | - Ratna B Ray
- Department of Molecular Microbiology & Immunology, Saint Louis University, St. Louis, Missouri, USA
- Department of Pathology, Saint Louis University, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Paoletti N, Supuran CT. Benzothiazole derivatives in the design of antitumor agents. Arch Pharm (Weinheim) 2024; 357:e2400259. [PMID: 38873921 DOI: 10.1002/ardp.202400259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024]
Abstract
Benzothiazoles are a class of heterocycles with multiple applications as anticancer, antibiotic, antiviral, and anti-inflammatory agents. Benzothiazole is a privileged scaffold in drug discovery programs for modulating a variety of biological functions. This review focuses on the design and synthesis of new benzothiazole derivatives targeting hypoxic tumors. Cancer is a major health problem, being among the leading causes of death. Tumor-hypoxic areas promote proliferation, malignancy, and resistance to drug treatment, leading to the dysregulation of key signaling pathways that involve drug targets such as vascular endothelial growth factor, epidermal growth factor receptor, hepatocyte growth factor receptor, dual-specificity protein kinase, cyclin-dependent protein kinases, casein kinase 2, Rho-related coil formation protein kinase, tunica interna endothelial cell kinase, cyclooxygenase-2, adenosine kinase, lysophosphatidic acid acyltransferases, stearoyl-CoA desaturase, peroxisome proliferator-activated receptors, thioredoxin, heat shock proteins, and carbonic anhydrase IX/XII. In turn, they regulate angiogenesis, proliferation, differentiation, and cell survival, controlling the cell cycle, inflammation, the immune system, and metabolic alterations. A wide diversity of benzothiazoles were reported over the last years to interfere with various proteins involved in tumorigenesis and, more specifically, in hypoxic tumors. Many hypoxic targets are overexpressed as a result of the hypoxia-inducible factor activation cascade and may not be present in normal tissues, providing a potential strategy for selectively targeting hypoxic cancers.
Collapse
Affiliation(s)
- Niccolò Paoletti
- Department of Neurofarba, Section of Pharmaceutical & Nutraceutical Sciences, Polo Scientifico, University of Florence, Sesto Fiorentino (Firenze), Italy
| | - Claudiu T Supuran
- Department of Neurofarba, Section of Pharmaceutical & Nutraceutical Sciences, Polo Scientifico, University of Florence, Sesto Fiorentino (Firenze), Italy
| |
Collapse
|
3
|
Raghav A, Jeong GB. Nanoquercetin and Extracellular Vesicles as Potential Anticancer Therapeutics in Hepatocellular Carcinoma. Cells 2024; 13:638. [PMID: 38607076 PMCID: PMC11011524 DOI: 10.3390/cells13070638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024] Open
Abstract
Despite world-class sophisticated technologies, robotics, artificial intelligence, and machine learning approaches, cancer-associated mortalities and morbidities have shown continuous increments posing a healthcare burden. Drug-based interventions were associated with systemic toxicities and several limitations. Natural bioactive compounds derived nanoformulations, especially nanoquercetin (nQ), are alternative options to overcome drug-associated limitations. Moreover, the EVs-based cargo targeted delivery of nQ can have enormous potential in treating hepatocellular carcinoma (HCC). EVs-based nQ delivery synergistically regulates and dysregulates several pathways, including NF-κB, p53, JAK/STAT, MAPK, Wnt/β-catenin, and PI3K/AKT, along with PBX3/ERK1/2/CDK2, and miRNAs intonation. Furthermore, discoveries on possible checkpoints of anticancer signaling pathways were studied, which might lead to the development of modified EVs infused with nQ for the development of innovative treatments for HCC. In this work, we abridged the control of such signaling systems using a synergetic strategy with EVs and nQ. The governing roles of extracellular vesicles controlling the expression of miRNAs were investigated, particularly in relation to HCC.
Collapse
Affiliation(s)
| | - Goo Bo Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Gachon University, 155 Getbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea;
| |
Collapse
|
4
|
Dai H, Liu M, Pan Y, Li T, Pan Y, Chen ZS, Li J, Liu Y, Fang S. CK2B is a Prognostic Biomarker and a Potential Drug Target for Hepatocellular Carcinoma. Recent Pat Anticancer Drug Discov 2024; 19:622-634. [PMID: 37779404 DOI: 10.2174/0115748928262221230925090120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Although casein kinase II subunit beta (CK2B) was previously reported to be involved in human cancers, such as hepatocellular carcinoma (HCC), there has been no systematic assessment of CK2B in HCC. OBJECTIVE To assess the potential function of CK2B as a prognostic biomarker and possible druggable target in HCC. METHODS The Cancer Genome Atlas database was accessed to investigate the potential oncogenic and prognostic roles of CK2B in HCC. Diverse analytical methods were used to obtain a fuller understanding of CK2B, including CIBERSORT, The Tumor Immune Estimation Resource (TIMER), gene set enrichment analyses (GSEA), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene ontology (GO). Furthermore, the Comparative Toxicogenomic Database (CTD) was used to identify potential drugs to treat CK2B-overexpressing HCC. Patents for these drugs were reviewed using Patentscope® and Worldwide Espacenet®. RESULTS Upregulated CK2B expression was markedly associated with more aggressive pathological features, including G3, G4 (vs. G1, G2), and T2, T3 (vs. T1). Kaplan-Meier survival curves indicated that patients with HCC with higher expression of CK2B had worse overall survival (P = 0.005), progression-free interval (P = 0.001), and disease-specific survival (P = 0.011). GO and KEGG analysis revealed that CK2B dysregulation affects mitotic chromosome condensation, protein stabilization and binding, regulation of signal transduction of p53 class mediator, and cancer-related pathways. GSEA identified six well-known pathways, including MAPK, WNT, Hedgehog, and TGFβ signaling pathways. Finally, CTD identified six compounds that might represent targeted drugs to treat HCC with CK2B overexpression. A review of patents indicated these compounds showed promising anticancer results; however, whether CK2B interacts with these drugs and improves drug outcomes for patients with HCC was not confirmed. CONCLUSION CK2B is a biomarker for HCC prognosis and could be a potential new drug target. Moreover, the association between infiltrating immune cells and CK2B in the HCC tumor microenvironment might provide a solid basis for further investigation and a potent strategy for immunotherapy of HCC.
Collapse
Affiliation(s)
- Huiru Dai
- Department of Oncology, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, 518107, PR China
| | - Minling Liu
- Department of Oncology, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, 518107, PR China
| | - Yuxi Pan
- Department of Oncology, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, 518107, PR China
| | - Tingwei Li
- Department of Oncology, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, 518107, PR China
| | - Yihang Pan
- Big Data Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Jing Li
- Department of Oncology, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, 518107, PR China
| | - Yuchen Liu
- Big Data Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Shuo Fang
- Department of Oncology, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, 518107, PR China
- Big Data Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, 999077, PR China
| |
Collapse
|
5
|
Yang S, Peng LR, Yu AQ, Li J. CSNK2A2 promotes hepatocellular carcinoma progression through activation of NF-κB pathway. Ann Hepatol 2023; 28:101118. [PMID: 37268061 DOI: 10.1016/j.aohep.2023.101118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 06/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES Breast and non-small cell lung cancers harbor an upregulated CSNK2A2 oncogene that encodes the protein kinase CK2 alpha', a catalytic subunit of the highly conserved serine/threonine kinase CK2. However, its role and biological significance in hepatocellular carcinoma (HCC) remains unclear. MATERIALS AND METHODS Western-blotting and immunohistochemistry were used to measure the expression of CSNK2A2 in HCC tumor tissues and cell lines. CCK8, Hoechst staining, transwell, tube formation assay in vitro and nude mice experiments in vivo were used to measure the effects of CSNK2A2 on HCC proliferation, apoptosis, metastasis, angiogenesis and tumor formation. RESULTS In the study, we showed that CSNK2A2 was highly expressed in HCC comparison with matched control tissues, and was linked with lower survival of patients. Additional experiments indicated that silencing of CSNK2A2 promoted HCC cell apoptosis, while inhibited HCC cells migrating, proliferating, angiogenesis both in vitro and in vivo. These effects were also accompanied by reduced expression of NF-κB target genes, including CCND1, MMP9 and VEGF. Moreover, treatment with PDTC counteracted the promotional effects of CSNK2A2 on HCC cells. CONCLUSIONS Overall, our results suggested that CSNK2A2 could promote HCC progression by activating the NF-κB pathway, and this could serve as a biomarker for future prognostic and therapeutic applications.
Collapse
Affiliation(s)
- Shuang Yang
- Department of Clinical Laboratory, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha 410005, PR China.
| | - Li Rong Peng
- Department of Clinical Laboratory, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha 410005, PR China
| | - Ai Qing Yu
- Department of Clinical Laboratory, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha 410005, PR China
| | - Jiang Li
- Department of Clinical Laboratory, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha 410005, PR China
| |
Collapse
|
6
|
Robinson AE, Binek A, Ramani K, Sundararaman N, Barbier-Torres L, Murray B, Venkatraman V, Kreimer S, Ardle AM, Noureddin M, Fernández-Ramos D, Lopitz-Otsoa F, Gutiérrez de Juan V, Millet O, Mato JM, Lu SC, Van Eyk JE. Hyperphosphorylation of hepatic proteome characterizes nonalcoholic fatty liver disease in S-adenosylmethionine deficiency. iScience 2023; 26:105987. [PMID: 36756374 PMCID: PMC9900401 DOI: 10.1016/j.isci.2023.105987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/15/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Methionine adenosyltransferase 1a (MAT1A) is responsible for hepatic S-adenosyl-L-methionine (SAMe) biosynthesis. Mat1a -/- mice have hepatic SAMe depletion, develop nonalcoholic steatohepatitis (NASH) which is reversed with SAMe administration. We examined temporal alterations in the proteome/phosphoproteome in pre-disease and NASH Mat1a -/- mice, effects of SAMe administration, and compared to human nonalcoholic fatty liver disease (NAFLD). Mitochondrial and peroxisomal lipid metabolism proteins were altered in pre-disease mice and persisted in NASH Mat1a -/- mice, which exhibited more progressive alterations in cytoplasmic ribosomes, ER, and nuclear proteins. A common mechanism found in both pre-disease and NASH livers was a hyperphosphorylation signature consistent with casein kinase 2α (CK2α) and AKT1 activation, which was normalized by SAMe administration. This was mimicked in human NAFLD with a metabolomic signature (M-subtype) resembling Mat1a -/- mice. In conclusion, we have identified a common proteome/phosphoproteome signature between Mat1a -/- mice and human NAFLD M-subtype that may have pathophysiological and therapeutic implications.
Collapse
Affiliation(s)
- Aaron E. Robinson
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Advanced Health Sciences Pavilion, 127 S. San Vicente Blvd, Room 9302, Los Angeles, CA 90048, USA
| | - Aleksandra Binek
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Advanced Health Sciences Pavilion, 127 S. San Vicente Blvd, Room 9302, Los Angeles, CA 90048, USA
| | - Komal Ramani
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Davis Building, Room 2097, Los Angeles, CA 90048, USA
| | - Niveda Sundararaman
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Advanced Health Sciences Pavilion, 127 S. San Vicente Blvd, Room 9302, Los Angeles, CA 90048, USA
| | - Lucía Barbier-Torres
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Davis Building, Room 2097, Los Angeles, CA 90048, USA
| | - Ben Murray
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Davis Building, Room 2097, Los Angeles, CA 90048, USA
| | - Vidya Venkatraman
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Advanced Health Sciences Pavilion, 127 S. San Vicente Blvd, Room 9302, Los Angeles, CA 90048, USA
| | - Simion Kreimer
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Advanced Health Sciences Pavilion, 127 S. San Vicente Blvd, Room 9302, Los Angeles, CA 90048, USA
| | - Angela Mc Ardle
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Advanced Health Sciences Pavilion, 127 S. San Vicente Blvd, Room 9302, Los Angeles, CA 90048, USA
| | - Mazen Noureddin
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Davis Building, Room 2097, Los Angeles, CA 90048, USA
| | - David Fernández-Ramos
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Fernando Lopitz-Otsoa
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Virginia Gutiérrez de Juan
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Oscar Millet
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - José M. Mato
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Shelly C. Lu
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Davis Building, Room 2097, Los Angeles, CA 90048, USA
- Corresponding author
| | - Jennifer E. Van Eyk
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Advanced Health Sciences Pavilion, 127 S. San Vicente Blvd, Room 9302, Los Angeles, CA 90048, USA
- Corresponding author
| |
Collapse
|
7
|
Alsagaby SA, Iqbal D, Ahmad I, Patel H, Mir SA, Madkhali YA, Oyouni AAA, Hawsawi YM, Alhumaydhi FA, Alshehri B, Alturaiki W, Alanazi B, Mir MA, Al Abdulmonem W. In silico investigations identified Butyl Xanalterate to competently target CK2α (CSNK2A1) for therapy of chronic lymphocytic leukemia. Sci Rep 2022; 12:17648. [PMID: 36271116 PMCID: PMC9587039 DOI: 10.1038/s41598-022-21546-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/28/2022] [Indexed: 01/18/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is an incurable malignancy of B-cells. In this study, bioinformatics analyses were conducted to identify possible pathogenic roles of CK2α, which is a protein encoded by CSNK2A1, in the progression and aggressiveness of CLL. Furthermore, various computational tools were used to search for a competent inhibitor of CK2α from fungal metabolites that could be proposed for CLL therapy. In CLL patients, high-expression of CSNK2A1 was associated with early need for therapy (n = 130, p < 0.0001) and short overall survival (OS; n = 107, p = 0.005). Consistently, bioinformatics analyses showed CSNK2A1 to associate with/play roles in CLL proliferation and survival-dependent pathways. Furthermore, PPI network analysis identified interaction partners of CK2α (PPI enrichment p value = 1 × 10-16) that associated with early need for therapy (n = 130, p < 0.003) and have been known to heavily impact on the progression of CLL. These findings constructed a rational for targeting CK2α for CLL therapy. Consequently, computational analyses reported 35 fungal metabolites out of 5820 (filtered from 19,967 metabolites) to have lower binding energy (ΔG: - 10.9 to - 11.7 kcal/mol) and better binding affinity (Kd: 9.77 × 107 M-1 to 3.77 × 108 M-1) compared with the native ligand (ΔG: - 10.8, Kd: 8.3 × 107 M--1). Furthermore, molecular dynamics simulation study established that Butyl Xanalterate-CK2α complex continuously remained stable throughout the simulation time (100 ns). Moreover, Butyl Xanalterate interacted with most of the catalytic residues, where complex was stabilized by more than 65% hydrogen bond interactions, and a significant hydrophobic interaction with residue Phe113. Here, high-expression of CSNK2A1 was implicated in the progression and poor prognosis of CLL, making it a potential therapeutic target in the disease. Butyl Xanalterate showed stable and strong interactions with CK2α, thus we propose it as a competitive inhibitor of CK2α for CLL therapy.
Collapse
Affiliation(s)
- Suliman A. Alsagaby
- grid.449051.d0000 0004 0441 5633Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, AL-Majmaah, 11952 Kingdom of Saudi Arabia
| | - Danish Iqbal
- grid.449051.d0000 0004 0441 5633Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, AL-Majmaah, 11952 Kingdom of Saudi Arabia
| | - Iqrar Ahmad
- grid.412233.50000 0001 0641 8393Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 425405 India
| | - Harun Patel
- grid.412233.50000 0001 0641 8393Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 425405 India
| | - Shabir Ahmad Mir
- grid.449051.d0000 0004 0441 5633Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, AL-Majmaah, 11952 Kingdom of Saudi Arabia
| | - Yahya Awaji Madkhali
- grid.449051.d0000 0004 0441 5633Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, AL-Majmaah, 11952 Kingdom of Saudi Arabia
| | - Atif Abdulwahab A. Oyouni
- grid.440760.10000 0004 0419 5685Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia ,grid.440760.10000 0004 0419 5685Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Yousef M. Hawsawi
- grid.415310.20000 0001 2191 4301Research Center, King Faisal Specialist Hospital and Research Center, P.O. Box 40047, Jeddah, 21499 Kingdom of Saudi Arabia ,grid.411335.10000 0004 1758 7207College of Medicine, Al-Faisal University, P.O. Box 50927, Riyadh, 11533 Kingdom of Saudi Arabia
| | - Fahad A. Alhumaydhi
- grid.412602.30000 0000 9421 8094Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Bader Alshehri
- grid.449051.d0000 0004 0441 5633Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, AL-Majmaah, 11952 Kingdom of Saudi Arabia
| | - Wael Alturaiki
- grid.449051.d0000 0004 0441 5633Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, AL-Majmaah, 11952 Kingdom of Saudi Arabia
| | - Bader Alanazi
- grid.415277.20000 0004 0593 1832Biomedical Research Administration, Research Center, King Fahad Medical City, Riyadh, Kingdom of Saudi Arabia ,Prince Mohammed bin Abdulaziz Medical City, AlJouf, Kingdom of Saudi Arabia
| | - Manzoor Ahmad Mir
- grid.412997.00000 0001 2294 5433Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Waleed Al Abdulmonem
- grid.412602.30000 0000 9421 8094Department of Pathology, College of Medicine, Qassim University, Qassim, Kingdom of Saudi Arabia
| |
Collapse
|
8
|
Razpotnik R, Vidmar R, Fonović M, Rozman D, Režen T. Circular RNA hsa_circ_0062682 Binds to YBX1 and Promotes Oncogenesis in Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:4524. [PMID: 36139684 PMCID: PMC9497178 DOI: 10.3390/cancers14184524] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/11/2022] [Accepted: 09/11/2022] [Indexed: 11/23/2022] Open
Abstract
Circular RNAs (circRNAs) have been shown to play an important role in the pathogenesis of hepatocellular carcinoma (HCC). By implementing available transcriptomic analyses of HCC patients, we identified an upregulated circRNA hsa_circ_0062682. Stable perturbations of hsa_circ_0062682 in Huh-7 and SNU-449 cell lines influenced colony formation, migration, cell proliferation, sorafenib sensitivity, and additionally induced morphological changes in cell lines, indicating an important role of hsa_circ_0062682 in oncogenesis. Pathway enrichment analysis and gene set enrichment analysis of the transcriptome data from hsa_circ_0062682 knockdown explained the observed phenotypes and exposed transcription factors E2F1, Sp1, HIF-1α, and NFκB1 as potential downstream targets. Biotinylated oligonucleotide pulldown combined with proteomic analyses identified protein interaction partners of which YBX1, a known oncogene, was confirmed by RNA immunoprecipitation. Furthermore, we discovered a complex cell-type-specific phenotype in response to the oncogenic potential of hsa_circ_0062682. This finding is in line with different classes of HCC tumours, and more studies are needed to shed a light on the molecular complexity of liver cancer.
Collapse
Affiliation(s)
- Rok Razpotnik
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Robert Vidmar
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Marko Fonović
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tadeja Režen
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
9
|
Wang G, Gao G, Yang X, Yang X, Ma P. Casein kinase CK2 structure and activities in plants. JOURNAL OF PLANT PHYSIOLOGY 2022; 276:153767. [PMID: 35841742 DOI: 10.1016/j.jplph.2022.153767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/10/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Casein kinase CK2 is a highly conserved serine/threonine protein kinase and exists in all eukaryotes. It has been demonstrated to be widely involved in the biological processes of plants. The CK2 holoenzyme is a heterotetramer consisting of two catalytic subunits (α and/or α') and two regulatory subunits (β). CK2 in plants is generally encoded by multiple genes, with monomeric and oligomeric forms present in the tissue. Various subunit genes of CK2 have been cloned and characterized from Arabidopsis thaliana, tobacco, maize, wheat, tomato, and other plants. This paper reviews the structural features of CK2, provides a clear classification of its physiological functions and mechanisms of action, and elaborates on the regulation of CK2 activity to provide a knowledge base for subsequent studies of CK2 in plants.
Collapse
Affiliation(s)
- Guanfeng Wang
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Geling Gao
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Xiangna Yang
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Xiangdong Yang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Pengda Ma
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
10
|
The Role of Protein Kinase CK2 in Development and Disease Progression: A Critical Review. J Dev Biol 2022; 10:jdb10030031. [PMID: 35997395 PMCID: PMC9397010 DOI: 10.3390/jdb10030031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Protein kinase CK2 (CK2) is a ubiquitous holoenzyme involved in a wide array of developmental processes. The involvement of CK2 in events such as neurogenesis, cardiogenesis, skeletogenesis, and spermatogenesis is essential for the viability of almost all organisms, and its role has been conserved throughout evolution. Further into adulthood, CK2 continues to function as a key regulator of pathways affecting crucial processes such as osteogenesis, adipogenesis, chondrogenesis, neuron differentiation, and the immune response. Due to its vast role in a multitude of pathways, aberrant functioning of this kinase leads to embryonic lethality and numerous diseases and disorders, including cancer and neurological disorders. As a result, CK2 is a popular target for interventions aiming to treat the aforementioned diseases. Specifically, two CK2 inhibitors, namely CX-4945 and CIBG-300, are in the early stages of clinical testing and exhibit promise for treating cancer and other disorders. Further, other researchers around the world are focusing on CK2 to treat bone disorders. This review summarizes the current understanding of CK2 in development, the structure of CK2, the targets and signaling pathways of CK2, the implication of CK2 in disease progression, and the recent therapeutics developed to inhibit the dysregulation of CK2 function in various diseases.
Collapse
|
11
|
Schwarz R, Richter A, Ito ERD, Murua Escobar H, Junghanß C, Hinz B. Validation of an LC-MS/MS Method for the Quantification of the CK2 Inhibitor Silmitasertib (CX-4945) in Human Plasma. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082394. [PMID: 35458589 PMCID: PMC9028559 DOI: 10.3390/molecules27082394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022]
Abstract
Silmitasertib (CX-4945) is currently being investigated in clinical trials against various types of cancer. The U.S. Food and Drug Administration (FDA) has already granted orphan drug designation to the compound for the treatment of advanced cholangiocarcinoma, medulloblastoma, and biliary tract cancer. Silmitasertib inhibits the serine/threonine protein kinase CK2, which exerts a proliferation-promoting and anti-apoptotic effect on cancer cells. In view of current and future applications, the measurement of silmitasertib levels in plasma is expected to play an important role in the evaluation of therapeutic and toxic concentrations in cancer patients. In the present work, we therefore present an LC-MS/MS method for the quantification of silmitasertib in human plasma. Using a simple liquid-liquid extraction with ethyl acetate and a mixture of n-hexane and ethyl acetate, this method can be performed in any laboratory with mass spectrometry. The validation was carried out according to the FDA guideline.
Collapse
Affiliation(s)
- Rico Schwarz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, 18057 Rostock, Germany; (R.S.); (E.R.D.I.)
| | - Anna Richter
- Clinic for Hematology, Oncology and Palliative Care, Rostock University Medical Center, 18057 Rostock, Germany; (A.R.); (H.M.E.); (C.J.)
| | - Elisabeth R. D. Ito
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, 18057 Rostock, Germany; (R.S.); (E.R.D.I.)
| | - Hugo Murua Escobar
- Clinic for Hematology, Oncology and Palliative Care, Rostock University Medical Center, 18057 Rostock, Germany; (A.R.); (H.M.E.); (C.J.)
| | - Christian Junghanß
- Clinic for Hematology, Oncology and Palliative Care, Rostock University Medical Center, 18057 Rostock, Germany; (A.R.); (H.M.E.); (C.J.)
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, 18057 Rostock, Germany; (R.S.); (E.R.D.I.)
- Correspondence:
| |
Collapse
|
12
|
Barbier-Torres L, Murray B, Yang JW, Wang J, Matsuda M, Robinson A, Binek A, Fan W, Fernández-Ramos D, Lopitz-Otsoa F, Luque-Urbano M, Millet O, Mavila N, Peng H, Ramani K, Gottlieb R, Sun Z, Liangpunsakul S, Seki E, Van Eyk JE, Mato JM, Lu SC. Depletion of mitochondrial methionine adenosyltransferase α1 triggers mitochondrial dysfunction in alcohol-associated liver disease. Nat Commun 2022; 13:557. [PMID: 35091576 PMCID: PMC8799735 DOI: 10.1038/s41467-022-28201-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/14/2022] [Indexed: 12/19/2022] Open
Abstract
MATα1 catalyzes the synthesis of S-adenosylmethionine, the principal biological methyl donor. Lower MATα1 activity and mitochondrial dysfunction occur in alcohol-associated liver disease. Besides cytosol and nucleus, MATα1 also targets the mitochondria of hepatocytes to regulate their function. Here, we show that mitochondrial MATα1 is selectively depleted in alcohol-associated liver disease through a mechanism that involves the isomerase PIN1 and the kinase CK2. Alcohol activates CK2, which phosphorylates MATα1 at Ser114 facilitating interaction with PIN1, thereby inhibiting its mitochondrial localization. Blocking PIN1-MATα1 interaction increased mitochondrial MATα1 levels and protected against alcohol-induced mitochondrial dysfunction and fat accumulation. Normally, MATα1 interacts with mitochondrial proteins involved in TCA cycle, oxidative phosphorylation, and fatty acid β-oxidation. Preserving mitochondrial MATα1 content correlates with higher methylation and expression of mitochondrial proteins. Our study demonstrates a role of CK2 and PIN1 in reducing mitochondrial MATα1 content leading to mitochondrial dysfunction in alcohol-associated liver disease.
Collapse
Affiliation(s)
- Lucía Barbier-Torres
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Ben Murray
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Jin Won Yang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- College of Pharmacy, Woosuk University, Wanju, South Korea
| | - Jiaohong Wang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Michitaka Matsuda
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Aaron Robinson
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Aleksandra Binek
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Wei Fan
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - David Fernández-Ramos
- Precision Medicine and Metabolism, CIC bioGUNE, BRTA, CIBERehd, Technology Park of Bizkaia, 48160, Derio, Bizkaia, Spain
| | - Fernando Lopitz-Otsoa
- Precision Medicine and Metabolism, CIC bioGUNE, BRTA, CIBERehd, Technology Park of Bizkaia, 48160, Derio, Bizkaia, Spain
| | - Maria Luque-Urbano
- Precision Medicine and Metabolism, CIC bioGUNE, BRTA, CIBERehd, Technology Park of Bizkaia, 48160, Derio, Bizkaia, Spain
| | - Oscar Millet
- Precision Medicine and Metabolism, CIC bioGUNE, BRTA, CIBERehd, Technology Park of Bizkaia, 48160, Derio, Bizkaia, Spain
| | - Nirmala Mavila
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Hui Peng
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Komal Ramani
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Roberta Gottlieb
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Zhaoli Sun
- Department of Surgery and Transplant Biology Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - Ekihiro Seki
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Jennifer E Van Eyk
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Jose M Mato
- Precision Medicine and Metabolism, CIC bioGUNE, BRTA, CIBERehd, Technology Park of Bizkaia, 48160, Derio, Bizkaia, Spain
| | - Shelly C Lu
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| |
Collapse
|
13
|
Targeting CK2 in cancer: a valuable strategy or a waste of time? Cell Death Discov 2021; 7:325. [PMID: 34716311 PMCID: PMC8555718 DOI: 10.1038/s41420-021-00717-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/22/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
CK2 is a protein kinase involved in several human diseases (ranging from neurological and cardiovascular diseases to autoimmune disorders, diabetes, and infections, including COVID-19), but its best-known implications are in cancer, where it is considered a pharmacological target. Several CK2 inhibitors are available and clinical trials are underway in different cancer types. Recently, the suitability of CK2 as a broad anticancer target has been questioned by the finding that a newly developed compound, named SGC-CK2-1, which is more selective than any other known CK2 inhibitor, is poorly effective in reducing cell growth in different cancer lines, prompting the conclusion that the anticancer efficacy of CX-4945, the commonly used clinical-grade CK2 inhibitor, is to be attributed to its off-target effects. Here we perform a detailed scrutiny of published studies on CK2 targeting and a more in-depth analysis of the available data on SGC-CK2-1 vs. CX-4945 efficacy, providing a different perspective about the actual reliance of cancer cells on CK2. Collectively taken, our arguments would indicate that the pretended dispensability of CK2 in cancer is far from having been proved and warn against premature conclusions, which could discourage ongoing investigations on a potentially valuable drug target.
Collapse
|
14
|
Wu R, Tang W, Qiu K, Li P, Li Y, Li D, He Z. An Integrative Pan-Cancer Analysis of the Prognostic and Immunological Role of Casein Kinase 2 Alpha Protein 1 (CSNK2A1) in Human Cancers: A Study Based on Bioinformatics and Immunohistochemical Analysis. Int J Gen Med 2021; 14:6215-6232. [PMID: 34621130 PMCID: PMC8487869 DOI: 10.2147/ijgm.s330500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/21/2021] [Indexed: 11/25/2022] Open
Abstract
Background Although emerging animal- or cell-based evidence supports the relationship between casein kinase 2 alpha protein 1 (CSNK2A1) and cancers, no pan-cancer analysis is available. Thus, this report aimed to display the prognostic landscape of CSNK2A1 in pan-cancer and investigate the relationship between CSNK2A1 and tumor immunity. Methods In the current study, we investigated the expression pattern, genetic alterations and survival analysis of CSNK2A1 in pan-cancer across multiple datasets and online platforms. The correlations between CSNK2A1 expression and tumor immunity were explored and visualized via R language software. Following this, immunohistochemical (IHC) staining and Kaplan–Meier survival analysis were conducted in clinical patients for proving the bioinformatic findings. Analysis of protein–protein interaction and gene functional enrichment was conducted using GeneMANIA platform and gene set enrichment analysis (GSEA), respectively. Results In TCGA, tumor tissue had a higher expression level of CSNK2A1 compared with that in corresponding normal tissue. An increased expression level of CSNK2A1 was related to poor clinical prognosis in most types of cancer such as LIHC. The following expression and survival analysis in clinical liver hepatocellular carcinoma (LIHC) patients confirmed these TCGA findings. CSNK2A1 expression had significant positive correlations with pro-tumor-infiltrating immune cells (TIICs) like M1-macrophages and fibroblasts, and significant negative correlations with anti-tumor-TIICs like activated CD8+ T cells and NK cells, suggesting specific interactions between CSNK2A1 and certain TIICs subtypes. Furthermore, CSNK2A1 expression had the most significant positive correlations with common markers of immune checkpoint including programmed death ligand-1 (PDL1) in LIHC. These findings were validated by an IHC analysis. GSEA analysis demonstrated that high expression of CSNK2A1 was related to cell signaling pathways and immunity-related activities. Conclusion These findings suggested that CSNK2A1 was not only related to poor clinical prognosis in cancer like LIHC but also a novel immunotherapy-related biomarker in cancers, especially in LIHC, shedding new light on anti-tumor strategy.
Collapse
Affiliation(s)
- Ruohao Wu
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong High Education Institutes, Sun Yat-sen Memorial Hospital, Guangzhou, People's Republic of China.,Department of Pediatrics, Sun Yat-sen Memorial Hospital, Guangzhou, People's Republic of China
| | - Wenting Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen Cancer Center, Guangzhou, People's Republic of China.,Department of Molecular Diagnostics, Sun Yat-sen Cancer Center, Guangzhou, People's Republic of China
| | - Kunyin Qiu
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong High Education Institutes, Sun Yat-sen Memorial Hospital, Guangzhou, People's Republic of China.,Department of Pediatrics, Sun Yat-sen Memorial Hospital, Guangzhou, People's Republic of China
| | - Pinggan Li
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong High Education Institutes, Sun Yat-sen Memorial Hospital, Guangzhou, People's Republic of China.,Department of Pediatrics, Sun Yat-sen Memorial Hospital, Guangzhou, People's Republic of China
| | - Yu Li
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong High Education Institutes, Sun Yat-sen Memorial Hospital, Guangzhou, People's Republic of China.,Department of Pediatrics, Sun Yat-sen Memorial Hospital, Guangzhou, People's Republic of China
| | - Dongfang Li
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong High Education Institutes, Sun Yat-sen Memorial Hospital, Guangzhou, People's Republic of China.,Department of Pediatrics, Sun Yat-sen Memorial Hospital, Guangzhou, People's Republic of China
| | - Zhanwen He
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong High Education Institutes, Sun Yat-sen Memorial Hospital, Guangzhou, People's Republic of China.,Department of Pediatrics, Sun Yat-sen Memorial Hospital, Guangzhou, People's Republic of China
| |
Collapse
|
15
|
Dolicka D, Foti M, Sobolewski C. The Emerging Role of Stress Granules in Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22179428. [PMID: 34502337 PMCID: PMC8430939 DOI: 10.3390/ijms22179428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
Stress granules (SGs) are small membrane-free cytosolic liquid-phase ordered entities in which mRNAs are protected and translationally silenced during cellular adaptation to harmful conditions (e.g., hypoxia, oxidative stress). This function is achieved by structural and functional SG components such as scaffold proteins and RNA-binding proteins controlling the fate of mRNAs. Increasing evidence indicates that the capacity of cells to assemble/disassemble functional SGs may significantly impact the onset and the development of metabolic and inflammatory diseases, as well as cancers. In the liver, the abnormal expression of SG components and formation of SG occur with chronic liver diseases, hepatocellular carcinoma (HCC), and selective hepatic resistance to anti-cancer drugs. Although, the role of SG in these diseases is still debated, the modulation of SG assembly/disassembly or targeting the expression/activity of specific SG components may represent appealing strategies to treat hepatic disorders and potentially cancer. In this review, we discuss our current knowledge about pathophysiological functions of SGs in HCC as well as available molecular tools and drugs capable of modulating SG formation and functions for therapeutic purposes.
Collapse
|
16
|
CX-4945 and siRNA-Mediated Knockdown of CK2 Improves Cisplatin Response in HPV(+) and HPV(-) HNSCC Cell Lines. Biomedicines 2021; 9:biomedicines9050571. [PMID: 34070147 PMCID: PMC8158385 DOI: 10.3390/biomedicines9050571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) can be categorized into human papillomavirus (HPV) positive or negative disease. Elevated protein kinase CK2 level and activity have been historically observed in HNSCC cells. Previous studies on CK2 in HNSCC did not generally include consideration of HPV(+) and HPV(−) status. Here, we investigated the response of HPV(+) and HPV(−) HNSCC cells to CK2 targeting using CX-4945 or siRNA downregulation combined with cisplatin treatment. HNSCC cell lines were examined for CK2 expression levels and activity and response to CX-4945, with and without cisplatin. CK2 levels and NFκB p65-related activity were high in HPV(+) HNSCC cells relative to HPV(−) HNSCC cells. Treatment with CX-4945 decreased viability and cisplatin IC50 in all cell lines. Targeting of CK2 increased tumor suppressor protein levels for p21 and PDCD4 in most instances. Further study is needed to understand the role of CK2 in HPV(+) and HPV(−) HNSCC and to determine how incorporation of the CK2-targeted inhibitor CX-4945 could improve cisplatin response in HNSCC.
Collapse
|
17
|
Protein kinase CK2: a potential therapeutic target for diverse human diseases. Signal Transduct Target Ther 2021; 6:183. [PMID: 33994545 PMCID: PMC8126563 DOI: 10.1038/s41392-021-00567-7] [Citation(s) in RCA: 195] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 02/04/2023] Open
Abstract
CK2 is a constitutively active Ser/Thr protein kinase, which phosphorylates hundreds of substrates, controls several signaling pathways, and is implicated in a plethora of human diseases. Its best documented role is in cancer, where it regulates practically all malignant hallmarks. Other well-known functions of CK2 are in human infections; in particular, several viruses exploit host cell CK2 for their life cycle. Very recently, also SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has been found to enhance CK2 activity and to induce the phosphorylation of several CK2 substrates (either viral and host proteins). CK2 is also considered an emerging target for neurological diseases, inflammation and autoimmune disorders, diverse ophthalmic pathologies, diabetes, and obesity. In addition, CK2 activity has been associated with cardiovascular diseases, as cardiac ischemia-reperfusion injury, atherosclerosis, and cardiac hypertrophy. The hypothesis of considering CK2 inhibition for cystic fibrosis therapies has been also entertained for many years. Moreover, psychiatric disorders and syndromes due to CK2 mutations have been recently identified. On these bases, CK2 is emerging as an increasingly attractive target in various fields of human medicine, with the advantage that several very specific and effective inhibitors are already available. Here, we review the literature on CK2 implication in different human pathologies and evaluate its potential as a pharmacological target in the light of the most recent findings.
Collapse
|
18
|
Borgo C, D'Amore C, Cesaro L, Sarno S, Pinna LA, Ruzzene M, Salvi M. How can a traffic light properly work if it is always green? The paradox of CK2 signaling. Crit Rev Biochem Mol Biol 2021; 56:321-359. [PMID: 33843388 DOI: 10.1080/10409238.2021.1908951] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CK2 is a constitutively active protein kinase that assuring a constant level of phosphorylation to its numerous substrates supports many of the most important biological functions. Nevertheless, its activity has to be controlled and adjusted in order to cope with the varying needs of a cell, and several examples of a fine-tune regulation of its activity have been described. More importantly, aberrant regulation of this enzyme may have pathological consequences, e.g. in cancer, chronic inflammation, neurodegeneration, and viral infection. Our review aims at summarizing our current knowledge about CK2 regulation. In the first part, we have considered the most important stimuli shown to affect protein kinase CK2 activity/expression. In the second part, we focus on the molecular mechanisms by which CK2 can be regulated, discussing controversial aspects and future perspectives.
Collapse
Affiliation(s)
- Christian Borgo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Claudio D'Amore
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Luca Cesaro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Stefania Sarno
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Lorenzo A Pinna
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,CNR Institute of Neurosciences, Padova, Italy
| | - Maria Ruzzene
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,CNR Institute of Neurosciences, Padova, Italy
| | - Mauro Salvi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
19
|
Li Q, Sun M, Wang M, Feng M, Yang F, Li L, Zhao J, Chang C, Dong H, Xie T, Chen J. Dysregulation of Wnt/β-catenin signaling by protein kinases in hepatocellular carcinoma and its therapeutic application. Cancer Sci 2021; 112:1695-1706. [PMID: 33605517 PMCID: PMC8088956 DOI: 10.1111/cas.14861] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 12/24/2022] Open
Abstract
Wnt/β-catenin signaling is indispensable for many biological processes, including embryonic development, cell cycle, inflammation, and carcinogenesis. Aberrant activation of the Wnt/β-catenin signaling can promote tumorigenicity and enhance metastatic potential in hepatocellular carcinoma (HCC). Targeting this pathway is a new opportunity for precise medicine for HCC. However, inhibiting Wnt/β-catenin signaling alone is unlikely to significantly improve HCC patient outcome due to the lack of specific inhibitors and the complexity of this pathway. Combination with other therapies will be an important next step in improving the efficacy of Wnt/β-catenin signaling inhibitors. Protein kinases play a key and evolutionarily conserved role in the Wnt/β-catenin signaling and have become one of the most important drug targets in cancer. Targeting Wnt/β-catenin signaling and its regulatory kinase together will be a promising HCC management strategy. In this review, we summarize the kinases that modulate the Wnt/β-catenin signaling in HCC and briefly discuss their molecular mechanisms. Furthermore, we list some small molecules that target the kinases and may inhibit Wnt/β-catenin signaling, to offer new perspectives for preclinical and clinical HCC studies.
Collapse
Affiliation(s)
- Qian Li
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The Affiliated Hospital of Hangzhou Normal University, College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Mengqing Sun
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The Affiliated Hospital of Hangzhou Normal University, College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Menglan Wang
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The Affiliated Hospital of Hangzhou Normal University, College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Mengqing Feng
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The Affiliated Hospital of Hangzhou Normal University, College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Fan Yang
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The Affiliated Hospital of Hangzhou Normal University, College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Lina Li
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The Affiliated Hospital of Hangzhou Normal University, College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Jianbo Zhao
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The Affiliated Hospital of Hangzhou Normal University, College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Cunjie Chang
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The Affiliated Hospital of Hangzhou Normal University, College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Heng Dong
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The Affiliated Hospital of Hangzhou Normal University, College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Tian Xie
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The Affiliated Hospital of Hangzhou Normal University, College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Jianxiang Chen
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The Affiliated Hospital of Hangzhou Normal University, College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, China.,Division of Cellular and Molecular Research, Laboratory of Cancer Genomics, National Cancer Centre, Singapore City, Singapore
| |
Collapse
|
20
|
TMEM2 binds to CSNK2A3 to inhibit HBV infection via activation of the JAK/STAT pathway. Exp Cell Res 2021; 400:112517. [PMID: 33582094 DOI: 10.1016/j.yexcr.2021.112517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/25/2021] [Accepted: 02/04/2021] [Indexed: 01/10/2023]
Abstract
To investigate mechanisms that TMEM2 activation inhibits hepatitis B virus (HBV) infection in hepatocarcinoma (HCC) cells, co-immunoprecipitation (Co-IP) and mass spectrometry were used in screening interacting proteins for TMEM2. Levels of casein kinase 2 subunit α3 (CSNK2A3) in HCC cells were found to be inhibited or overexpressed using siRNAs and pcDNA3.1-CSNK2A3, respectively. Effect of CSNK2A3 expression on cell proliferation was analyzed using MTS, while its effect on HBV infection was measured using ddPCR and IHC. Western blotting and JAK inhibitor ruxolitinib were also used to determine whether TMEM2-regulated CSNK2A3 expression and HBV infection were affected by JAK-STAT signaling. Co-IP and mass spectrometry results showed that CSNK2A3 interacts with TMEM2. Moreover, overexpression of CSNK2A3 significantly inhibited cell proliferation, while inhibition of CSNK2A3 promoted proliferation of HCC cells. In addition, overexpression of CSNK2A3 was observed to significantly enhance HBV infection, while siRNA knockdown of CSNK2A3 inhibited HBV infection. Notably, effect of CSNK2A3 overexpression on HBV infection was suppressed by TMEM2 overexpression. Further mechanistic analyses have revealed that TMEM2 could antagonize the effects of CSNK2A3 on cell proliferation and HBV infection via JAK-STAT pathway activation. In conclusion, TMEM2 has been determined to bind to CSNK2A3 to inhibit HBV infection via activation of the JAK-STAT pathway.
Collapse
|
21
|
Genome Profiling for Aflatoxin B 1 Resistance in Saccharomyces cerevisiae Reveals a Role for the CSM2/SHU Complex in Tolerance of Aflatoxin B 1-Associated DNA Damage. G3-GENES GENOMES GENETICS 2020; 10:3929-3947. [PMID: 32994210 PMCID: PMC7642924 DOI: 10.1534/g3.120.401723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Exposure to the mycotoxin aflatoxin B1 (AFB1) strongly correlates with hepatocellular carcinoma (HCC). P450 enzymes convert AFB1 into a highly reactive epoxide that forms unstable 8,9-dihydro-8-(N7-guanyl)-9-hydroxyaflatoxin B1 (AFB1-N 7-Gua) DNA adducts, which convert to stable mutagenic AFB1 formamidopyrimidine (FAPY) DNA adducts. In CYP1A2-expressing budding yeast, AFB1 is a weak mutagen but a potent recombinagen. However, few genes have been identified that confer AFB1 resistance. Here, we profiled the yeast genome for AFB1 resistance. We introduced the human CYP1A2 into ∼90% of the diploid deletion library, and pooled samples from CYP1A2-expressing libraries and the original library were exposed to 50 μM AFB1 for 20 hs. By using next generation sequencing (NGS) to count molecular barcodes, we initially identified 86 genes from the CYP1A2-expressing libraries, of which 79 were confirmed to confer AFB1 resistance. While functionally diverse genes, including those that function in proteolysis, actin reorganization, and tRNA modification, were identified, those that function in postreplication DNA repair and encode proteins that bind to DNA damage were over-represented, compared to the yeast genome, at large. DNA metabolism genes also included those functioning in checkpoint recovery and replication fork maintenance, emphasizing the potency of the mycotoxin to trigger replication stress. Among genes involved in postreplication repair, we observed that CSM2, a member of the CSM2 (SHU) complex, functioned in AFB1-associated sister chromatid recombination while suppressing AFB1-associated mutations. These studies thus broaden the number of AFB1 resistance genes and have elucidated a mechanism of error-free bypass of AFB1-associated DNA adducts.
Collapse
|
22
|
Silva-Pavez E, Tapia JC. Protein Kinase CK2 in Cancer Energetics. Front Oncol 2020; 10:893. [PMID: 32626654 PMCID: PMC7315807 DOI: 10.3389/fonc.2020.00893] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022] Open
Abstract
Protein kinase CK2 (formerly known as casein kinase 2) is abnormally elevated in many cancers. This may increase tumor aggressiveness through CK2-dependent phosphorylation of key proteins in several signaling pathways. In this work, we have compiled evidence from the literature to suggest that CK2 also modulates a metabolic switch characteristic of cancer cells that enhances resistance to death, due to either drugs or to a microenvironment deficient in oxygen or nutrients. Concurrently, CK2 may help to preserve mitochondrial activity in a PTEN-dependent manner. PTEN, widely recognized as a tumor suppressor, is another CK2 substrate in the PI3K/Akt signaling pathway that promotes cancer viability and aerobic glycolysis. Given that CK2 can regulate Akt as well as two of its main effectors, namely mTORC1 and β-catenin, we comprehensively describe how CK2 may modulate cancer energetics by regulating expression of key targets and downstream processes, such as HIF-1 and autophagy, respectively. Thus, the specific inhibition of CK2 may lead to a catastrophic death of cancer cells, which could become a feasible therapeutic strategy to beat this devastating disease. In fact, ATP-competitive inhibitors, synthetic peptides and antisense oligonucleotides have been designed as CK2 inhibitors, some of them used in preclinical models of cancer, of which TBB and silmitasertib are widely known. We will finish by discussing a hypothetical scenario in which cancer cells are "addicted" to CK2; i.e., in which many proteins that regulate signaling pathways and metabolism-linked processes are highly dependent on this kinase.
Collapse
Affiliation(s)
- Eduardo Silva-Pavez
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Julio C Tapia
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
23
|
Afaloniati H, Angelopoulou K, Giakoustidis A, Hardas A, Pseftogas A, Makedou K, Gargavanis A, Goulopoulos T, Iliadis S, Papadopoulos V, Papalois A, Mosialos G, Poutahidis T, Giakoustidis D. HDAC1/2 Inhibitor Romidepsin Suppresses DEN-Induced Hepatocellular Carcinogenesis in Mice. Onco Targets Ther 2020; 13:5575-5588. [PMID: 32606772 PMCID: PMC7304783 DOI: 10.2147/ott.s250233] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/27/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a frequently diagnosed cancer and a leading cause of cancer-related death worldwide. Its rapid progression, combined with the limited treatment options at late stages, imposes the need for early detection and aggressive intervention. Based on the knowledge that hepatocarcinogenesis is significantly influenced by histone acetylation, we directed our search for novel HCC therapeutics among histone deacetylation inhibitors (HDACi). The aim of the present study was to investigate the effect of HDAC1/2 inhibitor Romidepsin in the well-established mouse model of diethylnitrosamine (DEN)-induced HCC. MATERIALS AND METHODS C56BL/6 mice were treated with Romidepsin at the critical point of 10 months after DEN challenge and their livers were examined 2 months later using histopathology and morphometry. Protein levels were assessed in serum using ELISA and in liver tissues using Western blot and immunohistochemistry (in-situ detection). Gene expression was quantified using real-time PCR. RESULTS Romidepsin suppressed cancer progression. This effect was associated with decreased proliferation and increased apoptosis of cancer cells. The cell cycle regulator CK2a, the anti-inflammatory molecule PPAR-γ, and the tumor suppressors PTEN and CYLD were upregulated in treated HCC. By contrast, the expression of PI3K, NF-κB p65 and c-Jun was reduced. In line with this result, the levels of two major apoptosis regulators, ie, BAD and the multifunctional protein c-Met, were lower in the blood serum of treated mice compared to the untreated mice with HCC. CONCLUSION These findings suggest that Romidepsin, a drug currently used in the treatment of lymphoma, could also be considered in the management of early-stage HCC.
Collapse
Affiliation(s)
- Hara Afaloniati
- Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Katerina Angelopoulou
- Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexander Giakoustidis
- First Department of Surgery, Medical School, Aristotle University of Thessaloniki, General Hospital Papageorgiou, Thessaloniki, Greece
| | - Alexandros Hardas
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios Pseftogas
- School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kali Makedou
- Department of Biological Chemistry, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios Gargavanis
- First Department of Surgery, Medical School, Aristotle University of Thessaloniki, General Hospital Papageorgiou, Thessaloniki, Greece
| | - Thomas Goulopoulos
- First Department of Surgery, Medical School, Aristotle University of Thessaloniki, General Hospital Papageorgiou, Thessaloniki, Greece
| | - Stavros Iliadis
- Department of Biological Chemistry, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasileios Papadopoulos
- First Department of Surgery, Medical School, Aristotle University of Thessaloniki, General Hospital Papageorgiou, Thessaloniki, Greece
| | - Apostolos Papalois
- Experimental, Educational and Research Center, ELPEN, Pikermi, Attica, Greece
| | - George Mosialos
- School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Theofilos Poutahidis
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Giakoustidis
- First Department of Surgery, Medical School, Aristotle University of Thessaloniki, General Hospital Papageorgiou, Thessaloniki, Greece
| |
Collapse
|
24
|
Lan YC, Wang YH, Chen HH, Lo SF, Chen SY, Tsai FJ. Effects of Casein Kinase 2 Alpha 1 Gene Expression on Mice Liver Susceptible to Type 2 Diabetes Mellitus and Obesity. Int J Med Sci 2020; 17:13-20. [PMID: 31929734 PMCID: PMC6945564 DOI: 10.7150/ijms.37110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/18/2019] [Indexed: 12/17/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic disease found worldwide. Notably, BKS.Cg- Dock7m +/+ Leprdb/JNarl mice are useful animal models for studying type 2 diabetes mellitus (T2DM). In this study, we investigated casein kinase 2 alpha 1 (CSNK2A1) gene and protein expression in the liver tissues of mice at different ages (4, 16, and 32 weeks) using real-time quantitative polymerase chain reactions, western blotting, immunohistochemistry, and enzyme-linked immunosorbent assay. Our data paved the way for exploring BKS.Cg- Dock7m +/+ Leprdb/JNarl in the mouse model by demonstrating a significant increase in gene and protein expression in T2DM (+Leprdb/+Leprdb) mouse liver when compared to control (+Dock7m/+Dock7m) mouse liver. We also observed that CSNK2A1 protein level in the serum of T2DM patient group was higher than that of the control group, although the data was not statistically significant. Based on our findings, we can now understand the role of CSNK2A1 gene upregulation when encountering T2DM pathologies.
Collapse
Affiliation(s)
- Yu-Ching Lan
- Department of Health Risk Management, China Medical University, 40402 Taichung, Taiwan
| | - Yeh-Han Wang
- Department of Anatomical Pathology, Taipei Institute of Pathology, School of Medicine, National Yang-Ming University , 11221 Taipei, Taiwan
| | - Hsin-Han Chen
- Division of Plastic and Reconstructive Surgery, China Medical University Hospital, 40402 Taichung, Taiwan
| | - Sui-Foon Lo
- School of Chinese Medicine, China Medical University, 40402 Taichung, Taiwan
| | - Shih-Yin Chen
- School of Chinese Medicine, China Medical University, 40402 Taichung, Taiwan.,Genetics Center, Medical Research, China Medical University Hospital, 40447 Taichung, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, China Medical University, 40402 Taichung, Taiwan.,Genetics Center, Medical Research, China Medical University Hospital, 40447 Taichung, Taiwan.,Department of Medical Genetics, China Medical University Hospital, 40447 Taichung, Taiwan, R.O.C
| |
Collapse
|
25
|
Oramas-Royo S, Haidar S, Amesty Á, Martín-Acosta P, Feresin G, Tapia A, Aichele D, Jose J, Estévez-Braun A. Design, synthesis and biological evaluation of new embelin derivatives as CK2 inhibitors. Bioorg Chem 2019; 95:103520. [PMID: 31887475 DOI: 10.1016/j.bioorg.2019.103520] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 12/30/2022]
Abstract
A new series of furan embelin derivatives was synthesized and characterized as ATP-competitive CK2 inhibitors. The new compounds were efficiently synthesized using a multicomponent approach from embelin (1), aldehydes and isonitriles through a Knoevenagel condensation/Michael addition/heterocyclization. Several compounds with inhibitory activities in the low micromolar or even submicromolar were identified. The most active derivative was compound 4l (2-(tert-butylamino)-3-(furan-3-yl)-5-hydroxy-6-undecylbenzofuran-4,7-dione) with an IC50 value of 0.63 μM. It turned out to be an ATP competitive CK2 inhibitor with a Ki value determined to be 0.48 μM. Docking studies allowed the identification of key ligand-CK2 interactions, which could help to further optimize this family of compounds as CK2 inhibitors.
Collapse
Affiliation(s)
- Sandra Oramas-Royo
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez N° 2, 38206 La Laguna, Tenerife, Spain
| | - Samer Haidar
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstrasse 48, 48149 Münster, Germany; Faculty of Pharmacy, Damascus University, 17 April Street, Damascus, Syria
| | - Ángel Amesty
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez N° 2, 38206 La Laguna, Tenerife, Spain
| | - Pedro Martín-Acosta
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez N° 2, 38206 La Laguna, Tenerife, Spain
| | - Gabriela Feresin
- Instituto de Biotecnología-Instituto de Ciencias Básicas, Universidad Nacional de San Juan, Av. Libertador General San Martín 1109 (O), CP 5400 San Juan, Argentina
| | - Alejandro Tapia
- Instituto de Biotecnología-Instituto de Ciencias Básicas, Universidad Nacional de San Juan, Av. Libertador General San Martín 1109 (O), CP 5400 San Juan, Argentina
| | - Dagmar Aichele
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstrasse 48, 48149 Münster, Germany
| | - Joachim Jose
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstrasse 48, 48149 Münster, Germany
| | - Ana Estévez-Braun
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez N° 2, 38206 La Laguna, Tenerife, Spain.
| |
Collapse
|
26
|
Xu WF, Ma YC, Ma HS, Shi L, Mu H, Ou WB, Peng J, Li TT, Qin T, Zhou HM, Fu XQ, Li XH. Co-targeting CK2α and YBX1 suppresses tumor progression by coordinated inhibition of the PI3K/AKT signaling pathway. Cell Cycle 2019; 18:3472-3490. [PMID: 31713447 DOI: 10.1080/15384101.2019.1689474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Protein kinase CK2 alpha (CK2α) is involved in the development of multiple malignancies. Overexpression of Y-box binding protein 1 (YBX1) is related to tumor proliferation, drug resistance, and poor prognosis. Studies have demonstrated that both CK2 and YBX1 could regulate the PI3K/AKT pathway. In addition, we predicted that CK2 might be the upstream kinase of YBX1 through the Human Protein Reference Database (HPRD). Herein, we hypothesize that CK2 may interact with YBX1 and they regulate the PI3K/AKT signaling pathway together. Expressions of CK2α and YBX1 in cancer cell lines were evaluated by immunoblotting. The results showed that CK2α could regulate the expression of YBX1 at the transcriptional level, which is dependent on its enzymatic activity. Synergistic effects of PI3K/AKT pathway inactivation could be observed through combined inhibition of CK2α and YBX1, and YBX1 was required for CK2α-induced PI3K/AKT pathway activation. Further results demonstrated that CK2α could interact with YBX1 and PI3K/AKT antagonist decreased cell resistance to doxorubicin induced by co-activation of CK2α and YBX1. These results indicated that combined inhibition of CK2α and YBX1 showed synergistic effects in inactivating the PI3K/AKT signaling pathway and may be one of the mechanisms involved in tumor growth and migration.
Collapse
Affiliation(s)
- Wen-Fei Xu
- College of Life Sciences, Jilin University, Changchun, China.,Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, China
| | - Yi-Cong Ma
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, China
| | - Hou-Shi Ma
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, China
| | - Long Shi
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, China
| | - Hang Mu
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, China
| | - Wen-Bin Ou
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jie Peng
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ting-Ting Li
- Department of Geriatric Gastroenterology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Tianyi Qin
- Department of Biology, Georgetown Preparatory School, North Bethesda, USA
| | - Hai-Meng Zhou
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, China
| | - Xue-Qi Fu
- College of Life Sciences, Jilin University, Changchun, China
| | - Xu-Hui Li
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, China
| |
Collapse
|
27
|
Salama YA, El-karef A, El Gayyar AM, Abdel-Rahman N. Beyond its antioxidant properties: Quercetin targets multiple signalling pathways in hepatocellular carcinoma in rats. Life Sci 2019; 236:116933. [DOI: 10.1016/j.lfs.2019.116933] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/19/2022]
|
28
|
Wang H, Lv Q, Xu Y, Cai Z, Zheng J, Cheng X, Dai Y, Jänne PA, Ambrogio C, Köhler J. An integrative pharmacogenomics analysis identifies therapeutic targets in KRAS-mutant lung cancer. EBioMedicine 2019; 49:106-117. [PMID: 31668570 PMCID: PMC6945285 DOI: 10.1016/j.ebiom.2019.10.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/29/2019] [Accepted: 10/08/2019] [Indexed: 12/31/2022] Open
Abstract
Background KRAS mutations are the most frequent oncogenic aberration in lung adenocarcinoma. KRAS mutant isoforms differentially shape tumour biology and influence drug responses. This heterogeneity challenges the development of effective therapies for patients with KRAS-driven non-small cell lung cancer (NSCLC). Methods We developed an integrative pharmacogenomics analysis to identify potential drug targets to overcome MEK/ERK inhibitor resistance in lung cancer cell lines with KRAS(G12C) mutation (n = 12). We validated our predictive in silico results with in vitro models using gene knockdown, pharmacological target inhibition and reporter assays. Findings Our computational analysis identifies casein kinase 2A1 (CSNK2A1) as a mediator of MEK/ERK inhibitor resistance in KRAS(G12C) mutant lung cancer cells. CSNK2A1 knockdown reduces cell proliferation, inhibits Wnt/β-catenin signalling and increases the anti-proliferative effect of MEK inhibition selectively in KRAS(G12C) mutant lung cancer cells. The specific CK2-inhibitor silmitasertib phenocopies the CSNK2A1 knockdown effect and sensitizes KRAS(G12C) mutant cells to MEK inhibition. Interpretation Our study supports the importance of accurate patient stratification and rational drug combinations to gain benefit from MEK inhibition in patients with KRAS mutant NSCLC. We develop a genotype-based strategy that identifies CK2 as a promising co-target in KRAS(G12C) mutant NSCLC by using available pharmacogenomics gene expression datasets. This approach is applicable to other oncogene driven cancers. Fund This work was supported by grants from the National Natural Science Foundation of China, the National Key Research and Development Program of China, the Lung Cancer Research Foundation and a Mildred-Scheel postdoctoral fellowship from the German Cancer Aid Foundation.
Collapse
Affiliation(s)
- Haiyun Wang
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Qi Lv
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yue Xu
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Zhaoqing Cai
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Jie Zheng
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Xiaojie Cheng
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yao Dai
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Pasi A Jänne
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, United States; Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02215, United States.
| | - Chiara Ambrogio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, United States.
| | - Jens Köhler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, United States.
| |
Collapse
|
29
|
Casein kinase 2 inhibition sensitizes medulloblastoma to temozolomide. Oncogene 2019; 38:6867-6879. [PMID: 31406250 PMCID: PMC6800621 DOI: 10.1038/s41388-019-0927-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/21/2019] [Accepted: 05/26/2019] [Indexed: 11/20/2022]
Abstract
Medulloblastoma (MB) is the most common malignant pediatric brain tumor. Since surviving patients experience severe neurocognitive disabilities, better and more effective treatments are needed to enhance their quality of life. Casein Kinase 2 (CK2) is known to regulate cell growth and survival in multiple cancers; however, the role of CK2 in MB is currently being studied. In this study we verified the importance of CK2 in MB tumorigenesis and discovered that inhibition of CK2 using the small molecule inhibitor, CX-4945, can sensitize MB cells to a well-known and tolerated chemotherapeutic, temozolomide (TMZ). To study the role of CK2 in MB we modulated CK2 expression in multiple MB cell. Exogenous expression of CK2 enhanced cell growth and tumor growth in mice, while depletion or inhibition of CK2 expression decreased MB tumorigenesis. Treatment with CX-4945 reduced MB growth and increased apoptosis. We conducted a high-throughput screen where 4,000 small molecule compounds were analyzed to identify compounds that increased the anti-tumorigenic properties of CX-4945. TMZ was found to work synergistically with CX-4945 to decrease cell survival and increase apoptosis in MB cells. O-6-methylguanine-DNA methyltransferase (MGMT) activity is directly correlated to TMZ sensitivity. We found that loss of CK2 activity reduced β-catenin expression, a known MGMT regulator, which in turn led to a decrease in MGMT expression and an increased sensitivity to TMZ. Our findings show that CK2 is important for MB maintenance and that treatment with CX-4945 can sensitize MB cells to TMZ treatment.
Collapse
|
30
|
Jin C, Song P, Pang J. The CK2 inhibitor CX4945 reverses cisplatin resistance in the A549/DDP human lung adenocarcinoma cell line. Oncol Lett 2019; 18:3845-3856. [PMID: 31579410 DOI: 10.3892/ol.2019.10696] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 06/13/2019] [Indexed: 12/31/2022] Open
Abstract
Lung cancer negatively impacts global health, and the incidence of non-small cell lung cancer (NSCLC) is highest among all forms of lung cancer. Chemotherapy failure mainly occurs due to drug resistance; however, the associated molecular mechanism remains unclear. Casein kinase II (CK2), which plays important roles in the occurrence, development and metastasis of many tumours, regulates Wnt signaling by modulating β-catenin expression. In the present study the effects of the CK2 inhibitor, CX4945 on cisplatin [or cis-diamminedichloroplatinum (II); (DDP)]-resistant A549 cells (A549/DDP) were investigated to elucidate the underlying molecular mechanism. A549/DDP cells were divided into four groups (blank control, CX4945, cisplatin and CX4945+cisplatin). Cisplatin resistance was 5.16-fold greater in A549/DDP cells compared with that in A549 cells, with an optimal cisplatin concentration of 5 µg/ml. Moreover, levels of CK2, dishevelled-2 (DVL-2) phosphorylated (p) at Ser143 (p-DVL-2Ser143), and major Wnt-signaling proteins were significantly higher in A549/DDP cells compared with that in A549 cells (P<0.05), with these levels further increased following cisplatin treatment (P<0.05), whereas these levels significantly decreased in A549 cells after cisplatin treatment (P<0.05). Additionally, multidrug-resistance-associated protein 1 and lung resistance protein expression was significantly higher in A549/DDP cells compared with that in A549 cells (P<0.05), with these levels increasing further in A549/DDP (P<0.05) but not A549 cells upon cisplatin treatment (P>0.05). In addition, reduced expression of resistance proteins in A549/DDP cells was accompanied by a decline in the 50% growth inhibition after CX4945 pre-treatment. Furthermore, levels of p-DVL-2Ser143 and major Wnt-signaling proteins decreased significantly after treatment of A549/DDP cells with CX4945+cisplatin, whereas DVL-2 and p-DVL-2Thr224 levels remained unchanged. Additionally, significant elevations in apoptosis rates in the CX4945+cisplatin group relative to the control and cisplatin-only groups, was observed (P<0.001). These results suggested that inhibiting Wnt/β-catenin signaling with CX4945, which attenuates levels of drug-resistance-associated proteins and induces apoptosis, might reverse cisplatin resistance in NSCLC.
Collapse
Affiliation(s)
- Chengji Jin
- Respiratory Department, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Ping Song
- Respiratory Department, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Ji Pang
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
31
|
Lian H, Su M, Zhu Y, Zhou Y, Soomro SH, Fu H. Protein Kinase CK2, a Potential Therapeutic Target in Carcinoma Management. Asian Pac J Cancer Prev 2019; 20:23-32. [PMID: 30677865 PMCID: PMC6485562 DOI: 10.31557/apjcp.2019.20.1.23] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Protein kinase CK2 (formerly known as casein kinase 2) is a highly conserved serine/ threonine kinase
overexpressed in various human carcinomas and its high expression often correlates with poor prognosis. CK2 protein
is localized in the nucleus of many tumor cells and correlates with clinical features in many cases. Increased expression
of CK2 in mice results in the development of various types of carcinomas (both solids and blood related tumors, such
as (breast carcinoma, lymphoma, etc), which reveals its carcinogenic properties. CK2 plays essential roles in many key
biological processes related to carcinoma, including cell apoptosis, DNA damage responses and cell cycle regulation.
CK2 has become a potential anti-carcinoma target. Various CK2 inhibitors have been developed with anti-neoplastic
properties against a variety of carcinomas. Some CK2 inhibitors have showed good results in in vitro and pre-clinical
models, and have even entered in clinical trials. This article will review effects of CK2 and its inhibitors on common
carcinomas in in vitro and pre-clinical studies.
Collapse
Affiliation(s)
- Haiwei Lian
- Department of Human Anatomy, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, P.R, China.
| | | | | | | | | | | |
Collapse
|
32
|
Jiang L, Zhang J, Hu N, Liu A, Zhu H, Li L, Tian Y, Chen X, Quan L. Lentivirus-mediated down-regulation of CK2α inhibits proliferation and induces apoptosis of malignant lymphoma and leukemia cells. Biochem Cell Biol 2018; 96:786-796. [PMID: 29772186 DOI: 10.1139/bcb-2017-0345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Casein kinase II subunit alpha (CK2α) is highly expressed in many malignant tumor tissues, including lymphomas and leukemia. To investigate the role of CK2α in cell proliferation and apoptosis of malignant lymphomas and leukemia, 2 lymphoma cell lines and one leukemia cell line were infected with CK2α shRNA lentivirus or negative control shRNA lentivirus, and stably infected cell lines were established. Real-time PCR and Western blot results showed that the mRNA and protein levels of CK2α were significantly reduced in CK2α knockdown cells. The tetrazolium-based colorimetric (MTT) assay found that down-regulation of CK2α inhibited the proliferation of these cells. Flow cytometry analysis showed that inhibition of CK2α induced cell cycle arrest and apoptosis of lymphoma and leukemia cells. In accordance with these, down-regulation of CK2α also reduced the protein levels of proliferating cell nuclear antigen (PCNA), cyclinD1, and bcl-2, and increased the protein expression of bax, cleaved caspase-3, cleaved caspase-9, and cleaved poly(ADP ribose) polymerase (PARP). Moreover, knockdown of CK2α impeded the growth of xenograft tumors in vivo. In summary, our study revealed that CK2α may contribute to the development of malignant lymphoma and leukemia, and serve as the therapeutic target of these malignant tumors.
Collapse
Affiliation(s)
- Li Jiang
- a Department of Hematology, Harbin Medical University Cancer Hospital, Harbin 150080, People's Republic of China
| | - Jinghui Zhang
- b Department of Internal Medicine, Harbin Fourth Hospital, Harbin 150026, People's Republic of China
| | - Naifeng Hu
- c Department of Internal Medicine, Forest Industry General Hospital of Heilongjiang Province, Harbin 150040, People's Republic of China
| | - Aichun Liu
- a Department of Hematology, Harbin Medical University Cancer Hospital, Harbin 150080, People's Republic of China
| | - Hailong Zhu
- d School of Computer Science and Information Engineering, Harbin Normal University, Harbin 150086, People's Republic of China
| | - Lianqiao Li
- a Department of Hematology, Harbin Medical University Cancer Hospital, Harbin 150080, People's Republic of China
| | - Yuyang Tian
- a Department of Hematology, Harbin Medical University Cancer Hospital, Harbin 150080, People's Republic of China
| | - Xue Chen
- a Department of Hematology, Harbin Medical University Cancer Hospital, Harbin 150080, People's Republic of China
| | - Lina Quan
- a Department of Hematology, Harbin Medical University Cancer Hospital, Harbin 150080, People's Republic of China
| |
Collapse
|
33
|
Perea SE, Baladrón I, Valenzuela C, Perera Y. CIGB-300: A peptide-based drug that impairs the Protein Kinase CK2-mediated phosphorylation. Semin Oncol 2018; 45:58-67. [PMID: 30318085 DOI: 10.1053/j.seminoncol.2018.04.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/20/2018] [Indexed: 01/09/2023]
Abstract
Protein kinase CK2, formerly referred to as casein kinase II, is a serine/threonine kinase often found overexpressed in solid tumors and hematologic malignancies that phosphorylates many substrates integral to the hallmarks of cancer. CK2 has emerged as a viable oncology target having been experimentally validated with different kinase inhibitors, including small molecule ATP-competitors, synthetic peptides, and antisense oligonucleotides. To date only two CK2 inhibitors, CIGB-300 and CX-4945, have entered the clinic in phase 1-2 trials. This review provides information on CIGB-300, a cell-permeable cyclic peptide that inhibits CK2-mediated phosphorylation by targeting the substrate phosphoacceptor domain. We review data that support the concept of CK2 as an anticancer target, address the mechanism of action, and summarize preclinical studies showing antiangiogenic and antimetastatic effects as well as synergism with anticancer drugs in preclinical models. We also summarize early clinical research (phase 1/2 trials) of CIGB-300 in cervical cancer, including data in combination with chemoradiotherapy. The clinical data demonstrate the safety, tolerability, and clinical effects of intratumoral injections of CIGB-300 and provide the foundation for future phase 3 clinical trials in locally advanced cervical cancer in combination with standard chemoradiotherapy.
Collapse
Affiliation(s)
- Silvio E Perea
- Molecular Oncology Laboratory, Biomedical Research Area, Center for Genetic Engineering and Biotechnology, Havana, Cuba.
| | - Idania Baladrón
- Clinical Research Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Carmen Valenzuela
- Clinical Research Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Yasser Perera
- Molecular Oncology Laboratory, Biomedical Research Area, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| |
Collapse
|
34
|
Ahmed K, Kren BT, Abedin MJ, Vogel RI, Shaughnessy DP, Nacusi L, Korman VL, Li Y, Dehm SM, Zimmerman CL, Niehans GA, Unger GM, Trembley JH. CK2 targeted RNAi therapeutic delivered via malignant cell-directed tenfibgen nanocapsule: dose and molecular mechanisms of response in xenograft prostate tumors. Oncotarget 2018; 7:61789-61805. [PMID: 27557516 PMCID: PMC5308691 DOI: 10.18632/oncotarget.11442] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/15/2016] [Indexed: 01/25/2023] Open
Abstract
CK2, a protein serine/threonine kinase, promotes cell proliferation and suppresses cell death. This essential-for-survival signal demonstrates elevated expression and activity in all cancers examined, and is considered an attractive target for cancer therapy. Here, we present data on the efficacy of a tenfibgen (TBG) coated nanocapsule which delivers its cargo of siRNA (siCK2) or single stranded RNA/DNA oligomers (RNAi-CK2) simultaneously targeting CK2α and α' catalytic subunits. Intravenous administration of TBG-siCK2 or TBG-RNAi-CK2 resulted in significant xenograft tumor reduction at low doses in PC3-LN4 and 22Rv1 models of prostate cancer. Malignant cell uptake and specificity in vivo was verified by FACS analysis and immunofluorescent detection of nanocapsules and PCR detection of released oligomers. Dose response was concordant with CK2αα' RNA transcript levels and the tumors demonstrated changes in CK2 protein and in markers of proliferation and cell death. Therapeutic response corresponded to expression levels for argonaute and GW proteins, which function in oligomer processing and translational repression. No toxicity was detected in non-tumor tissues or by serum chemistry. Tumor specific delivery of anti-CK2 RNAi via the TBG nanoencapsulation technology warrants further consideration of translational potential.
Collapse
Affiliation(s)
- Khalil Ahmed
- Research Service, Minneapolis VA Health Care System, University of Minnesota, Minneapolis, MN, U.S.A.,Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, U.S.A.,Department of Urology, University of Minnesota, Minneapolis, MN, U.S.A.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, U.S.A
| | - Betsy T Kren
- Research Service, Minneapolis VA Health Care System, University of Minnesota, Minneapolis, MN, U.S.A.,Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, U.S.A.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, U.S.A
| | - Md Joynal Abedin
- Research Service, Minneapolis VA Health Care System, University of Minnesota, Minneapolis, MN, U.S.A.,Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, U.S.A
| | - Rachel I Vogel
- Department of Obstretrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN, U.S.A.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, U.S.A
| | - Daniel P Shaughnessy
- Research Service, Minneapolis VA Health Care System, University of Minnesota, Minneapolis, MN, U.S.A.,Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, U.S.A
| | | | | | - Yingming Li
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, U.S.A
| | - Scott M Dehm
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, U.S.A.,Department of Urology, University of Minnesota, Minneapolis, MN, U.S.A.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, U.S.A
| | - Cheryl L Zimmerman
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, U.S.A
| | - Gloria A Niehans
- Research Service, Minneapolis VA Health Care System, University of Minnesota, Minneapolis, MN, U.S.A.,Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, U.S.A
| | | | - Janeen H Trembley
- Research Service, Minneapolis VA Health Care System, University of Minnesota, Minneapolis, MN, U.S.A.,Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, U.S.A.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, U.S.A
| |
Collapse
|
35
|
Zhang X, Yang X, Yang C, Li P, Yuan W, Deng X, Cheng Y, Li P, Yang H, Tao J, Lu Q. Targeting protein kinase CK2 suppresses bladder cancer cell survival via the glucose metabolic pathway. Oncotarget 2018; 7:87361-87372. [PMID: 27888634 PMCID: PMC5349994 DOI: 10.18632/oncotarget.13571] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 11/07/2016] [Indexed: 01/07/2023] Open
Abstract
Casein kinase 2 (CK2) is a constitutively active serine/threonine kinase that promotes cell proliferation and resists apoptosis. Elevated CK2 expression has been demonstrated in several solid tumors. The expression of CK2α in bladder cancer was elevated in tumor tissues compared with that in adjacent normal tissues. Amplified expression of CK2α was highly correlated with histological grade in bladder cancer(P = 0.024). Knockdown of CK2α in bladder cancer cell lines resulted in a reduction in tumor aerobic glycolysis, accompanied with lower phosphorylated AKT. Moreover, low CK2α levels suppressed cell growth, and similar results could be reproduced after treatment with CX-4945 with a dose-dependent response. CX-4945 inhibited migration and induced apoptosis. Furthermore, knockdown of CK2α decreased the tumorigenicity of bladder cancer cells in vivo. This study is the first to report that CK2 increases glucose metabolism in human bladder cancer. Blocking CK2 function may provide novel diagnostic and potential therapeutic.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiao Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chengdi Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Peng Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wenbo Yuan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaheng Deng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yidong Cheng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Pengchao Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Haiwei Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jun Tao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qiang Lu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
36
|
Chen Z, Chen Q, Huang J, Gong W, Zou Y, Zhang L, Liu P, Huang H. CK2α promotes advanced glycation end products-induced expressions of fibronectin and intercellular adhesion molecule-1 via activating MRTF-A in glomerular mesangial cells. Biochem Pharmacol 2018; 148:41-51. [PMID: 29223351 DOI: 10.1016/j.bcp.2017.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/04/2017] [Indexed: 01/30/2023]
Abstract
Advanced glycation end products' (AGEs) modification of extracellular matrix proteins induces crosslinking, which results in thickening of the basement membrane and activating several intracellular signaling cascades, eventually promoting the pathological progression of diabetic nephropathy (DN). We have previously confirmed that casein kinase 2α (CK2α) activates the nuclear factor of kappaB (NF-κB) signaling pathway to enhance high glucose-induced expressions of fibronectin (FN) and intercellular adhesion molecule-1 (ICAM-1) in glomerular mesangial cells (GMCs). However, to date, the mechanism by which CK2α regulates diabetic renal fibrosis is not fully understood. In view of the regulation of inflammation and fibrosis by myocardin-related transcription factor A (MRTF-A), we are highly concerned whether CK2α promotes AGEs-induced expressions of FN and ICAM-1 in glomerular mesangial cells via activation of MRTF-A, thus affecting the pathogenesis of DN. We found that CK2α and MRTF-A proteins were overexpressed in AGEs-induced diabetic kidneys. Inhibition of CK2α kinase activity or knockdown of CK2α protein expression suppressed the upregulation of FN and ICAM-1 expressions in GMCs induced by AGEs. MRTF-A knockdown compromised the expressions of FN and ICAM-1 in GMCs induced by AGEs. Moreover, inhibition of CK2α kinase activity or knockdown of CK2α protein expression restrained the protein expression and nuclear aggregation of MRTF-A. CK2α interacted with MRTF-A. Furthermore, knockdown of MRTF-A while overexpression of CK2α blocked the upregulation effect of CK2α on the protein expressions of FN and ICAM-1. These findings suggest that CK2α promotes diabetic renal fibrosis via activation of MRTF-A and upregulation of inflammatory genes.
Collapse
Affiliation(s)
- Zhiquan Chen
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Qiuhong Chen
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Junying Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenyan Gong
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yezi Zou
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lei Zhang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Peiqing Liu
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Heqing Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
37
|
Self-Assembled Supramolecular Nanoparticles Improve the Cytotoxic Efficacy of CK2 Inhibitor THN7. Pharmaceuticals (Basel) 2018; 11:ph11010010. [PMID: 29373552 PMCID: PMC5874706 DOI: 10.3390/ph11010010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 01/19/2023] Open
Abstract
Since the approval of imatinib in 2001, kinase inhibitors have revolutionized cancer therapies. Inside this family of phosphotransferases, casein kinase 2 (CK2) is of great interest and numerous scaffolds have been investigated to design CK2 inhibitors. Recently, functionalized indeno[1,2-b]indoles have been revealed to have high potency against human cancer cell lines such as MCF-7 breast carcinoma and A-427 lung carcinoma. 4-Methoxy-5-isopropyl-5,6,7,8-tetrahydroindeno[1,2-b]indole-9,10-dione (THN7), identified as a potent inhibitor of CK2 (IC50 = 71 nM), was selected for an encapsulation study in order to evaluate its antiproliferative activity as THN7-loaded cyclodextrin nanoparticles. Four α-cyclodextrins (α-CDs) were selected to encapsulate THN7 and all experiments indicated that the nanoencapsulation of this CK2 inhibitor in α-CDs was successful. No additional surface-active agent was used during the nanoformulation process. Nanoparticles formed between THN7 and α-C6H13 amphiphilic derivative gave the best results in terms of encapsulation rate (% of associated drug = 35%), with a stability constant (K11) of 298 mol·L−1 and a size of 132 nm. Hemolytic activity of the four α-CDs was determined before the in cellulo evaluation and the α-C6H13 derivative gave the lowest value of hemolytic potency (HC50 = 1.93 mol·L−1). Only the THN7-loaded cyclodextrin nanoparticles showing less toxicity on human erythrocytes (α-C6H13, α-C8H17 and α-C4H9) were tested against A-427 cells. All drug-loaded nanoparticles caused more cytotoxicity against A-427 cells than THN7 alone. Based on these results, the use of amphiphilic CD nanoparticles could be considered as a drug delivery system for indeno[1,2-b]indoles, allowing an optimized bioavailability and offering perspectives for the in vivo development of CK2 inhibitors.
Collapse
|
38
|
Vilardell J, Alcaraz E, Sarró E, Trilla E, Cuadros T, de Torres I, Plana M, Ramón Y Cajal S, Pinna LA, Ruzzene M, Morote J, Meseguer A, Itarte E. Under-expression of CK2β subunit in ccRCC represents a complementary biomarker of p-STAT3 Ser727 that correlates with patient survival. Oncotarget 2017; 9:5736-5751. [PMID: 29464030 PMCID: PMC5814170 DOI: 10.18632/oncotarget.23422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 12/13/2017] [Indexed: 12/21/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common and aggressive subtype of renal cancer. STAT3 pathway is altered in these tumors and p-STAT3 Ser727 is an independent prognostic factor for ccRCC. Protein kinase CK2 is altered in different types of tumors and overexpression of CK2α is considered predictive of bad prognosis and metastatic risk. CK2 subunits analyses in ccRCC samples showed increased CK2α/α’ nuclear content in all cases, but decreased cytosolic CK2β (CK2βcyt) levels in the more advanced tumors. Stable downregulation of CK2β in renal proximal tubular (HK-2) and clear cell adenocarcinoma (786-O) cells triggered changes in E-cadherin, vimentin and Snail1 protein levels indicative of epithelial-to-mesenchymal transition (EMT), and increased HIF-α. Moreover, CK2β was required in order to observe STAT3 Ser727 phosphorylation in HK-2 but not in 786-O cells. We also observed that CK2β improved the prognostic value of p-STAT3 Ser727, as CK2βcyt>41 (median value) discriminates patients free of disease for a period of 10 years upon surgery, from those with CK2βcyt<41, when p-STAT3 Ser727levels are low. We conclude that CK2β down-regulation might represent a mechanism to support EMT and angiogenesis and that CK2βcyt levels are instrumental to refine prognosis of ccRCC patients with low p-STAT3 Ser727 levels.
Collapse
Affiliation(s)
- Jordi Vilardell
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Estefania Alcaraz
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Eduard Sarró
- Fisiopatología Renal, CIBBIM, VHIR, Barcelona, Spain
| | - Enric Trilla
- Servicio de Urología, Hospital Vall d'Hebrón, Barcelona, Spain
| | - Thaïs Cuadros
- Fisiopatología Renal, CIBBIM, VHIR, Barcelona, Spain
| | - Inés de Torres
- Servicio de Anatomía Patológica, Hospital Vall d'Hebrón, Barcelona, Spain
| | - Maria Plana
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Santiago Ramón Y Cajal
- Servicio de Anatomía Patológica, Hospital Vall d'Hebrón, Barcelona, Spain.,Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| | - Lorenzo A Pinna
- Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padova, Padova, Italy
| | - Maria Ruzzene
- Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padova, Padova, Italy
| | - Juan Morote
- Servicio de Urología, Hospital Vall d'Hebrón, Barcelona, Spain
| | - Anna Meseguer
- Fisiopatología Renal, CIBBIM, VHIR, Barcelona, Spain.,Departament de Bioquimica i Biologia Molecular, Unitat de Bioquímica de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.,Instituto Reina Sofía de Investigación Nefrológica, Fundación Renal Íñigo Álvarez de Toledo, Madrid, Spain.,Red de Investigación Renal (REDINREN), Barcelona, Spain
| | - Emilio Itarte
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| |
Collapse
|
39
|
Chua MMJ, Lee M, Dominguez I. Cancer-type dependent expression of CK2 transcripts. PLoS One 2017; 12:e0188854. [PMID: 29206231 PMCID: PMC5714396 DOI: 10.1371/journal.pone.0188854] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 11/14/2017] [Indexed: 01/31/2023] Open
Abstract
A multitude of proteins are aberrantly expressed in cancer cells, including the oncogenic serine-threonine kinase CK2. In a previous report, we found increases in CK2 transcript expression that could explain the increased CK2 protein levels found in tumors from lung and bronchus, prostate, breast, colon and rectum, ovarian and pancreatic cancers. We also found that, contrary to the current notions about CK2, some CK2 transcripts were downregulated in several cancers. Here, we investigate all other cancers using Oncomine to determine whether they also display significant CK2 transcript dysregulation. As anticipated from our previous analysis, we found cancers with all CK2 transcripts upregulated (e.g. cervical), and cancers where there was a combination of upregulation and/or downregulation of the CK2 transcripts (e.g. sarcoma). Unexpectedly, we found some cancers with significant downregulation of all CK2 transcripts (e.g. testicular cancer). We also found that, in some cases, CK2 transcript levels were already dysregulated in benign lesions (e.g. Barrett’s esophagus). We also found that CK2 transcript upregulation correlated with lower patient survival in most cases where data was significant. However, there were two cancer types, glioblastoma and renal cell carcinoma, where CK2 transcript upregulation correlated with higher survival. Overall, these data show that the expression levels of CK2 genes is highly variable in cancers and can lead to different patient outcomes.
Collapse
Affiliation(s)
- Melissa M. J. Chua
- Department of Medicine, Boston University School of Medicine, Boston MA, United States of America
| | - Migi Lee
- Department of Medicine, Boston University School of Medicine, Boston MA, United States of America
| | - Isabel Dominguez
- Department of Medicine, Boston University School of Medicine, Boston MA, United States of America
- * E-mail:
| |
Collapse
|
40
|
Rossmann M, J Greive S, Moschetti T, Dinan M, Hyvönen M. Development of a multipurpose scaffold for the display of peptide loops. Protein Eng Des Sel 2017; 30:419-430. [PMID: 28444399 PMCID: PMC5897841 DOI: 10.1093/protein/gzx017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 02/26/2017] [Accepted: 03/28/2017] [Indexed: 12/20/2022] Open
Abstract
Protein-protein interactions (PPIs) determine a wide range of biological processes and analysis of these dynamic networks is increasingly becoming a mandatory tool for studying protein function. Using the globular ATPase domain of recombinase RadA as a scaffold, we have developed a peptide display system (RAD display), which allows for the presentation of target peptides, protein domains or full-length proteins and their rapid recombinant production in bacteria. The design of the RAD display system includes differently tagged versions of the scaffold, which allows for flexibility in the protein purification method, and chemical coupling for small molecule labeling or surface immobilization. When combined with the significant thermal stability of the RadA protein, these features create a versatile multipurpose scaffold system. Using various orthogonal biophysical techniques, we show that peptides displayed on the scaffold bind to their natural targets in a fashion similar to linear parent peptides. We use the examples of CK2β/CK2α kinase and TPX2/Aurora A kinase protein complexes to demonstrate that the peptide displayed by the RAD scaffold can be used in PPI studies with the same binding efficacy but at lower costs compared with their linear synthetic counterparts.
Collapse
Affiliation(s)
- Maxim Rossmann
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Sandra J Greive
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Tommaso Moschetti
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Michael Dinan
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK. Correspondence:
| |
Collapse
|
41
|
Shimizu D, Inokawa Y, Sonohara F, Inaoka K, Nomoto S. Search for useful biomarkers in hepatocellular carcinoma, tumor factors and background liver factors. Oncol Rep 2017; 37:2527-2542. [DOI: 10.3892/or.2017.5541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/09/2017] [Indexed: 11/06/2022] Open
|
42
|
Ruzzene M, Bertacchini J, Toker A, Marmiroli S. Cross-talk between the CK2 and AKT signaling pathways in cancer. Adv Biol Regul 2017; 64:1-8. [PMID: 28373060 DOI: 10.1016/j.jbior.2017.03.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/13/2017] [Indexed: 01/13/2023]
Abstract
CK2 and AKT display a high degree of cross-regulation of their respective functions, both directly, through physical interaction and phosphorylation, and indirectly, through an intense cross-talk of key downstream effectors, ultimately leading to sustained AKT activation. Being CK2 and AKT attractive targets for therapeutic intervention, here we would like to emphasize how AKT and CK2 might influence cell fate through their complex isoform-specific and contextual-dependent cross-talk, to the extent that such functional interplay should be considered when devising therapies that target one or both these key signaling kinases.
Collapse
Affiliation(s)
- Maria Ruzzene
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy.
| | - Jessika Bertacchini
- Cell Signaling Unit, Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Alex Toker
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Sandra Marmiroli
- Cell Signaling Unit, Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, 41124 Modena, Italy.
| |
Collapse
|
43
|
Lin YT, Chien KY, Wu CC, Chang WY, Chu LJ, Chen MC, Yeh CT, Yu JS. Super-SILAC mix coupled with SIM/AIMS assays for targeted verification of phosphopeptides discovered in a large-scale phosphoproteome analysis of hepatocellular carcinoma. J Proteomics 2017; 157:40-51. [DOI: 10.1016/j.jprot.2017.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/23/2017] [Accepted: 02/08/2017] [Indexed: 01/04/2023]
|
44
|
Trembley JH, Kren BT, Abedin MJ, Vogel RI, Cannon CM, Unger GM, Ahmed K. CK2 Molecular Targeting-Tumor Cell-Specific Delivery of RNAi in Various Models of Cancer. Pharmaceuticals (Basel) 2017; 10:E25. [PMID: 28230733 PMCID: PMC5374429 DOI: 10.3390/ph10010025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/06/2017] [Accepted: 02/14/2017] [Indexed: 01/06/2023] Open
Abstract
Protein kinase CK2 demonstrates increased protein expression relative to non-transformed cells in the majority of cancers that have been examined. The elevated levels of CK2 are involved in promoting not only continued proliferation of cancer cells but also their resistance to cell death; thus, CK2 has emerged as a plausible target for cancer therapy. Our focus has been to target CK2 catalytic subunits at the molecular level using RNA interference (RNAi) strategies to achieve their downregulation. The delivery of oligonucleotide therapeutic agents warrants that they are protected and are delivered specifically to cancer cells. The latter is particularly important since CK2 is a ubiquitous signal that is essential for survival. To achieve these goals, we have developed a nanocapsule that has the properties of delivering an anti-CK2 RNAi therapeutic cargo, in a protected manner, specifically to cancer cells. Tenfibgen (TBG) is used as the ligand to target tenascin-C receptors, which are elevated in cancer cells. This strategy is effective for inhibiting growth and inducing death in several types of xenograft tumors, and the nanocapsule elicits no safety concerns in animals. Further investigation of this therapeutic approach for its translation is warranted.
Collapse
Affiliation(s)
- Janeen H Trembley
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN 55417, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Betsy T Kren
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN 55417, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Md Joynal Abedin
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN 55417, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Rachel I Vogel
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Claire M Cannon
- School of Veterinary Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | - Khalil Ahmed
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN 55417, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
- Department of Urology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
45
|
Chua MMJ, Ortega CE, Sheikh A, Lee M, Abdul-Rassoul H, Hartshorn KL, Dominguez I. CK2 in Cancer: Cellular and Biochemical Mechanisms and Potential Therapeutic Target. Pharmaceuticals (Basel) 2017; 10:E18. [PMID: 28134850 PMCID: PMC5374422 DOI: 10.3390/ph10010018] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 01/09/2023] Open
Abstract
CK2 genes are overexpressed in many human cancers, and most often overexpression is associated with worse prognosis. Site-specific expression in mice leads to cancer development (e.g., breast, lymphoma) indicating the oncogenic nature of CK2. CK2 is involved in many key aspects of cancer including inhibition of apoptosis, modulation of signaling pathways, DNA damage response, and cell cycle regulation. A number of CK2 inhibitors are now available and have been shown to have activity against various cancers in vitro and in pre-clinical models. Some of these inhibitors are now undergoing exploration in clinical trials as well. In this review, we will examine some of the major cancers in which CK2 inhibition has promise based on in vitro and pre-clinical studies, the proposed cellular and signaling mechanisms of anti-cancer activity by CK2 inhibitors, and the current or recent clinical trials using CK2 inhibitors.
Collapse
Affiliation(s)
- Melissa M J Chua
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Charina E Ortega
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Ayesha Sheikh
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Migi Lee
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Hussein Abdul-Rassoul
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Kevan L Hartshorn
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Isabel Dominguez
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| |
Collapse
|
46
|
Ma Z, Wang X, He J, Xia J, Li Y. Increased expression of protein kinase CK2α correlates with poor patient prognosis in epithelial ovarian cancer. PLoS One 2017; 12:e0174037. [PMID: 28355289 PMCID: PMC5371331 DOI: 10.1371/journal.pone.0174037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 03/02/2017] [Indexed: 02/05/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the deadly gynecological malignancies. The function of protein kinase CK2α (CK2α) in EOC is still unknown. Our study aimed to investigate the relationship between the protein expression of CK2α and the tumor progression, the prognosis of human EOC. In this study, we analyzed the expression levels of CK2α through Western blot, using EOC cell lines like A2780, HO8910, COV644, OVCAR3, SKOV3, and the primary normal ovarian surface epithelial (NOSE) cells. Furthermore, OVCAR3 and SKOV3 EOC cells were employed as a cellular model to study the role of CK2α on cell growth, migration, invasion, apoptosis, and cell cycle distribution. In addition, we investigated CK2α protein expression in tumor tissues from patients with EOC by immunohistochemistry and analyzed the association between CK2α expression and clinicopathologic parameters and prognosis of EOC patients. And we found that compared with NOSE cells, CK2α protein expression was increased in A2780, HO8910, OVCAR3, and SKOV3 ovarian cancer cell lines. Decreased CK2α expression suppressed OVCAR3 and SKOV3 cell growth and induced more apoptosis. CK2α knockdown using specific siRNAs inhibited migration and invasion ability of OVCAR3 and SKOV3 cells. In addition, high CK2α protein expression was found in 68.4% (80/117) of EOC patients. Increased CK2α expression of was significantly correlated with FIGO staging and peritoneal cytology. Patients with higher CK2α expression had a significantly poorer overall survival compared with those with lower CK2α expression. Multi-variate Cox regression analysis proved that increased CK2α expression was an independent prognostic marker for EOC. Taken together, our data displayed that CK2α may play a role in tumor aggressive behavior of EOC and could be used as a marker for predicting prognosis of EOC patient. High CK2α expression might predict poor patient survival.
Collapse
Affiliation(s)
- Zebiao Ma
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, P. R. China
- Department of Gynecologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
- Department of Gynecologic Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, P. R. China
| | - Xiaojing Wang
- Department of Gynecologic Oncology, The Affiliated Cancer Hospital of Zhengzhou University; Henan Province Cancer Hospital, Zhengzhou, Henan, P.R. China
| | - Jiehua He
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, P. R. China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
| | - Jianchuan Xia
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, P. R. China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
- * E-mail: (YFL); (JCX)
| | - Yanfang Li
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, P. R. China
- Department of Gynecologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
- * E-mail: (YFL); (JCX)
| |
Collapse
|
47
|
Yang B, Dai C, Tan R, Zhang B, Meng X, Ye J, Wang X, Wei L, He F, Chen Z. Lrig1 is a positive prognostic marker in hepatocellular carcinoma. Onco Targets Ther 2016; 9:7071-7079. [PMID: 27895499 PMCID: PMC5117876 DOI: 10.2147/ott.s112534] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background The prevalence of hepatocellular carcinoma (HCC) is increasing worldwide. As a consequence, there is an urgent need for identifying molecular markers of HCC development and progression. Recently, several studies have suggested that the Lrig1 may have prognostic implications in various cancer types, but its clinical value in HCC is not well evaluated. Materials and methods In this study, the expression level of Lrig1 was examined in 133 HCC tissues and adjacent normal tissues by immunohistochemistry. Furthermore, potential associations between Lrig1 expression and the carcinoma clinical parameters were investigated, including recurrence and survival rate. We silenced the Lrig1 in the normal liver cell line (LO2) and liver cancer cell line (Hep-G2) in vitro by the small interference RNA and detected its influence on proliferation, migration, and invasion. Results The expression of Lrig1 was significantly downregulated in liver cancer tissues and cell lines, and its expression levels were related to tumor size, tumor–node–metastasis staging and tumor recurrence. Furthermore, analysis of 6-year survival of 133 HCC patients showed that those with stronger Lrig1 expression had significantly longer overall survival time than those with weaker Lrig1 expression. In addition, decreased expression of Lrig1 in vitro promoted the growth, migration, or invasion of normal liver cells and cancer cells. Conclusion Our findings demonstrate that Lrig1 could serve as a potential marker in the prognosis of patients with HCC. We also revealed that Lrig1 might be involved in the metastatic progression of liver cancer. However, its clinical value should be further investigated in the future.
Collapse
Affiliation(s)
- Bo Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Ministry of Health and Key Laboratory of Ministry of Education, Wuhan, Hubei, People's Republic of China
| | - Chen Dai
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Ministry of Health and Key Laboratory of Ministry of Education, Wuhan, Hubei, People's Republic of China
| | - Rumeng Tan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Ministry of Health and Key Laboratory of Ministry of Education, Wuhan, Hubei, People's Republic of China
| | - Bo Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Ministry of Health and Key Laboratory of Ministry of Education, Wuhan, Hubei, People's Republic of China
| | - Xiao Meng
- Department of Pathology, Liaocheng People's Hospital, Liaocheng, Shandong, People's Republic of China
| | - Jing Ye
- Department of Pathology, Liaocheng People's Hospital, Liaocheng, Shandong, People's Republic of China
| | - Xinqiang Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Ministry of Health and Key Laboratory of Ministry of Education, Wuhan, Hubei, People's Republic of China
| | - Lai Wei
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Ministry of Health and Key Laboratory of Ministry of Education, Wuhan, Hubei, People's Republic of China
| | - Fan He
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Zhishui Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Ministry of Health and Key Laboratory of Ministry of Education, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
48
|
Zhou B, Ritt DA, Morrison DK, Der CJ, Cox AD. Protein Kinase CK2α Maintains Extracellular Signal-regulated Kinase (ERK) Activity in a CK2α Kinase-independent Manner to Promote Resistance to Inhibitors of RAF and MEK but Not ERK in BRAF Mutant Melanoma. J Biol Chem 2016; 291:17804-15. [PMID: 27226552 DOI: 10.1074/jbc.m115.712885] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Indexed: 11/06/2022] Open
Abstract
The protein kinase casein kinase 2 (CK2) is a pleiotropic and constitutively active kinase that plays crucial roles in cellular proliferation and survival. Overexpression of CK2, particularly the α catalytic subunit (CK2α, CSNK2A1), has been implicated in a wide variety of cancers and is associated with poorer survival and resistance to both conventional and targeted anticancer therapies. Here, we found that CK2α protein is elevated in melanoma cell lines compared with normal human melanocytes. We then tested the involvement of CK2α in drug resistance to Food and Drug Administration-approved single agent targeted therapies for melanoma. In BRAF mutant melanoma cells, ectopic CK2α decreased sensitivity to vemurafenib (BRAF inhibitor), dabrafenib (BRAF inhibitor), and trametinib (MEK inhibitor) by a mechanism distinct from that of mutant NRAS. Conversely, knockdown of CK2α sensitized cells to inhibitor treatment. CK2α-mediated RAF-MEK kinase inhibitor resistance was tightly linked to its maintenance of ERK phosphorylation. We found that CK2α post-translationally regulates the ERK-specific phosphatase dual specificity phosphatase 6 (DUSP6) in a kinase dependent-manner, decreasing its abundance. However, we unexpectedly showed, by using a kinase-inactive mutant of CK2α, that RAF-MEK inhibitor resistance did not rely on CK2α kinase catalytic function, and both wild-type and kinase-inactive CK2α maintained ERK phosphorylation upon inhibition of BRAF or MEK. That both wild-type and kinase-inactive CK2α bound equally well to the RAF-MEK-ERK scaffold kinase suppressor of Ras 1 (KSR1) suggested that CK2α increases KSR facilitation of ERK phosphorylation. Accordingly, CK2α did not cause resistance to direct inhibition of ERK by the ERK1/2-selective inhibitor SCH772984. Our findings support a kinase-independent scaffolding function of CK2α that promotes resistance to RAF- and MEK-targeted therapies.
Collapse
Affiliation(s)
| | - Daniel A Ritt
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702
| | - Deborah K Morrison
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702
| | - Channing J Der
- From the Department of Pharmacology, Lineberger Comprehensive Cancer Center, and
| | - Adrienne D Cox
- From the Department of Pharmacology, Lineberger Comprehensive Cancer Center, and Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina 27599 and
| |
Collapse
|