1
|
Li F, Abdel-Maksoud MA, Ullah T, Ul Haq M, Khan A, Olatunji AO, Khatab Abbasi BB, Saleh IA, Rather MN, Al-Hawadi JS, Zomot N, Musaed Almutairi S, Naz R. Detection of genomic variants in BRCA1 and BRCA2 across gastric cancer patients using next generation sequencing. Am J Transl Res 2024; 16:7898-7910. [PMID: 39822496 PMCID: PMC11733335 DOI: 10.62347/mrie2131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 12/04/2024] [Indexed: 01/19/2025]
Abstract
OBJECTIVES To explore the landscape of BRCA1/2 mutations in gastric cancer patients. METHODS Next-generation sequencing (NGS), Sanger sequencing, reverse transcription quantitative polymerase chain reaction (RT-qPCR), Immunohistochemistry, The Cancer Genome Atlas (TCGA), gnomAD, and DAVID. RESULTS With 95% of bases boasting a phred score surpassing 30 and a minimum coverage depth of 500X, our NGS approach ensures high-quality data acquisition. Analyzing BRCA1 and BRCA2 sequences revealed 11 and 4 mutations, respectively, with one pathogenic mutation identified in each gene. This emphasizes the prominence of BRCA1 mutations in gastric cancer. Sanger sequencing validation confirmed the presence of pathogenic mutations in select cases, consolidating our findings. Frequency analysis utilizing the gnomAD database elucidated the rarity of these mutations in the Asian population, underscoring their uniqueness. Exploring TCGA data further corroborated this rarity, emphasizing the distinctive nature of these mutations in gastric cancer. RT-qPCR analysis unveiled a significant reduction in BRCA1/2 expression in samples harboring pathogenic mutations, hinting at their potential role in down-regulating gene expression. Immunohistochemistry confirmed diminished protein expression in samples with pathogenic mutations, solidifying our observations. Kaplan-Meier survival analysis demonstrated significantly poorer survival outcomes for patients with pathogenic BRCA1/2 mutations compared to those without, emphasizing their potential role in prognosis. Additionally, KEGG pathway analysis highlighted the involvement of BRCA1/2 in critical cancer-associated pathways, emphasizing their role in tumorigenesis. CONCLUSION Our comprehensive findings underscore the clinical significance of BRCA1/2 mutations in gastric cancer, advocating for further research to elucidate their mechanistic implications and therapeutic opportunities.
Collapse
Affiliation(s)
- Fangfang Li
- Department of Gastroenterology, Jiaozhou Central Hospital of QingdaoQingdao 266300, Shandong, China
| | - Mostafa A Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud UniversityP.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | | | - Abdurrehman Khan
- Medicine Department, Gomal Medical CollegeDera Ismail Khan, Pakistan
| | - Aliu Olalekan Olatunji
- Department Medical Microbiology and Immunology, Institute University of ToledoToledo, OH 43606, USA
| | | | | | | | | | - Naser Zomot
- Faculty of Science, Zarqa UniversityZarqa 13110, Jordan
| | - Saeedah Musaed Almutairi
- Botany and Microbiology Department, College of Science, King Saud UniversityP.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Rida Naz
- Regional Blood CentreDI Khan 29050, Pakistan
| |
Collapse
|
2
|
Maatouk N, Kurdi A, Marei S, Nasr R, Talhouk R. CircRNAs and miRNAs: Key Player Duo in Breast Cancer Dynamics and Biomarkers for Breast Cancer Early Detection and Prevention. Int J Mol Sci 2024; 25:13056. [PMID: 39684767 DOI: 10.3390/ijms252313056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Breast cancer (BC) remains a significant global health issue, necessitating advanced molecular approaches for early detection and prevention. This review delves into the roles of microRNAs (miRNAs) and circular RNAs (circRNAs) in BC, highlighting their potential as non-invasive biomarkers. Utilizing in silico tools and databases, we propose a novel methodology to establish mRNA/circRNA/miRNA axes possibly indicative of early detection and possible prevention. We propose that during early tumor initiation, some changes in oncogene or tumor suppressor gene expression (mRNA) are mirrored by alterations in corresponding circRNAs and reciprocal changes in sponged miRNAs affecting tumorigenesis pathways. We used two Gene Expression Omnibus (GEO) datasets and identified five mRNA/circRNA/miRNA axes as early possible tumor initiation biomarkers. We further validated the proposed axes through a Kaplan-Meier (KM) plot and enrichment analysis of miRNA expression using patient data. Evaluating coupled differential expression of circRNAs and miRNAs in body fluids or exosomes provides greater confidence than assessing either, with more axes providing even greater confidence. The proposed methodology not only improves early BC detection reliability but also has applications for other cancers, enhancing preventive measures.
Collapse
Affiliation(s)
- Nour Maatouk
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut 11-0236, Lebanon
| | - Abdallah Kurdi
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon
| | - Sarah Marei
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut 11-0236, Lebanon
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon
| | - Rabih Talhouk
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut 11-0236, Lebanon
| |
Collapse
|
3
|
Santarosa M, Baldazzi D, Armellin M, Maestro R. In Silico Identification of a BRCA1:miR-29:DNMT3 Axis Involved in the Control of Hormone Receptors in BRCA1-Associated Breast Cancers. Int J Mol Sci 2023; 24:9916. [PMID: 37373065 DOI: 10.3390/ijms24129916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Germline inactivating mutations in the BRCA1 gene lead to an increased lifetime risk of ovarian and breast cancer (BC). Most BRCA1-associated BC are triple-negative tumors (TNBC), aggressive forms of BC characterized by a lack of expression of estrogen and progesterone hormone receptors (HR) and HER2. How BRCA1 inactivation may favor the development of such a specific BC phenotype remains to be elucidated. To address this question, we focused on the role of miRNAs and their networks in mediating BRCA1 functions. miRNA, mRNA, and methylation data were retrieved from the BRCA cohort of the TCGA project. The cohort was divided into a discovery set (Hi-TCGA) and a validation set (GA-TCGA) based on the platform used for miRNA analyses. The METABRIC, GSE81002, and GSE59248 studies were used as additional validation data sets. BCs were differentiated into BRCA1-like and non-BRCA1-like based on an established signature of BRCA1 pathway inactivation. Differential expression of miRNAs, gene enrichment analysis, functional annotation, and methylation correlation analyses were performed. The miRNAs downregulated in BRCA1-associated BC were identified by comparing the miRNome of BRCA1-like with non-BRCA1-like tumors from the Hi-TCGA discovery cohort. miRNAs:gene-target anticorrelation analyses were then performed. The target genes of miRNAs downregulated in the Hi-TCGA series were enriched in the BRCA1-like tumors from the GA-TCGA and METABRIC validation data sets. Functional annotation of these genes revealed an over-representation of several biological processes ascribable to BRCA1 activity. The enrichment of genes related to DNA methylation was particularly intriguing, as this is an aspect of BRCA1 functions that has been poorly explored. We then focused on the miR-29:DNA methyltransferase network and showed that the miR-29 family, which was downregulated in BRCA1-like tumors, was associated with poor prognosis in these BCs and inversely correlated with the expression of the DNA methyltransferases DNMT3A and DNMT3B. This, in turn, correlated with the methylation extent of the promoter of HR genes. These results suggest that BRCA1 may control the expression of HR via a miR-29:DNMT3:HR axis and that disruption of this network may contribute to the receptor negative phenotype of tumors with dysfunctional BRCA1.
Collapse
Affiliation(s)
- Manuela Santarosa
- Unit of Oncogenetics and Functional Oncogenomics, CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
| | - Davide Baldazzi
- Unit of Oncogenetics and Functional Oncogenomics, CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
| | - Michela Armellin
- Unit of Oncogenetics and Functional Oncogenomics, CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
| | - Roberta Maestro
- Unit of Oncogenetics and Functional Oncogenomics, CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
| |
Collapse
|
4
|
Li L, Zhang X, Lin Y, Ren X, Xie T, Lin J, Wu S, Ye Q. Let-7b-5p inhibits breast cancer cell growth and metastasis via repression of hexokinase 2-mediated aerobic glycolysis. Cell Death Discov 2023; 9:114. [PMID: 37019900 PMCID: PMC10076263 DOI: 10.1038/s41420-023-01412-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
Hexokinase 2 (HK2), a critical rate-limiting enzyme in the glycolytic pathway catalyzing hexose phosphorylation, is overexpressed in multiple human cancers and associated with poor clinicopathological features. Drugs targeting aerobic glycolysis regulators, including HK2, are in development. However, the physiological significance of HK2 inhibitors and mechanisms of HK2 inhibition in cancer cells remain largely unclear. Herein, we show that microRNA-let-7b-5p (let-7b-5p) represses HK2 expression by targeting its 3'-untranslated region. By suppressing HK2-mediated aerobic glycolysis, let-7b-5p restrains breast tumor growth and metastasis both in vitro and in vivo. In patients with breast cancer, let-7b-5p expression is significantly downregulated and is negatively correlated with HK2 expression. Our findings indicate that the let-7b-5p/HK2 axis plays a key role in aerobic glycolysis as well as breast tumor proliferation and metastasis, and targeting this axis is a potential therapeutic strategy for breast cancer.
Collapse
Affiliation(s)
- Ling Li
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Xiujuan Zhang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Yanni Lin
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030000, China
| | - Xinxin Ren
- The second hospital of Shanxi Medical University, Taiyuan, 030001, China
- Department of Clinical Laboratory, The Fourth Medical Center of PLA General Hospital, Beijing, 100037, China
| | - Tian Xie
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Jing Lin
- Department of Clinical Laboratory, The Fourth Medical Center of PLA General Hospital, Beijing, 100037, China
| | - Shumeng Wu
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030000, China
| | - Qinong Ye
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, 100850, China.
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030000, China.
| |
Collapse
|
5
|
Circulating MicroRNAs in Relation to Esophageal Adenocarcinoma Diagnosis and Survival. Dig Dis Sci 2021; 66:3831-3841. [PMID: 33403483 PMCID: PMC8257775 DOI: 10.1007/s10620-020-06740-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Tissue miRNA can discriminate between esophageal adenocarcinoma (EA) and normal epithelium. However, no studies have examined a comprehensive panel of circulating miRNAs in relation to EA diagnosis and survival. METHODS We used all 62 EA cases from the US Multi-Center case-control study with available serum matched 1:1 to controls. Cases were followed for vital status. MiRNAs (n = 2064) were assessed using the HTG EdgeSeq miRNA Whole Transcriptome Assay. Differential expression analysis of miRNAs in relation to case-control status was conducted. In cases, Cox regression models were fit to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for all-cause mortality. P values were adjusted using the Benjamini-Hochberg (BH) procedure for false discovery rate control. Predictive performance was assessed using cross-validation. RESULTS Sixty-eight distinct miRNAs were significantly upregulated between cases and controls (e.g., miR-1255b-2-3p fold change = 1.74, BH-adjusted P = 0.01). Assessing the predictive performance of these significantly upregulated miRNAs yielded 60% sensitivity, 65% specificity, and 0.62 AUC. miR-4253 and miR-1238-5p were associated with risk of mortality after EA diagnosis (HR = 4.85, 95% CI: 2.30-10.23, BH-adjusted P = 0.04 and HR = 3.81, 95% CI: 2.02-7.19, BH-adjusted P = 0.04, respectively). CONCLUSIONS While they require replication, these findings suggest that circulating miRNAs may be associated with EA diagnosis and survival.
Collapse
|
6
|
Afshari A, Yaghobi R, Karimi MH, Mowla J. Alterations in MicroRNA gene expression profile in liver transplant patients with hepatocellular carcinoma. BMC Gastroenterol 2021; 21:262. [PMID: 34118888 PMCID: PMC8199419 DOI: 10.1186/s12876-020-01596-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) can lead to liver failure which renders to liver transplant. miRNAs might be detected as biomarkers in subclinical stage of several hepatobiliary disorders like HCC. Therefore, in the present study, alterations in miRNAs as biomarkers were detected in LT patients with HCC. Methods Fourteen tissue samples composed of 5 rejected and 9 non-rejected ones were used for studying the miRNAs expression pattern using LNA-array probe assay and the result was evaluated by in house SYBR Green Real-time PCR protocols on 30 other tissue samples composed of 10 rejected and 20 non-rejected ones for the selected miRNAs. All samples were collected from liver transplanted patients with HCC. Results The study results revealed that in rejected patients compared to non-rejected ones, hsa-miR-3158-5p, -4449, -4511, and -4633-5p were up-regulated and hsa-miR-122-3p, -194-5p, 548as-3p, and -4284 were down-regulated. ROC curve analysis also confirmed that miR194-5p and -548as-3p in up-regulated and also, miR-3158-5p, -4449 in down-regulated microRNAs are significantly important molecules in rejection. Conclusion Finally, the tissue levels of specific miRNAs (especially hsa-miR-3158-5p, -4449, -194-5p and -548as-3p) significantly correlated with the development of HCC, which can be present as biomarkers after further completing studies. Supplementary information The online version contains supplementary material available at 10.1186/s12876-020-01596-2.
Collapse
Affiliation(s)
- Afsoon Afshari
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ramin Yaghobi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Javad Mowla
- Genetic Department of Tarbiat, Modares University, Tehran, Iran
| |
Collapse
|
7
|
Liu PF, Zhuo ZL, Xie F, Wang S, Zhao XT. Four novel BRCA variants found in Chinese hereditary breast cancer patients by next-generation sequencing. Clin Chim Acta 2021; 516:55-63. [PMID: 33476590 DOI: 10.1016/j.cca.2021.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022]
Abstract
Breast cancer is the most frequent cancer among women worldwide. Patients carrying mutations in breast cancer susceptibility genes like BRCA1 and BRCA2 (BRCA1/2) account for 5-10% of all breast cancer patients. Therefore, screening for susceptibility genes may reduce the incidence of breast cancer and improve prognosis. To provide evidence for mutation interpretation and targeted drug use in breast cancer patients, gene mutations were screened in 78 women diagnosed with sporadic breast cancer using a next-generation sequencing panel, confirmed by Sanger sequencing. Then the pathogenicity of the identified novel variants was explored using in vitro experiments including western blotting, co-immunoprecipitation and cell-migration assays. Four novel variants (BRCA2 L1390W, BRCA2 Glu432fs, BRCA1 P706L, and BRCA1 Cys882fs) were identified. BRCA2 Glu432fs decreased the expression of BRCA2 protein, enhanced cell migration and invasion ability, and prevented the protein from interacting with RAD51, resulting in a defect in the homologous recombination pathway. The identification of these novel BRCA variants and the confirmation of their pathogenicity have enriched the genetic database of breast cancer, especially in the Chinese population. Moreover, the variants are the genetic risk factors for hereditary breast cancer. Therefore, BRCA variant detection and genetic counseling for breast cancer patients are meaningful and important.
Collapse
Affiliation(s)
- Peng-Fei Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China.
| | - Zhong-Ling Zhuo
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China.
| | - Fei Xie
- Breast Center, Peking University People's Hospital, Beijing, China.
| | - Shu Wang
- Breast Center, Peking University People's Hospital, Beijing, China.
| | - Xiao-Tao Zhao
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
8
|
Kandettu A, Radhakrishnan R, Chakrabarty S, Sriharikrishnaa S, Kabekkodu SP. The emerging role of miRNA clusters in breast cancer progression. Biochim Biophys Acta Rev Cancer 2020; 1874:188413. [PMID: 32827583 DOI: 10.1016/j.bbcan.2020.188413] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/01/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
Micro RNAs (miRNAs) are small non-coding RNAs that are essential for regulation of gene expression of the target genes. Large number of miRNAs are organized into defined units known as miRNA clusters (MCs). The MCs consist of two or more than two miRNA encoding genes driven by a single promoter, transcribed together in the same orientation, that are not separated from each other by a transcription unit. Aberrant miRNA clusters expression is reported in breast cancer (BC), exhibiting both pro-tumorogenic and anti-tumorigenic role. Altered MCs expression facilitates to breast carcinogenesis by promoting the breast cells to acquire the various hallmarks of the cancer. Since miRNA clusters contain multiple miRNA encoding genes, targeting cluster may be more attractive than targeting individual miRNAs. Besides targeting dysregulated miRNA clusters in BC, studies have focused on the mechanism of action, and its contribution to the progression of the BC. The present review provides a comprehensive overview of dysregulated miRNA clusters and its role in the acquisition of cancer hallmarks in BC. More specifically, we have presented the regulation, differential expression, classification, targets, mechanism of action, and signaling pathways of miRNA clusters in BC. Additionally, we have also discussed the potential utility of the miRNA cluster as a diagnostic and prognostic indicator in BC.
Collapse
Affiliation(s)
- Amoolya Kandettu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India; Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - S Sriharikrishnaa
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India; Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
9
|
Parca L, Truglio M, Biagini T, Castellana S, Petrizzelli F, Capocefalo D, Jordán F, Carella M, Mazza T. Pyntacle: a parallel computing-enabled framework for large-scale network biology analysis. Gigascience 2020; 9:giaa115. [PMID: 33084878 PMCID: PMC7576925 DOI: 10.1093/gigascience/giaa115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/10/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Some natural systems are big in size, complex, and often characterized by convoluted mechanisms of interaction, such as epistasis, pleiotropy, and trophism, which cannot be immediately ascribed to individual natural events or biological entities but that are often derived from group effects. However, the determination of important groups of entities, such as genes or proteins, in complex systems is considered a computationally hard task. RESULTS We present Pyntacle, a high-performance framework designed to exploit parallel computing and graph theory to efficiently identify critical groups in big networks and in scenarios that cannot be tackled with traditional network analysis approaches. CONCLUSIONS We showcase potential applications of Pyntacle with transcriptomics and structural biology data, thereby highlighting the outstanding improvement in terms of computational resources over existing tools.
Collapse
Affiliation(s)
- Luca Parca
- IRCCS Casa Sollievo della Sofferenza, Laboratory of Bioinformatics, Viale Cappuccini 1, 71013, San Giovanni Rotondo (FG), Italy
| | - Mauro Truglio
- IRCCS Casa Sollievo della Sofferenza, Laboratory of Bioinformatics, Viale Cappuccini 1, 71013, San Giovanni Rotondo (FG), Italy
| | - Tommaso Biagini
- IRCCS Casa Sollievo della Sofferenza, Laboratory of Bioinformatics, Viale Cappuccini 1, 71013, San Giovanni Rotondo (FG), Italy
| | - Stefano Castellana
- IRCCS Casa Sollievo della Sofferenza, Laboratory of Bioinformatics, Viale Cappuccini 1, 71013, San Giovanni Rotondo (FG), Italy
| | - Francesco Petrizzelli
- IRCCS Casa Sollievo della Sofferenza, Laboratory of Bioinformatics, Viale Cappuccini 1, 71013, San Giovanni Rotondo (FG), Italy
- Department of Experimental Medicine, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Daniele Capocefalo
- IRCCS Casa Sollievo della Sofferenza, Laboratory of Bioinformatics, Viale Cappuccini 1, 71013, San Giovanni Rotondo (FG), Italy
| | - Ferenc Jordán
- Balaton Limnological Institute, Centre for Ecological Research Klebelsberg Kuno 3, 8237 Tihany, Hungary
| | - Massimo Carella
- IRCCS Casa Sollievo della Sofferenza, Laboratory of Medical Genetics, Viale Padre Pio 7d, 71013, San Giovanni Rotondo (FG), Italy
| | - Tommaso Mazza
- IRCCS Casa Sollievo della Sofferenza, Laboratory of Bioinformatics, Viale Cappuccini 1, 71013, San Giovanni Rotondo (FG), Italy
| |
Collapse
|
10
|
Lim S, Kim Y, Lee SB, Kang HG, Kim DH, Park JW, Chung D, Kong H, Yoo KH, Kim Y, Han W, Chun KH, Park JH. Inhibition of Chk1 by miR-320c increases oxaliplatin responsiveness in triple-negative breast cancer. Oncogenesis 2020; 9:91. [PMID: 33041328 PMCID: PMC7548284 DOI: 10.1038/s41389-020-00275-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 09/10/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
Checkpoint kinase 1 (Chk1) expression is enhanced in most cancers owing to oncogenic activation and constant replicative stress. Chk1 inactivation is a promising cancer therapy, as its inactivation leads to genomic instability, chromosomal catastrophe, and cancer cell death. Herein, we observed that miR-320c, downregulated in triple-negative breast cancer (TNBC) patients, can target Chk1. In addition, downregulated miR-320c expression was associated with poor overall survival in TNBC patients. As Chk1 was associated with the DNA damage response (DDR), we investigated the effect of miR-320c on DDR in TNBC cells. To induce DNA damage, we used platinum-based drugs, especially oxaliplatin, which is most effective with miR-320c. We observed that overexpression of miR-320c in TNBC regulated the oxaliplatin responsiveness by mediating DNA damage repair through the negative regulation of Chk1 in vitro. Furthermore, using a xenograft model, a combination of miR-320c mimic and oxaliplatin effectively inhibited tumor progression. These investigations indicate the potential of miR-320c as a marker of oxaliplatin responsiveness and a therapeutic target to increase the efficacy of chemotherapy in TNBC.
Collapse
Affiliation(s)
- Sera Lim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Yesol Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Soo-Been Lee
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Hyeok-Gu Kang
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Da-Hyun Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jee Won Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Daeun Chung
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Hyunkyung Kong
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Kyung Hyun Yoo
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Yonghwan Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Wonshik Han
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyung-Hee Chun
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Hoon Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Pessôa-Pereira D, Evangelista AF, Causin RL, da Costa Vieira RA, Abrahão-Machado LF, Santana IVV, da Silva VD, de Souza KCB, de Oliveira-Silva RJ, Fernandes GC, Reis RM, Palmero EI, Marques MMC. miRNA expression profiling of hereditary breast tumors from BRCA1- and BRCA2-germline mutation carriers in Brazil. BMC Cancer 2020; 20:143. [PMID: 32087690 PMCID: PMC7036228 DOI: 10.1186/s12885-020-6640-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/17/2020] [Indexed: 12/15/2022] Open
Abstract
Background MicroRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional gene expression regulation and have been described as key regulators of carcinogenesis. Aberrant miRNA expression has been frequently reported in sporadic breast cancers, but few studies have focused on profiling hereditary breast cancers. In this study, we aimed to identify specific miRNA signatures in hereditary breast tumors and to compare with sporadic breast cancer and normal breast tissues. Methods Global miRNA expression profiling using NanoString technology was performed on 43 hereditary breast tumors (15 BRCA1, 14 BRCA2, and 14 BRCAX), 23 sporadic breast tumors and 8 normal breast tissues. These normal breast tissues derived from BRCA1- and BRCA2- mutation carriers (n = 5) and non-mutation carriers (n = 3). Subsequently, we performed receiver operating characteristic (ROC) curve analyses to evaluate the diagnostic performance of differentially expressed miRNAs. Putative target genes of each miRNAs considered as potential biomarkers were identified using miRDIP platform and used for pathway enrichment analysis. Results miRNA expression analyses identified several profiles that were specific to hereditary breast cancers. A total of 25 miRNAs were found to be differentially expressed (fold change: > 2.0 and p < 0.05) and considered as potential biomarkers (area under the curve > 0.75) in hereditary breast tumors compared to normal breast tissues, with an expressive upregulation among BRCAX cases. Furthermore, bioinformatic analysis revealed that these miRNAs shared target genes involved in ErbB, FoxO, and PI3K-Akt signaling pathways. Conclusions Our results showed that miRNA expression profiling can differentiate hereditary from sporadic breast tumors and normal breast tissues. These miRNAs were remarkably deregulated in BRCAX hereditary breast cancers. Therefore, miRNA signatures can be used as potential novel diagnostic biomarkers for the prediction of BRCA1/2- germline mutations and may be useful for future clinical management.
Collapse
Affiliation(s)
| | | | - Rhafaela Lima Causin
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil
| | | | | | | | | | | | | | | | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil.,Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Edenir Inêz Palmero
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil.,Center of Molecular Diagnosis, Barretos Cancer Hospital, Barretos, SP, Brazil.,Department of Oncogenetics, Barretos Cancer Hospital, Barretos, SP, Brazil.,Barretos School of Health Sciences, Dr. Paulo Prata - FACISB, Barretos, SP, Brazil
| | - Márcia Maria Chiquitelli Marques
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil. .,Barretos School of Health Sciences, Dr. Paulo Prata - FACISB, Barretos, SP, Brazil. .,Tumor Biobank, Barretos Cancer Hospital, Barretos, SP, Brazil.
| |
Collapse
|
12
|
Khan S, Ayub H, Khan T, Wahid F. MicroRNA biogenesis, gene silencing mechanisms and role in breast, ovarian and prostate cancer. Biochimie 2019; 167:12-24. [PMID: 31493469 DOI: 10.1016/j.biochi.2019.09.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/01/2019] [Indexed: 12/21/2022]
Abstract
Micro-ribonucleic acids (miRNAs) are important class of short regulatory RNA molecules involved in regulation of several essential biological processes. In addition to Dicer and Drosha, over the past few years several other gene products are discovered that regulates miRNA biogenesis pathways. Similarly, various models of molecular mechanisms underlying miRNA mediated gene silencing have been uncovered through which miRNA contribute in diverse physiological and pathological processes. Dysregulated miRNA expression has been reported in many cancers manifesting tumor suppressive or oncogenic role. In this review, critical overview of recent findings in miRNA biogenesis, silencing mechanisms and specifically the role of miRNA in breast, ovarian and prostate cancer will be described. Recent advancements in miRNA research summarized in this review will enhance the molecular understanding of miRNA biogenesis and mechanism of action. Also, role of miRNAs in pathogenesis of breast, ovarian and prostate cancer will provide the insights for the use of miRNAs as biomarker or therapeutic agents for the cancers.
Collapse
Affiliation(s)
- Sanna Khan
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Humaira Ayub
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Taous Khan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Fazli Wahid
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan.
| |
Collapse
|
13
|
Wang T, Zhang J, Tian J, Hu S, Wei R, Cui L. Low expression levels of plasma miR-141 are associated with susceptibility to gastric cancer. Oncol Lett 2019; 18:629-636. [PMID: 31289535 PMCID: PMC6546987 DOI: 10.3892/ol.2019.10390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 04/17/2019] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) offer great potential as biomarkers for the early detection and prognosis of cancer, and the discovery of miRNAs associated with gastric cancer is required. In the present study, the differences in the plasma expression levels of miR-141 between patients with gastric cancer and healthy controls, and the role of miR-141 in gastric cancer cell oncogenesis were investigated. A follow-up study of 164 patients with gastric cancer who underwent tumor resection was conducted, and comparisons with healthy control subjects were drawn. To investigate the biological functions of miR-141, a series of in vitro and in vivo assays were conducted, including proliferation, wound-healing and Transwell assays, and a xenograft tumor model. The results demonstrated that miR-141 expression was significantly decreased in tumor tissues compared with in healthy tissues (P<0.05). Kaplan-Meier analysis revealed improved survival benefits with increased miR-141 expression (as determined using the log-rank test, P<0.001), and multivariate Cox regression analysis revealed that patients with decreased expression levels of miR-141 carried a greater risk of death (hazard ratio=2.352; 95% CI=1.379-4.012; P=0.002). The downregulation of miR-141 was also associated with WHO staging, particularly for lymph node and distant metastasis. Exogenous overexpression of miR-141 significantly inhibited the proliferative and migratory abilities of the gastric cancer cell line BGC-823. In vivo studies also demonstrated that exogenous overexpression of miR-141 in BGC-823 cells markedly reduced tumor growth in nude mice. The present study revealed that increased miR-141 expression may be a positive prognostic factor, which may be clinically beneficial in patients with gastric cancer.
Collapse
Affiliation(s)
- Tianxi Wang
- Department of Gastroenterology, Tianjin Nankai Hospital, Nankai, Tianjin 300100, P.R. China
| | - Jun Zhang
- Department of General Medicine, Tianjin Beichen Hospital, Tianjin, 300401, P.R. China
| | - Jingjing Tian
- Department of Gastroenterology, Tianjin Nankai Hospital, Nankai, Tianjin 300100, P.R. China
| | - Shasha Hu
- Department of Gastroenterology, Tianjin Nankai Hospital, Nankai, Tianjin 300100, P.R. China
| | - Rongna Wei
- Department of Gastroenterology, Tianjin Nankai Hospital, Nankai, Tianjin 300100, P.R. China
| | - Lihong Cui
- Department of Gastroenterology, Tianjin Nankai Hospital, Nankai, Tianjin 300100, P.R. China
| |
Collapse
|
14
|
Pal B, Anderson RL. MiRNAs prognostic for basal and BRCA1 breast cancer. Oncotarget 2018; 9:35717-35718. [PMID: 30515261 PMCID: PMC6254667 DOI: 10.18632/oncotarget.26297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 10/28/2018] [Indexed: 12/02/2022] Open
Affiliation(s)
- Bhupinder Pal
- Bhupinder Pal: Translational Breast Cancer Program, Olivia Newton-John Cancer Research Institute, Heidelberg, Australia; School of Cancer Medicine, La Trobe University, Bundoora, Australia
| | - Robin L Anderson
- Bhupinder Pal: Translational Breast Cancer Program, Olivia Newton-John Cancer Research Institute, Heidelberg, Australia; School of Cancer Medicine, La Trobe University, Bundoora, Australia
| |
Collapse
|
15
|
Identifying a miRNA signature for predicting the stage of breast cancer. Sci Rep 2018; 8:16138. [PMID: 30382159 PMCID: PMC6208346 DOI: 10.1038/s41598-018-34604-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/12/2018] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is a heterogeneous disease and one of the most common cancers among women. Recently, microRNAs (miRNAs) have been used as biomarkers due to their effective role in cancer diagnosis. This study proposes a support vector machine (SVM)-based classifier SVM-BRC to categorize patients with breast cancer into early and advanced stages. SVM-BRC uses an optimal feature selection method, inheritable bi-objective combinatorial genetic algorithm, to identify a miRNA signature which is a small set of informative miRNAs while maximizing prediction accuracy. MiRNA expression profiles of a 386-patient cohort of breast cancer were retrieved from The Cancer Genome Atlas. SVM-BRC identified 34 of 503 miRNAs as a signature and achieved a 10-fold cross-validation mean accuracy, sensitivity, specificity, and Matthews correlation coefficient of 80.38%, 0.79, 0.81, and 0.60, respectively. Functional enrichment of the 10 highest ranked miRNAs was analysed in terms of Kyoto Encyclopedia of Genes and Genomes and Gene Ontology annotations. Kaplan-Meier survival analysis of the highest ranked miRNAs revealed that four miRNAs, hsa-miR-503, hsa-miR-1307, hsa-miR-212 and hsa-miR-592, were significantly associated with the prognosis of patients with breast cancer.
Collapse
|
16
|
Enyedi MZ, Jaksa G, Pintér L, Sükösd F, Gyuris Z, Hajdu A, Határvölgyi E, Priskin K, Haracska L. Simultaneous detection of BRCA mutations and large genomic rearrangements in germline DNA and FFPE tumor samples. Oncotarget 2018; 7:61845-61859. [PMID: 27533253 PMCID: PMC5308695 DOI: 10.18632/oncotarget.11259] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/19/2016] [Indexed: 11/25/2022] Open
Abstract
The development of breast and ovarian cancer is strongly connected to the inactivation of the BRCA1 and BRCA2 genes by different germline and somatic alterations, and their diagnosis has great significance in targeted tumor therapy, since recently approved PARP inhibitors show high efficiency in the treatment of BRCA-deficient tumors. This raises the need for new diagnostic methods that are capable of performing an integrative mutation analysis of the BRCA genes not only from germline DNA but also from formalin-fixed and paraffin-embedded (FFPE) tumor samples. Here we describe the development of such a methodology based on next-generation sequencing and a new bioinformatics software for data analysis. The diagnostic method was initially developed on an Illumina MiSeq NGS platform using germline-mutated stem cell lines and then adapted for the Ion Torrent PGM NGS platform as well. We also investigated the usability of NGS coverage data for the detection of copy number variations and exon deletions as a replacement of the conventional MLPA technique. Finally, we tested the developed workflow on FFPE samples from breast and ovarian cancer patients. Our method meets the sensitivity and specificity requirements for the genetic diagnosis of breast and ovarian cancers both from germline and FFPE samples.
Collapse
Affiliation(s)
- Márton Zsolt Enyedi
- Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged 6726, Hungary
| | | | | | - Farkas Sükösd
- Department of Pathology, Faculty of Medicine, University of Szeged, Szeged 6720, Hungary
| | | | - Adrienn Hajdu
- Delta Bio 2000 Ltd., Szeged 6726, Hungary.,Department of Pathology, Faculty of Medicine, University of Szeged, Szeged 6720, Hungary
| | | | | | - Lajos Haracska
- Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged 6726, Hungary
| |
Collapse
|
17
|
Strumidło A, Skiba S, Scott RJ, Lubiński J. The potential role of miRNAs in therapy of breast and ovarian cancers associated with BRCA1 mutation. Hered Cancer Clin Pract 2017; 15:15. [PMID: 29021870 PMCID: PMC5622493 DOI: 10.1186/s13053-017-0076-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/17/2017] [Indexed: 11/29/2022] Open
Abstract
Germline variants within BRCA1 or BRCA2 genes account for approximately 25% of familial aggregations of breast-ovarian cancers. Low or no expression of BRCA1 in breast and ovarian cancers is associated with a good clinical response to treatment with platinum therapies and PARP1 inhibitors. Recent studies demonstrated that microRNAs - small non-coding RNAs, involved in the control of gene expression, can decrease BRCA1 expression by targeting the 3’UTR region of the gene. This article reviews reported relationships between various miRNAs, such as miRNA-9, miRNA-146a, miRNA-182 miRNA-218, miRNA-638 and the response to cytostatic drugs, mainly to platins and PARP1 inhbitors, for the treatment of breast and ovarian cancer associated with BRCA1 mutations.
Collapse
Affiliation(s)
| | - Sylwia Skiba
- Pomeranian University of Medicine, Szczecin, Poland
| | - Rodney J Scott
- The University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia.,Division of Genetics, Hunter Area Pathology Service, Newcastle, Australia
| | - Jan Lubiński
- Department of Genetics and Pathology, Pomeranian University of Medicine, Szczecin, Poland
| |
Collapse
|
18
|
Petrovic N, Davidovic R, Bajic V, Obradovic M, Isenovic RE. MicroRNA in breast cancer: The association with BRCA1/2. Cancer Biomark 2017; 19:119-128. [DOI: 10.3233/cbm-160319] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Jamshidi N, Margolis DJ, Raman S, Huang J, Reiter RE, Kuo MD. Multiregional Radiogenomic Assessment of Prostate Microenvironments with Multiparametric MR Imaging and DNA Whole-Exome Sequencing of Prostate Glands with Adenocarcinoma. Radiology 2017; 284:109-119. [PMID: 28453432 DOI: 10.1148/radiol.2017162827] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Purpose To assess the underlying genomic variation of prostate gland microenvironments of patients with prostate adenocarcinoma in the context of colocalized multiparametric magnetic resonance (MR) imaging and histopathologic assessment of normal and abnormal regions by using whole-exome sequencing. Materials and Methods Six patients with prostate adenocarcinoma who underwent robotic prostatectomy with whole-mount preservation of the prostate were identified, which enabled spatial mapping between preoperative multiparametric MR imaging and the gland. Four regions of interest were identified within each gland, including regions found to be normal and abnormal via histopathologic analysis. Whole-exome DNA sequencing (>50 times coverage) was performed on each of these spatially targeted regions. Radiogenomic analysis of imaging and mutation data were performed with hierarchical clustering, phylogenetic analysis, and principal component analysis. Results Radiogenomic multiparametric MR imaging and whole-exome spatial characterization in six patients with prostate adenocarcinoma (three patients, Gleason score of 3 + 4; and three patients, Gleason score of 4 + 5) was performed across 23 spatially distinct regions. Hierarchical clustering separated histopathologic analysis-proven high-grade lesions from the normal regions, and this reflected concordance between multiparametric MR imaging and resultant histopathologic analysis in all patients. Seventy-seven mutations involving 29 cancer-associated genes across the 23 spatially distinct prostate samples were identified. There was no significant difference in mutation load in cancer-associated genes between regions that were proven to be normal via histopathologic analysis (34 mutations per sample ± 19), mildly suspicious via multiparametric MR imaging (37 mutations per sample ± 21), intermediately suspicious via multiparametric MR imaging (31 mutations per sample ± 15), and high-grade cancer (33 mutations per sample ± 18) (P = .30). Principal component analysis resolved samples from different patients and further classified samples (regardless of histopathologic status) from prostate glands with Gleason score 3 + 4 versus 4 + 5 samples. Conclusion Multiregion spatial multiparametric MR imaging and whole-exome radiogenomic analysis of prostate glands with adenocarcinoma shows a continuum of mutations across regions that were found via histologic analysis to be high grade and normal. © RSNA, 2017 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Neema Jamshidi
- From the Departments of Radiological Sciences (N.J., S.R., M.D.K.) and Urology (R.E.R.), University of California, Los Angeles-David Geffen School of Medicine, 10833 LeConte Ave, Box 951721, CHS 17-135, Los Angeles, CA 90095-1721; Department of Radiology, Weill Cornell Imaging, New York-Presbyterian Hospital, New York, NY (D.J.M.); Department of Pathology, Duke University School of Medicine, Durham, NC (J.H.); and College of Electrical and Computer Engineering, National Chiao Tung University, HsinChu, Taiwan (M.D.K.)
| | - Daniel J Margolis
- From the Departments of Radiological Sciences (N.J., S.R., M.D.K.) and Urology (R.E.R.), University of California, Los Angeles-David Geffen School of Medicine, 10833 LeConte Ave, Box 951721, CHS 17-135, Los Angeles, CA 90095-1721; Department of Radiology, Weill Cornell Imaging, New York-Presbyterian Hospital, New York, NY (D.J.M.); Department of Pathology, Duke University School of Medicine, Durham, NC (J.H.); and College of Electrical and Computer Engineering, National Chiao Tung University, HsinChu, Taiwan (M.D.K.)
| | - Steven Raman
- From the Departments of Radiological Sciences (N.J., S.R., M.D.K.) and Urology (R.E.R.), University of California, Los Angeles-David Geffen School of Medicine, 10833 LeConte Ave, Box 951721, CHS 17-135, Los Angeles, CA 90095-1721; Department of Radiology, Weill Cornell Imaging, New York-Presbyterian Hospital, New York, NY (D.J.M.); Department of Pathology, Duke University School of Medicine, Durham, NC (J.H.); and College of Electrical and Computer Engineering, National Chiao Tung University, HsinChu, Taiwan (M.D.K.)
| | - Jiaoti Huang
- From the Departments of Radiological Sciences (N.J., S.R., M.D.K.) and Urology (R.E.R.), University of California, Los Angeles-David Geffen School of Medicine, 10833 LeConte Ave, Box 951721, CHS 17-135, Los Angeles, CA 90095-1721; Department of Radiology, Weill Cornell Imaging, New York-Presbyterian Hospital, New York, NY (D.J.M.); Department of Pathology, Duke University School of Medicine, Durham, NC (J.H.); and College of Electrical and Computer Engineering, National Chiao Tung University, HsinChu, Taiwan (M.D.K.)
| | - Robert E Reiter
- From the Departments of Radiological Sciences (N.J., S.R., M.D.K.) and Urology (R.E.R.), University of California, Los Angeles-David Geffen School of Medicine, 10833 LeConte Ave, Box 951721, CHS 17-135, Los Angeles, CA 90095-1721; Department of Radiology, Weill Cornell Imaging, New York-Presbyterian Hospital, New York, NY (D.J.M.); Department of Pathology, Duke University School of Medicine, Durham, NC (J.H.); and College of Electrical and Computer Engineering, National Chiao Tung University, HsinChu, Taiwan (M.D.K.)
| | - Michael D Kuo
- From the Departments of Radiological Sciences (N.J., S.R., M.D.K.) and Urology (R.E.R.), University of California, Los Angeles-David Geffen School of Medicine, 10833 LeConte Ave, Box 951721, CHS 17-135, Los Angeles, CA 90095-1721; Department of Radiology, Weill Cornell Imaging, New York-Presbyterian Hospital, New York, NY (D.J.M.); Department of Pathology, Duke University School of Medicine, Durham, NC (J.H.); and College of Electrical and Computer Engineering, National Chiao Tung University, HsinChu, Taiwan (M.D.K.)
| |
Collapse
|
20
|
Yang Y, Pan Q, Sun B, Yang R, Fang X, Liu X, Yu X, Zhao Z. miR-29b Targets LPL and TDG Genes and Regulates Apoptosis and Triglyceride Production in MECs. DNA Cell Biol 2016; 35:758-765. [DOI: 10.1089/dna.2016.3443] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Yuwei Yang
- College of Animal Science, Jilin University, Changchun, People's Republic of China
| | - Qiqi Pan
- College of Animal Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Boxing Sun
- College of Animal Science, Jilin University, Changchun, People's Republic of China
| | - Runjun Yang
- College of Animal Science, Jilin University, Changchun, People's Republic of China
| | - Xibi Fang
- College of Animal Science, Jilin University, Changchun, People's Republic of China
| | - Xin Liu
- College of Animal Science, Jilin University, Changchun, People's Republic of China
| | - Xianzhong Yu
- Department of Biological Sciences, Clemson University, Clemson, South Carolina
| | - Zhihui Zhao
- College of Animal Science, Jilin University, Changchun, People's Republic of China
| |
Collapse
|