1
|
Cordeiro Gomes F, Ferreira Alves MC, Alves Júnior S, Medina SH. Bactericidal Metal-Organic Gallium Frameworks - Synthesis to Application. Mol Pharm 2025; 22:638-646. [PMID: 39729416 PMCID: PMC11795525 DOI: 10.1021/acs.molpharmaceut.4c01253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 11/07/2024] [Indexed: 12/29/2024]
Abstract
Gallium, a trace metal not found in its elemental form in nature, has garnered significant interest as a biocide, given its ability to interfere with iron metabolism in bacteria. Consequently, several gallium compounds have been developed and studied for their antimicrobial properties but face challenges of poor solubility and formulation for delivery. Organizing the metal into three-dimensional, hybrid scaffolds, termed metal-organic frameworks (MOFs), is an emerging platform with potential to address many of these limitations. Gallium MOFs show improved solubility and antibacterial potency relative to the free metal due to their ability to coload antibiotics and functional biomolecules. Synthetic strategies are equally versatile, with several rapid, cost-effective, and scalable methods available. In this review, we present the advantages and disadvantages of these various synthetic strategies with respect to their antibacterial efficiency, product purity, and reaction control. The activity of gallium-based MOFs against Gram-positive and Gram-negative pathogens in mono- and combinatorial therapeutic settings is discussed in the context of their mechanisms of action and structure-function-performance relationships collated from recent studies. While gallium MOF development as antibacterials is still in its nascent stages, the examples discussed here highlight their potential as a novel class of therapeutics poised to impact the fight against pan-drug-resistant bacterial pathogens.
Collapse
Affiliation(s)
- Fellype
Diorgennes Cordeiro Gomes
- Department
of Fundamental Chemistry, Federal University
of Pernambuco, Cidade Universitária, Recife 50670, Brazil
- Department
of Biomedical Engineering, Pennsylvania
State University, University
Park, Pennsylvania 16802, United States
| | | | - Severino Alves Júnior
- Department
of Fundamental Chemistry, Federal University
of Pernambuco, Cidade Universitária, Recife 50670, Brazil
| | - Scott H. Medina
- Department
of Biomedical Engineering, Pennsylvania
State University, University
Park, Pennsylvania 16802, United States
- Huck
Institutes of the Life Sciences, Pennsylvania
State University, University
Park, Pennsylvania 16802, United States
| |
Collapse
|
2
|
Kulagin KA, Starodubova ES, Osipova PJ, Lipatova AV, Cherdantsev IA, Poddubko SV, Karpov VL, Karpov DS. Synergistic Effect of a Combination of Proteasome and Ribonucleotide Reductase Inhibitors in a Biochemical Model of the Yeast Saccharomyces cerevisiae and a Glioblastoma Cell Line. Int J Mol Sci 2024; 25:3977. [PMID: 38612788 PMCID: PMC11011839 DOI: 10.3390/ijms25073977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Proteasome inhibitors are used in the therapy of several cancers, and clinical trials are underway for their use in the treatment of glioblastoma (GBM). However, GBM becomes resistant to chemotherapy relatively rapidly. Recently, the overexpression of ribonucleotide reductase (RNR) genes was found to mediate therapy resistance in GBM. The use of combinations of chemotherapeutic agents is considered a promising direction in cancer therapy. The present work aimed to evaluate the efficacy of the combination of proteasome and RNR inhibitors in yeast and GBM cell models. We have shown that impaired proteasome function results in increased levels of RNR subunits and increased enzyme activity in yeast. Co-administration of the proteasome inhibitor bortezomib and the RNR inhibitor hydroxyurea was found to significantly reduce the growth rate of S. cerevisiae yeast. Accordingly, the combination of bortezomib and another RNR inhibitor gemcitabine reduced the survival of DBTRG-05MG compared to the HEK293 cell line. Thus, yeast can be used as a simple model to evaluate the efficacy of combinations of proteasome and RNR inhibitors.
Collapse
Affiliation(s)
- Kirill A. Kulagin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (K.A.K.); (E.S.S.); (P.J.O.); (A.V.L.); (I.A.C.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Elizaveta S. Starodubova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (K.A.K.); (E.S.S.); (P.J.O.); (A.V.L.); (I.A.C.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Pamila J. Osipova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (K.A.K.); (E.S.S.); (P.J.O.); (A.V.L.); (I.A.C.)
- Institute of Biomedical Problems of Russian Academy of Sciences, 123007 Moscow, Russia;
| | - Anastasia V. Lipatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (K.A.K.); (E.S.S.); (P.J.O.); (A.V.L.); (I.A.C.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Igor A. Cherdantsev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (K.A.K.); (E.S.S.); (P.J.O.); (A.V.L.); (I.A.C.)
| | - Svetlana V. Poddubko
- Institute of Biomedical Problems of Russian Academy of Sciences, 123007 Moscow, Russia;
| | - Vadim L. Karpov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Dmitry S. Karpov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (K.A.K.); (E.S.S.); (P.J.O.); (A.V.L.); (I.A.C.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| |
Collapse
|
3
|
Zamanian MY, Golmohammadi M, Nili-Ahmadabadi A, Alameri AA, Al-Hassan M, Alshahrani SH, Hasan MS, Ramírez-Coronel AA, Qasim QA, Heidari M, Verma A. Targeting autophagy with tamoxifen in breast cancer: From molecular mechanisms to targeted therapy. Fundam Clin Pharmacol 2023; 37:1092-1108. [PMID: 37402635 DOI: 10.1111/fcp.12936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/24/2023] [Accepted: 06/13/2023] [Indexed: 07/06/2023]
Abstract
BACKGROUND Tamoxifen (TAM) is often recommended as a first-line treatment for estrogen receptor-positive breast cancer (BC). However, TAM resistance continues to be a medical challenge for BC with hormone receptor positivity. The function of macro-autophagy and autophagy has recently been identified to be altered in BC, which suggests a potential mechanism for TAM resistance. Autophagy is a cellular stress-induced response to preserve cellular homeostasis. Also, therapy-induced autophagy, which is typically cytoprotective and activated in tumor cells, could sometimes be non-protective, cytostatic, or cytotoxic depending on how it is regulated. OBJECTIVE This review explored the literature on the connections between hormonal therapies and autophagy. We investigated how autophagy could develop drug resistance in BC cells. METHODS Scopus, Science Direct, PubMed, and Google Scholar were used to search articles for this study. RESULTS The results demonstrated that protein kinases such as pAMPK, BAX, and p-p70S6K could be a sign of autophagy in developing TAM resistance. According to the study's findings, autophagy plays an important role in BC patients' TAM resistance. CONCLUSION Therefore, by overcoming endocrine resistance in estrogen receptor-positive breast tumors, autophagy inhibition may improve the therapeutic efficacy of TAM.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Nili-Ahmadabadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ameer A Alameri
- Department of Chemistry, College of Science, University of Babylon, Babylon, Iraq
| | | | | | - Mohammed Sami Hasan
- Department of Anesthesia Techniques, Al-Mustaqbal University College, Babylon, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Cuenca, Ecuador
- University of Palermo, Buenos Aires, Argentina
- Research Group in Educational Statistics, National University of Education, Azogues, Ecuador
- Epidemiology and Biostatistics Research Group, CES University, Medellín, Colombia
| | | | - Mahsa Heidari
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagari, India
| |
Collapse
|
4
|
Yeast Ribonucleotide Reductase Is a Direct Target of the Proteasome and Provides Hyper Resistance to the Carcinogen 4-NQO. J Fungi (Basel) 2023; 9:jof9030351. [PMID: 36983519 PMCID: PMC10057556 DOI: 10.3390/jof9030351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
Various external and internal factors damaging DNA constantly disrupt the stability of the genome. Cells use numerous dedicated DNA repair systems to detect damage and restore genomic integrity in a timely manner. Ribonucleotide reductase (RNR) is a key enzyme providing dNTPs for DNA repair. Molecular mechanisms of indirect regulation of yeast RNR activity are well understood, whereas little is known about its direct regulation. The study was aimed at elucidation of the proteasome-dependent mechanism of direct regulation of RNR subunits in Saccharomyces cerevisiae. Proteome analysis followed by Western blot, RT-PCR, and yeast plating analysis showed that upregulation of RNR by proteasome deregulation is associated with yeast hyper resistance to 4-nitroquinoline-1-oxide (4-NQO), a UV-mimetic DNA-damaging drug used in animal models to study oncogenesis. Inhibition of RNR or deletion of RNR regulatory proteins reverses the phenotype of yeast hyper resistance to 4-NQO. We have shown for the first time that the yeast Rnr1 subunit is a substrate of the proteasome, which suggests a common mechanism of RNR regulation in yeast and mammals.
Collapse
|
5
|
Qin YY, Feng S, Zhang XD, Peng B. Screening of traditional Chinese medicine monomers as ribonucleotide reductase M2 inhibitors for tumor treatment. World J Clin Cases 2022; 10:11299-11312. [PMID: 36387821 PMCID: PMC9649558 DOI: 10.12998/wjcc.v10.i31.11299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/14/2022] [Accepted: 09/29/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Ribonucleotide reductase (RR) is a key enzyme in tumor proliferation, especially its subunit-RRM2. Although there are multiple therapeutics for tumors, they all have certain limitations. Given their advantages, traditional Chinese medicine (TCM) monomers have become an important source of anti-tumor drugs. Therefore, screening and analysis of TCM monomers with RRM2 inhibition can provide a reference for further anti-tumor drug development.
AIM To screen and analyze potential anti-tumor TCM monomers with a good binding capacity to RRM2.
METHODS The Gene Expression Profiling Interactive Analysis database was used to analyze the level of RRM2 gene expression in normal and tumor tissues as well as RRM2's effect on the overall survival rate of tumor patients. TCM monomers that potentially act on RRM2 were screened via literature mining. Using AutoDock software, the screened monomers were docked with the RRM2 protein.
RESULTS The expression of RRM2 mRNA in multiple tumor tissues was significantly higher than that in normal tissues, and it was negatively correlated with the overall survival rate of patients with the majority of tumor types. Through literature mining, we discovered that berberine, ursolic acid, gambogic acid, cinobufagin, quercetin, daphnetin, and osalmide have inhibitory effects on RRM2. The results of molecular docking identified that the above TCM monomers have a strong binding capacity with RRM2 protein, which mainly interacted through hydrogen bonds and hydrophobic force. The main binding sites were Arg330, Tyr323, Ser263, and Met350.
CONCLUSION RRM2 is an important tumor therapeutic target. The TCM monomers screened have a good binding capacity with the RRM2 protein.
Collapse
Affiliation(s)
- Ya-Ya Qin
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Song Feng
- School of Basic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Xiao-Dong Zhang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Bin Peng
- School of Basic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| |
Collapse
|
6
|
Chen H, Miao Y, Bian A, Ye J, Wang J, Cong X, Jian S, Yi Z, Liang L, Sun Z, Yang F, Ding T. A novel small-molecule activator of unfolded protein response suppresses castration-resistant prostate cancer growth. Cancer Lett 2022; 532:215580. [PMID: 35121048 DOI: 10.1016/j.canlet.2022.215580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/30/2022] [Accepted: 01/30/2022] [Indexed: 02/07/2023]
Abstract
Androgen receptor-targeted therapy improves survival in castration-resistant prostate cancer (CRPC). However, almost all patients with CRPC eventually develop secondary resistance to these drugs. Therefore, alternative therapeutic approaches for incurable metastatic CRPC are urgently needed. Unfolded protein response (UPR) is regarded as a cytoprotective mechanism that removes misfolded proteins in rapidly proliferating tumor cells. However, acute activation of the UPR directly leads to tumor cell death. This study has shown that WJ-644A, a novel small molecule activator of UPR, potently inhibited the proliferation of prostate cancer cells and caused tumor regression with a good safety profile in multiple animal models. Mechanistically, we have identified that WJ-644A induced cell methuosis and autophagy upon UPR activation. Our study not only identifies the UPR as an actionable target for CRPC treatment, but also establishes WJ-644A as a novel UPR activator that has potential therapeutic value for CRPC.
Collapse
Affiliation(s)
- Huang Chen
- East China Normal University, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Ying Miao
- East China Normal University, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Aiwu Bian
- East China Normal University, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Jiangnan Ye
- East China Normal University, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Jing Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development & Shanghai Key Laboratory of Green Chemistry and Chemical Processes, SCME, East China Normal University, Shanghai, 200062, China
| | - Xiaonan Cong
- East China Normal University, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Shuyi Jian
- East China Normal University, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Zhengfang Yi
- East China Normal University, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Lin Liang
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, China, 201499
| | - Zhenliang Sun
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, China, 201499.
| | - Fan Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development & Shanghai Key Laboratory of Green Chemistry and Chemical Processes, SCME, East China Normal University, Shanghai, 200062, China.
| | - Tao Ding
- Department of Urology, Southern Medical University Affifiliated Fengxian Hospital, Shanghai, China, 201499.
| |
Collapse
|
7
|
Cheng SM, Shieh MC, Lin TY, Cheung CHA. The "Dark Side" of autophagy on the maintenance of genome stability: Does it really exist during excessive activation? J Cell Physiol 2021; 237:178-188. [PMID: 34406646 DOI: 10.1002/jcp.30555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/13/2021] [Accepted: 08/06/2021] [Indexed: 01/18/2023]
Abstract
Dysregulation of DNA damage response/repair and genomic instability promote tumorigenesis and the development of various neurological diseases. Autophagy is a dynamic catabolic process used for removing unnecessary or dysfunctional proteins and organelles in cells. Despite the consensus in the field that upregulation of autophagy promotes the initiation of the DNA damage response and assists the process of homologous recombination upon genotoxic stress, a few studies showed that upregulation of autophagy (or excessive autophagy), under certain circumstances, triggers caspase/apoptosis-independent DNA damage and promotes genomic instability in cells. As the cytoprotective and the DNA repairing roles of autophagy have been discussed extensively in different reviews, here, we mainly focus on describing the latest studies which reported the "opposite" roles of autophagy (or excessive autophagy). We will discuss whether the "dark side" (i.e., the opposite/unconventional effect) of autophagy on the maintenance of DNA integrity and genomic stability really does exist in cells and if it does, will it be one of the yet-to-be-identified causes of cancer, in this review.
Collapse
Affiliation(s)
- Siao Muk Cheng
- National Institute of Cancer Research, National Health Research Institutes (NHRI), Tainan, Taiwan
| | - Min-Chieh Shieh
- Division of General Surgery, Department of Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Tzu-Yu Lin
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Chun Hei Antonio Cheung
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
- Department of Pharmacology, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
8
|
YM155 and BIRC5 downregulation induce genomic instability via autophagy-mediated ROS production and inhibition in DNA repair. Pharmacol Res 2021; 166:105474. [PMID: 33549731 DOI: 10.1016/j.phrs.2021.105474] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/05/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
Activation of autophagy plays a critical role in DNA repair, especially for the process of homologous recombination. Despite upregulation of autophagy promotes both the survival and the death of cells, the pathways that govern the pro-cell death effects of autophagy are still incompletely understood. YM155 is originally developed as an expression suppressant of BIRC5 (an anti-apoptotic molecule) and it has reached Phase I/II clinical trials for the treatment of variety types of cancer. However, the target-specificity of YM155 has recently been challenged as several studies reported that YM155 exhibits direct DNA damaging effects. Recently, we discovered that BIRC5 is an autophagy negative-modulator. Using function-comparative analysis, we found in the current study that YM155 and BIRC5 siRNA both induced early "autophagy-dependent ROS production-mediated" DNA damage/strand breaks and concurrently downregulated the expression of RAD54L, RAD51, and MRE11, which are molecules known for their important roles in homologous recombination, in human cancer (MCF7, MDA-MB-231, and SK-BR-3) and mouse embryonic fibroblast (MEF) cells. Similar to the effects of YM155 and BIRC5 siRNA, downregulation of RAD54L and RAD51 by siRNA induced autophagy and DNA damage/strand breaks in cells, suggesting YM155/BIRC5 siRNA might also induce autophagy partly through RAD54L and RAD51 downregulations. We further observed that prolonged YM155 and BIRC5 siRNA treatment induced autophagic vesicle formation proximal to the nucleus and triggered DNA leakage. In conclusion, our findings reveal a novel mechanism of action of YM155 (i.e. induces autophagy-dependent ROS production-mediated DNA damage) in cancer cells and show the functional complexity of BIRC5 and autophagy involving the modulation of genome stability, highlighting that upregulation of autophagy is not always beneficial to the DNA repair process. Our findings can aid the development of a variety of BIRC5-directly/indirectly targeted anticancer therapies that are currently under pre-clinical and clinical investigations.
Collapse
|
9
|
|
10
|
Greene BL, Kang G, Cui C, Bennati M, Nocera DG, Drennan CL, Stubbe J. Ribonucleotide Reductases: Structure, Chemistry, and Metabolism Suggest New Therapeutic Targets. Annu Rev Biochem 2020; 89:45-75. [PMID: 32569524 PMCID: PMC7316142 DOI: 10.1146/annurev-biochem-013118-111843] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ribonucleotide reductases (RNRs) catalyze the de novo conversion of nucleotides to deoxynucleotides in all organisms, controlling their relative ratios and abundance. In doing so, they play an important role in fidelity of DNA replication and repair. RNRs' central role in nucleic acid metabolism has resulted in five therapeutics that inhibit human RNRs. In this review, we discuss the structural, dynamic, and mechanistic aspects of RNR activity and regulation, primarily for the human and Escherichia coli class Ia enzymes. The unusual radical-based organic chemistry of nucleotide reduction, the inorganic chemistry of the essential metallo-cofactor biosynthesis/maintenance, the transport of a radical over a long distance, and the dynamics of subunit interactions all present distinct entry points toward RNR inhibition that are relevant for drug discovery. We describe the current mechanistic understanding of small molecules that target different elements of RNR function, including downstream pathways that lead to cell cytotoxicity. We conclude by summarizing novel and emergent RNR targeting motifs for cancer and antibiotic therapeutics.
Collapse
Affiliation(s)
- Brandon L Greene
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Gyunghoon Kang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Chang Cui
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Marina Bennati
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
- Department of Chemistry, University of Göttingen, 37073 Göttingen, Germany
| | - Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Catherine L Drennan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
11
|
Li ZN, Shu Y, Chen CG, Li XQ, Li MY, Zhao XH, Wang S, Li J. Acquired tamoxifen resistance is surmounted by GW8510 through ribonucleotide reductase M2 downregulation-mediated autophagy induction. Biochem Biophys Res Commun 2020; 528:554-560. [PMID: 32505349 DOI: 10.1016/j.bbrc.2020.05.149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023]
Abstract
Tamoxifen resistance is a major roadblock in the treatment of patients with breast cancer. Ribonucleotide reductase M2 (RRM2) was found to be involved in acquired resistance of breast cancer cells (BCCs) to tamoxifen. Here, we used GW8510, which has been identified as a potential RRM2 inhibitor, to evaluate the effect of RRM2 inhibition on reversing resistance of BCCs to tamoxifen and investigate its mechanisms. We showed that RRM2 overexpression played a key role in the development of acquired tamoxifen resistance in BCCs through downregulation of autophagy level. Combination treatment with tamoxifen and GW8510 significantly inhibited survival of the tamoxifen-resistant BCCs through induction of autophagic cell death compared to either of the two drugs. Furthermore, combination of tamoxifen and GW8510 resulted in marked growth inhibition of tamoxifen-resistant BBC xenograft tumor in vivo compared to tamoxifen or GW8510 alone. In conclusion, tamoxifen in combination with GW8510 can overcome acquired tamoxifen resistance in BCCs and may be a rational therapeutic approach against breast cancer with high RRM2 expression.
Collapse
Affiliation(s)
- Zhen-Nan Li
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yang Shu
- Center of Medical Experiment, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Chen-Guo Chen
- Department of Pulmonary Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Xiao-Qin Li
- Department of Medical Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Mei-Yu Li
- Department of Pulmonary Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Xiao-Hui Zhao
- Department of Pathology, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Shui Wang
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Jian Li
- Department of Pulmonary Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China.
| |
Collapse
|
12
|
Lin TY, Chan HH, Chen SH, Sarvagalla S, Chen PS, Coumar MS, Cheng SM, Chang YC, Lin CH, Leung E, Cheung CHA. BIRC5/Survivin is a novel ATG12-ATG5 conjugate interactor and an autophagy-induced DNA damage suppressor in human cancer and mouse embryonic fibroblast cells. Autophagy 2019; 16:1296-1313. [PMID: 31612776 PMCID: PMC7469615 DOI: 10.1080/15548627.2019.1671643] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BIRC5/Survivin is known as a dual cellular functions protein that directly regulates both apoptosis and mitosis in embryonic cells during embryogenesis and in cancer cells during tumorigenesis and tumor metastasis. However, BIRC5 has seldom been demonstrated as a direct macroautophagy/autophagy regulator in cells. ATG7 expression and ATG12-ATG5-ATG16L1 complex formation are crucial for the phagophore elongation during autophagy in mammalian cells. In this study, we observed that the protein expression levels of BIRC5 and ATG7 were inversely correlated, whereas the expression levels of BIRC5 and SQSTM1/p62 were positively correlated in normal breast tissues and tumor tissues. Mechanistically, we found that BIRC5 negatively modulates the protein stability of ATG7 and physically binds to the ATG12-ATG5 conjugate, preventing the formation of the ATG12-ATG5-ATG16L1 protein complex in human cancer (MDA-MB-231, MCF7, and A549) and mouse embryonic fibroblast (MEF) cells. We also observed a concurrent physical dissociation between BIRC5 and ATG12-ATG5 (but not CASP3/caspase-3) and upregulation of autophagy in MDA-MB-231 and A549 cells under serum-deprived conditions. Importantly, despite the fact that upregulation of autophagy is widely thought to promote DNA repair in cells under genotoxic stress, we found that BIRC5 maintains DNA integrity through autophagy negative-modulations in both human cancer and MEF cells under non-stressed conditions. In conclusion, our study reveals a novel role of BIRC5 in cancer cells as a direct regulator of autophagy. BIRC5 may act as a "bridging molecule", which regulates the interplay between mitosis, apoptosis, and autophagy in embryonic and cancer cells. ABBREVIATIONS ACTA1: actin; ATG: autophagy related; BIRC: baculoviral inhibitor of apoptosis repeat-containing; BAF: bafilomycin A1; CQ: chloroquine; CASP3: caspase 3; HSPB1/Hsp27: heat shock protein family B (small) member 1/heat shock protein 27; IAPs: inhibitors of apoptosis proteins; IP: immunoprecipitation; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; PLA: proximity ligation assay; SQSTM1/p62: sequestosome 1; siRNA: small interfering RNA.
Collapse
Affiliation(s)
- Tzu-Yu Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University , Tainan, Taiwan
| | - Hsiu-Han Chan
- Department of Pharmacology, College of Medicine, National Cheng Kung University , Tainan, Taiwan
| | - Shang-Hung Chen
- National Institute of Cancer Research, National Health Research Institutes , Tainan, Taiwan.,Division of Hematology and Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University , Tainan, Taiwan
| | - Sailu Sarvagalla
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University , Puducherry, India
| | - Pai-Sheng Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University , Tainan, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University , Tainan, Taiwan
| | - Mohane Selvaraj Coumar
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University , Puducherry, India
| | - Siao Muk Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University , Tainan, Taiwan
| | - Yung-Chieh Chang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University , Tainan, Taiwan
| | - Chun-Hui Lin
- Department of Pharmacology, College of Medicine, National Cheng Kung University , Tainan, Taiwan
| | - Euphemia Leung
- Auckland Cancer Society Research Centre and Department of Molecular Medicine and Pathology, University of Auckland , Auckland, New Zealand
| | - Chun Hei Antonio Cheung
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University , Tainan, Taiwan.,Department of Pharmacology, College of Medicine, National Cheng Kung University , Tainan, Taiwan
| |
Collapse
|
13
|
Hsieh CL, Huang HS, Chen KC, Saka T, Chiang CY, Chung LWK, Sung SY. A Novel Salicylanilide Derivative Induces Autophagy Cell Death in Castration-Resistant Prostate Cancer via ER Stress-Activated PERK Signaling Pathway. Mol Cancer Ther 2019; 19:101-111. [PMID: 31530650 DOI: 10.1158/1535-7163.mct-19-0387] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/24/2019] [Accepted: 09/12/2019] [Indexed: 11/16/2022]
Abstract
Metastatic castration-resistant prostate cancer (CRPC) is currently incurable. Cancer growth and progression is intimately affected by its interaction with host microenvironment. Cotargeting of the stroma and prostate cancer is therefore an emerging therapeutic strategy for metastatic CRPC. Cancer-induced osteoclastogenesis is known to contribute to CRPC bone metastasis. This study is to extend pharmacologic value of our synthesized LCC03, a derivative of 5-(2',4'-difluorophenyl)-salicylanilide that has previously testified for its osteoclastogenesis activity, by exploring its additional cytotoxic properties and underlying mechanism in CRPC cells. LCC03 was chemically synthesized and examined for cell growth inhibition in a serial of CRPC cell lines. We demonstrated that LCC03 dose-dependently suppressed proliferation and retarded cell-cycle progression in CRPC cells. The classical autophagy features, including autophagosome formation and LC3-II conversion, were dramatically shown in LCC03-treated CRPC cells, and it was associated with the suppressed AKT/mTOR signaling pathways, a major negative regulator of autophagy. Moreover, an expanded morphology of the endoplasmic reticulum (ER), increased expression of the ER stress markers GRP78 and PERK, and eIF2α phosphorylation were observed. Blockage of autophagy and PERK pathways using small molecule inhibitors or shRNA knockdown reversed LCC03-induced autophagy and cell death, thus indicating that the PERK-eIF2α pathway contributed to the LCC03-induced autophagy. Furthermore, treatment of tumor-bearing mice with intraperitoneal administered LCC03 suppressed the growth of CRPC xenografts in mouse bone without systemic toxicity. The dual action of 5-(2',4'-difluorophenyl)-salicylanilide on targeting both the osteoclasts and the tumor cells strongly indicates that LCC03 is a promising anticancer candidate for preventing and treating metastatic CRPC.
Collapse
Affiliation(s)
- Chia-Ling Hsieh
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsu-Shan Huang
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Chou Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Urology, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Urology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
| | - Teigi Saka
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Ying Chiang
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Leland W K Chung
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Shian-Ying Sung
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.,Joint Clinical Research Center, Office of Human Research, Taipei Medical University, Taipei, Taiwan.,Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
14
|
Asperti M, Cantamessa L, Ghidinelli S, Gryzik M, Denardo A, Giacomini A, Longhi G, Fanzani A, Arosio P, Poli M. The Antitumor Didox Acts as an Iron Chelator in Hepatocellular Carcinoma Cells. Pharmaceuticals (Basel) 2019; 12:ph12030129. [PMID: 31480699 PMCID: PMC6789654 DOI: 10.3390/ph12030129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 01/08/2023] Open
Abstract
Ribonucleotide reductase (RR) is the rate-limiting enzyme that controls the deoxynucleotide triphosphate synthesis and it is an important target of cancer treatment, since it is expressed in tumor cells in proportion to their proliferation rate, their invasiveness and poor prognosis. Didox, a derivative of hydroxyurea (HU), is one of the most potent pharmaceutical inhibitors of this enzyme, with low in vivo side effects. It inhibits the activity of the subunit RRM2 and deoxyribonucleotides (dNTPs) synthesis, and it seems to show iron-chelating activity. In the present work, we mainly investigated the iron-chelating properties of didox using the HA22T/VGH cell line, as a model of hepatocellular carcinoma (HCC). We confirmed that didox induced cell death and that this effect was suppressed by iron supplementation. Interestingly, cell treatments with didox caused changes of cellular iron content, TfR1 and ferritin levels comparable to those caused by the iron chelators, deferoxamine (DFO) and deferiprone (DFP). Chemical studies showed that didox has an affinity binding to Fe3+ comparable to that of DFO and DFP, although with slower kinetic. Structural modeling indicated that didox is a bidentated iron chelator with two theoretical possible positions for the binding and among them that with the two hydroxyls of the catechol group acting as ligands is the more likely one. The iron chelating property of didox may contribute to its antitumor activity not only blocking the formation of the tyrosil radical on Tyr122 (such as HU) on RRM2 (essential for its activity) but also sequestering the iron needed by this enzyme and to the cell proliferation.
Collapse
Affiliation(s)
- Michela Asperti
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Luca Cantamessa
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Simone Ghidinelli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Magdalena Gryzik
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Andrea Denardo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Giovanna Longhi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Paolo Arosio
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Maura Poli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| |
Collapse
|
15
|
Cheng CT, Qi Y, Wang YC, Chi KK, Chung Y, Ouyang C, Chen YR, Oh ME, Sheng X, Tang Y, Liu YR, Lin HH, Kuo CY, Schones D, Vidal CM, Chu JCY, Wang HJ, Chen YH, Miller KM, Chu P, Yen Y, Jiang L, Kung HJ, Ann DK. Arginine starvation kills tumor cells through aspartate exhaustion and mitochondrial dysfunction. Commun Biol 2018; 1:178. [PMID: 30393775 PMCID: PMC6203837 DOI: 10.1038/s42003-018-0178-4] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/24/2018] [Indexed: 12/22/2022] Open
Abstract
Defective arginine synthesis, due to the silencing of argininosuccinate synthase 1 (ASS1), is a common metabolic vulnerability in cancer, known as arginine auxotrophy. Understanding how arginine depletion kills arginine-auxotrophic cancer cells will facilitate the development of anti-cancer therapeutic strategies. Here we show that depletion of extracellular arginine in arginine-auxotrophic cancer cells causes mitochondrial distress and transcriptional reprogramming. Mechanistically, arginine starvation induces asparagine synthetase (ASNS), depleting these cancer cells of aspartate, and disrupting their malate-aspartate shuttle. Supplementation of aspartate, depletion of mitochondria, and knockdown of ASNS all protect the arginine-starved cells, establishing the causal effects of aspartate depletion and mitochondrial dysfunction on the arginine starvation-induced cell death. Furthermore, dietary arginine restriction reduced tumor growth in a xenograft model of ASS1-deficient breast cancer. Our data challenge the view that ASNS promotes homeostasis, arguing instead that ASNS-induced aspartate depletion promotes cytotoxicity, which can be exploited for anti-cancer therapies.
Collapse
Affiliation(s)
- Chun-Ting Cheng
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Yue Qi
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Yi-Chang Wang
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Kevin K Chi
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, 91010, USA
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, 91010, USA
| | - Yiyin Chung
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Ching Ouyang
- Department of Information Sciences, City of Hope, Duarte, CA, 91010, USA
| | - Yun-Ru Chen
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Myung Eun Oh
- Department of Molecular and Cellular Endocrinology, City of Hope, Duarte, CA, 91010, USA
| | - Xiangpeng Sheng
- Department of Molecular and Cellular Endocrinology, City of Hope, Duarte, CA, 91010, USA
| | - Yulong Tang
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Yun-Ru Liu
- Office of Human Research, Center for Cancer Research, Taipei Medical University, Taipei City, Taiwan
| | - H Helen Lin
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Ching-Ying Kuo
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Dustin Schones
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, 91010, USA
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, 91010, USA
| | - Christina M Vidal
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, 91010, USA
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, 91010, USA
| | - Jenny C-Y Chu
- Institute for Translational Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Hung-Jung Wang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, Taiwan
| | - Yu-Han Chen
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA, 92697, USA
| | - Kyle M Miller
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Peiguo Chu
- Shared Pathology Core, City of Hope, Duarte, CA, 91010, USA
| | - Yun Yen
- Office of Human Research, Center for Cancer Research, Taipei Medical University, Taipei City, Taiwan
| | - Lei Jiang
- Department of Molecular and Cellular Endocrinology, City of Hope, Duarte, CA, 91010, USA
| | - Hsing-Jien Kung
- Institute for Translational Medicine, Taipei Medical University, Taipei City, Taiwan.
- Department of Biochemistry and Molecular Medicine, University of California at Davis Comprehensive Cancer Center, Sacramento, CA, 95817, USA.
| | - David K Ann
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, 91010, USA.
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
16
|
Ulakcsai Z, Bagaméry F, Szökő É, Tábi T. The role of autophagy induction in the mechanism of cytoprotective effect of resveratrol. Eur J Pharm Sci 2018; 123:135-142. [PMID: 30036580 DOI: 10.1016/j.ejps.2018.07.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 02/06/2023]
Abstract
We aimed at studying the potential mechanisms in the preventive effect of resveratrol on serum deprivation induced caspase 3 activation on non-transformed cells. METHODS Apoptosis was induced by serum deprivation in primary mouse embryonic fibroblasts. Caspase 3 activation, reactive oxygen species production and depolarization of the mitochondrial membrane were measured by fluorescence methods. The involvement of intracellular receptors and autophagy in the effect of resveratrol were analyzed by using specific agonists and antagonists. The role of autophagy was further examined by Western Blot analysis of its protein markers, LC3-II and p62 as well as by acridine orange staining of acidic vacuoles. RESULTS We found that neither aromatic hydrocarbon receptors nor estrogen receptors play an important role in the cytoprotective effect of resveratrol. Reactive oxygen species production was not significantly altered by either serum deprivation or resveratrol treatment. In the presence of serum deprivation resveratrol however, induced a significant depolarization in mitochondrial membrane potential. The autophagy inhibitor, chloroquine not only eliminated the preventive effect of resveratrol, but also turned it to deleterious suggesting the prominent role of autophagy induction in the cytoprotective effect. Resveratrol did not alter LC3-II expression, but facilitated p62 degradation in serum deprived cells, suggesting its ability to augment the late phase of autophagy and thus promote the autophagic flux. CONCLUSION We have demonstrated that resveratrol can protect primary fibroblasts against serum deprivation induced apoptosis by provoking mild mitochondrial stress and consequent up-regulation of autophagic flux.
Collapse
Affiliation(s)
- Zsófia Ulakcsai
- Department of Pharmacodynamics, Semmelweis University, Üllői út 26., Budapest 1085, Hungary
| | - Fruzsina Bagaméry
- Department of Pharmacodynamics, Semmelweis University, Üllői út 26., Budapest 1085, Hungary.
| | - Éva Szökő
- Department of Pharmacodynamics, Semmelweis University, Üllői út 26., Budapest 1085, Hungary.
| | - Tamás Tábi
- Department of Pharmacodynamics, Semmelweis University, Üllői út 26., Budapest 1085, Hungary.
| |
Collapse
|
17
|
Gemcitabine resistance mediated by ribonucleotide reductase M2 in lung squamous cell carcinoma is reversed by GW8510 through autophagy induction. Clin Sci (Lond) 2018; 132:1417-1433. [PMID: 29853661 DOI: 10.1042/cs20180010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 05/13/2018] [Accepted: 05/25/2018] [Indexed: 12/28/2022]
Abstract
Although chemotherapeutic regimen containing gemcitabine is the first-line therapy for advanced lung squamous cell carcinoma (LSCC), gemcitabine resistance remains an important clinical problem. Some studies suggest that overexpressions of ribonucleotide reductase (RNR) subunit M2 (RRM2) may be involved in gemcitabine resistance. We used a novel RRM2 inhibitor, GW8510, as a gemcitabine sensitization agent to investigate the therapeutic utility in reversing gemcitabine resistance in LSCC. Results showed that the expressions of RRM2 were increased in gemcitabine intrinsic resistant LSCC cells upon gemcitabine treatment. GW8510 not only suppressed LSCC cell survival, but also sensitized gemcitabine-resistant cells to gemcitabine through autophagy induction mediated by RRM2 down-regulation along with decrease in dNTP levels. The combination of GW8510 and gemcitabine produced a synergistic effect on killing LSCC cells. The synergism of the two agents was impeded by addition of autophagy inhibitors chloroquine (CQ) or bafilomycin A1 (Baf A1), or knockdown of the autophagy gene, Bcl-2-interacting protein 1 (BECN1). Moreover, GW8510-caused LSCC cell sensitization to gemcitabine through autophagy induction was parallel with impairment of DNA double-strand break (DSB) repair and marked increase in cell apoptosis, revealing a cross-talk between autophagy and DNA damage repair, and an interplay between autophagy and apoptosis. Finally, gemcitabine sensitization mediated by autophagy induction through GW8510-caused RRM2 down-regulation was demonstrated in vivo in gemcitabine-resistant LSCC tumor xenograft, further indicating that the sensitization is dependent on autophagy activation. In conclusion, GW8510 can reverse gemcitabine resistance in LSCC cells through RRM2 downregulation-mediated autophagy induction, and GW850 may be a promising therapeutic agent against LSCC as it combined with gemcitabine.
Collapse
|
18
|
Wu J, Wu Q, Li JJ, Chen C, Sun S, Wang CH, Sun SR. Autophagy mediates free fatty acid effects on MDA-MB-231 cell proliferation, migration and invasion. Oncol Lett 2017; 14:4715-4721. [PMID: 29085471 PMCID: PMC5649568 DOI: 10.3892/ol.2017.6807] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/06/2017] [Indexed: 12/20/2022] Open
Abstract
Epidemiological and animal studies indicate an association between high levels of dietary fat intake and an increased risk of breast cancer. The multifaceted role of autophagy in cancer has been revealed in previous years. However, the mechanism of this role remains unknown. In the present study, the two most common free fatty acids, palmitate acid (PA) and oleic acid (OA), were used to determine the effect on human breast cancer MDA-MB-231 cells, and the possible role of autophagy was investigated by detecting light chain 3 (LC3)-II/I. Bafliomycin A1 was used to detect autophagy flux. High palmitate acid condition-induced MDA-MB-231 cell death and invasion were mitigated by 3-methyladenine pretreatment or transfection with shRNA against autophagy protein 5. By contrast, high oleic acid condition induced MDA-MB-231 cell proliferation, migration and invasion were mitigated using rapamycin. The present results suggest that autophagy has an important role in the effects of PA and OA on breast cancer growth and metastasis in vitro.
Collapse
Affiliation(s)
- Juan Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Juan-Juan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chang-Hua Wang
- Department of Pathology and Pathophysiology, Wuhan University School of Basal Medical School, Wuhan, Hubei 430071, P.R. China
| | - Sheng-Rong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
19
|
Repositioning of a cyclin-dependent kinase inhibitor GW8510 as a ribonucleotide reductase M2 inhibitor to treat human colorectal cancer. Cell Death Discov 2016; 2:16027. [PMID: 27551518 PMCID: PMC4979501 DOI: 10.1038/cddiscovery.2016.27] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 04/03/2016] [Indexed: 01/25/2023] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related death in males and females in the world. It is of immediate importance to develop novel therapeutics. Human ribonucleotide reductase (RRM1/RRM2) has an essential role in converting ribonucleoside diphosphate to 2'-deoxyribonucleoside diphosphate to maintain the homeostasis of nucleotide pools. RRM2 is a prognostic biomarker and predicts poor survival of CRC. In addition, increased RRM2 activity is associated with malignant transformation and tumor cell growth. Bioinformatics analyses show that RRM2 was overexpressed in CRC and might be an attractive target for treating CRC. Therefore, we attempted to search novel RRM2 inhibitors by using a gene expression signature-based approach, connectivity MAP (CMAP). The result predicted GW8510, a cyclin-dependent kinase inhibitor, as a potential RRM2 inhibitor. Western blot analysis indicated that GW8510 inhibited RRM2 expression through promoting its proteasomal degradation. In addition, GW8510 induced autophagic cell death. In addition, the sensitivities of CRC cells to GW8510 were associated with the levels of RRM2 and endogenous autophagic flux. Taken together, our study indicates that GW8510 could be a potential anti-CRC agent through targeting RRM2.
Collapse
|