1
|
Zhu W, Cheng X, Zhang H, Li J, Li L, Wei H, Zhang S. Cholic acid inhibits ovarian steroid hormone synthesis and follicular development through farnesoid X receptor signaling in mice. Int J Biol Macromol 2025; 301:140458. [PMID: 39884637 DOI: 10.1016/j.ijbiomac.2025.140458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
This study investigated the effects of cholic acid (CA) on steroid hormone synthesis and follicular development in mouse ovaries and the regulatory mechanism of CA on the expression of steroidogenesis-related genes in granulosa cells. The mice were divided into control and CA groups, and serum and ovarian samples were collected after 1, 2, and 4 months of treatment, respectively. The results showed that CA treatment for 1, 2, and 4 months reduced ovarian weights, disrupted the estrous cycle, decreased the numbers of antral follicles and corpora lutea, and lowered the serum levels of progesterone and estradiol. Moreover, in the ovary, CA treatment upregulated the expression of farnesoid X receptor (FXR) and downregulated the expression of steroidogenesis-related genes, including StAR, CYP11A1, and HSD3B1. Mechanistically, FXR knockdown reversed the inhibitory effects of CA on steroidogenesis-related gene expression and cholesterol uptake in granulosa cells. In vitro follicle culture experiments further confirmed that CA suppressed follicle development, decreased the mRNA expression of steroidogenesis-related genes, and reduced progesterone and estradiol secretion. Collectively, our results demonstrated that CA inhibited follicular development and steroid hormone synthesis through FXR signaling.
Collapse
Affiliation(s)
- Wenjun Zhu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaochan Cheng
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hengyu Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiahao Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Li Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Hengxi Wei
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Shouquan Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Sauzéat L, Moreira M, Holota H, Beaudoin C, Volle DH. Unveiling the hidden impact of long-term metal-rich volcanic pollution on male reproductive functions using isotope metallomics. ENVIRONMENT INTERNATIONAL 2025; 198:109388. [PMID: 40132441 DOI: 10.1016/j.envint.2025.109388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/06/2025] [Accepted: 03/15/2025] [Indexed: 03/27/2025]
Abstract
Volcanic eruptions release particles in a range of sizes that can chronically affect the health of communities within tens of kilometers of the volcano. Many years after an eruption, resuspension of volcanic ash can exacerbate the health impact of primary eruptive events. So far, our global understanding of the health effects triggered by chronic exposure to volcanic particles at the whole-body scale is limited. Recently, it has been shown that mice chronically exposed to metal-rich volcanic ash deposits present metallome deregulations associated with pathophysiological changes. These deregulations preferentially impact the reproductive functions, questioning about the impact of ash on fertility. This work aims to further assess the mechanisms driving the ash-related fertility disorders and develop predictive biomarkers. For that, elemental concentrations and Cu-Zn-Fe isotope measurements coupled to metabolomic, proteomic and transcriptomic analyses were measured in blood, liver and two organs of the male reproductive system (testis, seminal vesicle). The samples were collected on wild-type and mice exposed over two months to volcanic ash. Mice exposed to ash are characterized by (i) significant metallomic deregulations, (ii) higher oxidative stress correlating with isotopic variations of redox-sensitive elements and (iii) testicular and hepatic alterations, marked by gains in organ mass, hepatic lipid accumulation and circulating bile acids overload, all of which might exacerbate testicular defects. Together, these results demonstrate that prolonged exposure to metal-rich ash is a threat for male reproduction and that investigating redox-sensitive isotopes might help identifying early signs of oxidative stress-related testicular injuries, with future implications for hepato-testicular disease prevention.
Collapse
Affiliation(s)
- Lucie Sauzéat
- Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, F-63000 Clermont-Ferrand, France; Université Clermont Auvergne, CNRS UMR 6293, Inserm U1103, Institut de Génétique, Reproduction et Développement, F-63000 Clermont-Ferrand, France.
| | - Mélanie Moreira
- Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, F-63000 Clermont-Ferrand, France
| | - Hélène Holota
- Université Clermont Auvergne, CNRS UMR 6293, Inserm U1103, Institut de Génétique, Reproduction et Développement, F-63000 Clermont-Ferrand, France
| | - Claude Beaudoin
- Université Clermont Auvergne, CNRS UMR 6293, Inserm U1103, Institut de Génétique, Reproduction et Développement, F-63000 Clermont-Ferrand, France
| | - David H Volle
- Université Clermont Auvergne, CNRS UMR 6293, Inserm U1103, Institut de Génétique, Reproduction et Développement, F-63000 Clermont-Ferrand, France
| |
Collapse
|
3
|
Garcia M, Holota H, De Haze A, Saru JP, Sanchez P, Battistelli E, Thirouard L, Monrose M, Benoit G, Volle DH, Beaudoin C. Alternative splicing is an FXRα loss-of-function mechanism and impacts energy metabolism in hepatocarcinoma cells. J Biol Chem 2025; 301:108022. [PMID: 39608717 PMCID: PMC11758954 DOI: 10.1016/j.jbc.2024.108022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 11/30/2024] Open
Abstract
Farnesoid X receptor α (FXRα, NR1H4) is a bile acid-activated nuclear receptor that regulates the expression of glycolytic and lipogenic target genes by interacting with the 9-cis-retinoic acid receptor α (RXRα, NR2B1). Along with cofactors, the FXRα proteins reported thus far in humans and rodents have been observed to regulate both isoform (α1-4)- and tissue-specific gene expression profiles to integrate energy balance and metabolism. Here, we studied the biological functions of an FXRα naturally occurring spliced exon 5 isoform (FXRαse5) lacking the second zinc-binding module of the DNA-binding domain. We demonstrate spliced exon 5 FXRα expression in all FXRα-expressing human and mouse tissues and cells, and that it is unable to bind to its response element or activate FXRα dependent transcription. In parallel, this spliced variant displays differential interaction capacities with its obligate heterodimer partner retinoid X receptor α that may account for silencing of this permissive dimer for signal transduction. Finally, deletion of exon 5 by gene edition in HepG2 cells leads to FXRα loss-of-function, increased expression of LRH1 metabolic sensor and CD36 fatty acid transporter in conjunction with changes in glucose and triglycerides homeostasis. Together, these findings highlight a novel mechanism by which alternative splicing may regulate FXRα gene function to fine-tune adaptive and/or metabolic responses. This finding deepens our understanding on the role of splicing events in hindering FXRα activity to regulate specific transcriptional programs and their contribution in modifying energy metabolism in normal tissues and metabolic diseases.
Collapse
Affiliation(s)
- Manon Garcia
- Université Clermont Auvergne, CNRS UMR6293, INSERM U1103, iGReD Team-Volle, Clermont-Ferrand, France
| | - Hélène Holota
- Université Clermont Auvergne, CNRS UMR6293, INSERM U1103, iGReD Team-Volle, Clermont-Ferrand, France
| | - Angélique De Haze
- Université Clermont Auvergne, CNRS UMR6293, INSERM U1103, iGReD Team-Volle, Clermont-Ferrand, France
| | - Jean-Paul Saru
- Université Clermont Auvergne, CNRS UMR6293, INSERM U1103, iGReD Team-Volle, Clermont-Ferrand, France
| | - Phelipe Sanchez
- Université Clermont Auvergne, CNRS UMR6293, INSERM U1103, iGReD Team-Volle, Clermont-Ferrand, France
| | - Edwige Battistelli
- Université Clermont Auvergne, CNRS UMR6293, INSERM U1103, iGReD Team-Volle, Clermont-Ferrand, France
| | - Laura Thirouard
- Université Clermont Auvergne, CNRS UMR6293, INSERM U1103, iGReD Team-Volle, Clermont-Ferrand, France
| | - Mélusine Monrose
- Université Clermont Auvergne, CNRS UMR6293, INSERM U1103, iGReD Team-Volle, Clermont-Ferrand, France
| | - Gérard Benoit
- Université de Rennes 1, CNRS UMR6290, INSERM U1305, IGDR, Rennes Cedex, France
| | - David H Volle
- Université Clermont Auvergne, CNRS UMR6293, INSERM U1103, iGReD Team-Volle, Clermont-Ferrand, France; Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France.
| | - Claude Beaudoin
- Université Clermont Auvergne, CNRS UMR6293, INSERM U1103, iGReD Team-Volle, Clermont-Ferrand, France; Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France.
| |
Collapse
|
4
|
Wang X, Wen Q, Wu H, Peng W, Cai K, Tan Z, Na W, Wu K. Effect of Sex on Intestinal Microbial Metabolites of Hainan Special Wild Boars. Animals (Basel) 2024; 14:2164. [PMID: 39123691 PMCID: PMC11310994 DOI: 10.3390/ani14152164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/01/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
The intestinal microbiota and its metabolites are essential for the health and growth development of animals. Current research indicates that sex has a certain impact on the structure and function of the intestinal microbiota, but there are few reports on sex differences in intestinal microbiota metabolites, including those of castrated male animals. This study aimed to explore the impact of sex on the intestinal microbial metabolites of Hainan special wild boars (10 entire male pigs, 10 female pigs, and 10 castrated male pigs, denoted EM, FE, and CM, respectively) by employing non-targeted metabolomics and gas chromatography. A total of 1086 metabolites were detected, with the greatest number of differential metabolites observed between EM and FE (54 differential metabolites, including 18 upregulated and 36 downregulated metabolites), the fewest between CM and FE (7 differential metabolites, including 1 upregulated and 6 downregulated metabolites), and an intermediate number between CM and EM (47 differential metabolites, including 35 upregulated and 12 downregulated metabolites). Differential metabolites were involved in more pathways between EM and FE and between CM and EM, including amino acid metabolism and digestive system pathways, whereas differential metabolites were involved in the fewest pathways between CM and FE. Correlation analysis showed Ruminococcaceae UCG-009, uncultured_bacterium_o_SAR324_cladeMarine_group_B, and Candidatus Saccharimonas contributed to the production of metabolites such as trehalose, docosatrienoic acid, D(-)-beta-hydroxy butyric acid, and acetyl-DL-leucine. The levels of acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, and isovaleric acid were significantly higher in EM than in FE, with CM falling between the two. Streptococcus, Lachnospiraceae_NK4A136_group and Rikenellaceae_RC9_gut_group showed a significant positive correlation with the production of short-chain fatty acids (SCFAs), while [Eubacterium]_coprostanoligenes_group, uncultured_bacterium_f_p-251-o5 and Ruminococcaceae_UCG-005 showed a significant negative correlation with the generation of SCFAs. This study provides foundational data and significant insights into precision feeding strategies for Hainan special wild boars of different sexes, as well as the study of sex differences in intestinal microbial metabolites in animals.
Collapse
Affiliation(s)
- Xiaozhe Wang
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China; (X.W.); (K.W.)
- Sanya Institute, China Agricultural University, Sanya 572024, China
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Qiong Wen
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China; (X.W.); (K.W.)
- Wuhan Xiangda Feedstuff Co., Ltd., Wuhan 430045, China
| | - Hongfen Wu
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China; (X.W.); (K.W.)
| | - Wenchuan Peng
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China; (X.W.); (K.W.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Keqi Cai
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China; (X.W.); (K.W.)
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Zhen Tan
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China; (X.W.); (K.W.)
| | - Wei Na
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China; (X.W.); (K.W.)
| | - Kebang Wu
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China; (X.W.); (K.W.)
| |
Collapse
|
5
|
Fogelson KA, Dorrestein PC, Zarrinpar A, Knight R. The Gut Microbial Bile Acid Modulation and Its Relevance to Digestive Health and Diseases. Gastroenterology 2023; 164:1069-1085. [PMID: 36841488 PMCID: PMC10205675 DOI: 10.1053/j.gastro.2023.02.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/27/2023]
Abstract
The human gut microbiome has been linked to numerous digestive disorders, but its metabolic products have been much less well characterized, in part due to the expense of untargeted metabolomics and lack of ability to process the data. In this review, we focused on the rapidly expanding information about the bile acid repertoire produced by the gut microbiome, including the impacts of bile acids on a wide range of host physiological processes and diseases, and discussed the role of short-chain fatty acids and other important gut microbiome-derived metabolites. Of particular note is the action of gut microbiome-derived metabolites throughout the body, which impact processes ranging from obesity to aging to disorders traditionally thought of as diseases of the nervous system, but that are now recognized as being strongly influenced by the gut microbiome and the metabolites it produces. We also highlighted the emerging role for modifying the gut microbiome to improve health or to treat disease, including the "engineered native bacteria'' approach that takes bacterial strains from a patient, modifies them to alter metabolism, and reintroduces them. Taken together, study of the metabolites derived from the gut microbiome provided insights into a wide range of physiological and pathophysiological processes, and has substantial potential for new approaches to diagnostics and therapeutics of disease of, or involving, the gastrointestinal tract.
Collapse
Affiliation(s)
- Kelly A Fogelson
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California; Department of Pediatrics, University of California San Diego, San Diego, California; Center for Microbiome Innovation, University of California San Diego, San Diego, California.
| | - Amir Zarrinpar
- Center for Microbiome Innovation, University of California San Diego, San Diego, California; Division of Gastroenterology, Jennifer Moreno Department of Veterans Affairs Medical Center, San Diego, California; Division of Gastroenterology, University of California San Diego, San Diego, California; Institute of Diabetes and Metabolic Health, University of California San Diego, San Diego, California.
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, San Diego, California; Center for Microbiome Innovation, University of California San Diego, San Diego, California; Department of Bioengineering, University of California San Diego, San Diego, California; Department of Computer Science and Engineering, University of California San Diego, San Diego, California.
| |
Collapse
|
6
|
Identification of the Role of TGR5 in the Regulation of Leydig Cell Homeostasis. Int J Mol Sci 2022; 23:ijms232315398. [PMID: 36499726 PMCID: PMC9738292 DOI: 10.3390/ijms232315398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Understanding the regulation of the testicular endocrine function leading to testosterone production is a major objective as the alteration of endocrine function is associated with the development of many diseases such as infertility. In the last decades, it has been demonstrated that several endogenous molecules regulate the steroidogenic pathway. Among them, bile acids have recently emerged as local regulators of testicular physiology and particularly endocrine function. Bile acids act through the nuclear receptor FXRα (Farnesoid-X-receptor alpha; NR1H4) and the G-protein-coupled bile acid receptor (GPBAR-1; TGR5). While FXRα has been demonstrated to regulate testosterone synthesis within Leydig cells, no data are available regarding TGR5. Here, we investigated the potential role of TGR5 within Leydig cells using cell culture approaches combined with pharmacological exposure to the TGR5 agonist INT-777. The data show that activation of TGR5 results in a decrease in testosterone levels. TGR5 acts through the PKA pathway to regulate steroidogenesis. In addition, our data show that TGR5 activation leads to an increase in cholesterol ester levels. This suggests that altered lipid homeostasis may be a mechanism explaining the TGR5-induced decrease in testosterone levels. In conclusion, the present work highlights the impact of the TGR5 signaling pathway on testosterone production and reinforces the links between bile acid signaling pathways and the testicular endocrine function. The testicular bile acid pathways need to be further explored to increase our knowledge of pathologies associated with impaired testicular endocrine function, such as fertility disorders.
Collapse
|
7
|
Bone C, Squires EJ. Nuclear Receptor Pathways Mediating the Development of Boar Taint. Metabolites 2022; 12:metabo12090785. [PMID: 36144190 PMCID: PMC9503508 DOI: 10.3390/metabo12090785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
The nuclear receptors PXR, CAR, and FXR are activated by various ligands and function as transcription factors to control the expression of genes that regulate the synthesis and metabolism of androstenone and skatole. These compounds are produced in entire male pigs and accumulate in the fat to cause the development of a meat quality issue known as boar taint. The extent of this accumulation is influenced by the synthesis and hepatic clearance of androstenone and skatole. For this reason, PXR, CAR, and FXR-mediated signaling pathways have garnered interest as potential targets for specialized treatments designed to reduce the development of boar taint. Recent research has also identified several metabolites produced by gut microbes that act as ligands for these nuclear receptors (e.g., tryptophan metabolites, short-chain fatty acids, bile acids); however, the connection between the gut microbiome and boar taint development is not clear. In this review, we describe the nuclear receptor signaling pathways that regulate the synthesis and metabolism of boar taint compounds and outline the genes involved. We also discuss several microbial-derived metabolites and dietary additives that are known or suspected nuclear receptor ligands and suggest how these compounds could be used to develop novel treatments for boar taint.
Collapse
|
8
|
Ueda H, Honda A, Miyazaki T, Morishita Y, Hirayama T, Iwamoto J, Nakamoto N, Ikegami T. Sex-, age-, and organ-dependent improvement of bile acid hydrophobicity by ursodeoxycholic acid treatment: A study using a mouse model with human-like bile acid composition. PLoS One 2022; 17:e0271308. [PMID: 35819971 PMCID: PMC9275687 DOI: 10.1371/journal.pone.0271308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022] Open
Abstract
Cyp2a12-/-Cyp2c70-/- double knockout (DKO) mice have a human-like hydrophobic bile acid (BA) composition and show reduced fertility and liver injury. Ursodeoxycholic acid (UDCA) is a hydrophilic and cytoprotective BA used to treat various liver injuries in humans. This study investigated the effects of orally administered UDCA on fertility and liver injury in DKO mice. UDCA treatment prevented abnormal delivery (miscarriage and preterm birth) in pregnant DKO mice, presumably by increasing the hydrophilicity of serum BAs. UDCA also prevented liver damage in six-week-old DKO mice, however liver injury emerged in UDCA-treated 20-week-old female, but not male, DKO mice. In 20-week-old male UDCA-treated DKO mice, conjugated plus unconjugated UDCA proportions in serum, liver, and bile were 71, 64, and 71% of the total BAs, respectively. In contrast, conjugated plus unconjugated UDCA proportions in serum, liver, and bile of females were 56, 34, and 58% of the total BAs, respectively. The UDCA proportion was considerably low in female liver only and was compensated by highly hydrophobic lithocholic acid (LCA). Therefore, UDCA treatment markedly reduced the BA hydrophobicity index in the male liver but not in females. This appears to be why UDCA treatment causes liver injury in 20-week-old female mice. To explore the cause of LCA accumulation in the female liver, we evaluated the hepatic activity of CYP3A11 and SULT2A1, which metabolize LCAs to more hydrophilic BAs. However, there was no evidence to suggest that either enzyme activity was lower in females than in males. As female mice have a larger BA pool than males, excessive loading of LCAs on the hepatic bile salt export pump (BSEP) may be the reason for the hepatic accumulation of LCAs in female DKO mice with prolonged UDCA treatment. Our results suggest that the improvement of BA hydrophobicity in DKO mice by UDCA administration is sex-, age-, and organ-dependent.
Collapse
Affiliation(s)
- Hajime Ueda
- Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Akira Honda
- Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan.,Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Teruo Miyazaki
- Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Yukio Morishita
- Diagnostic Pathology Division, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Takeshi Hirayama
- Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Junichi Iwamoto
- Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Nobuhiro Nakamoto
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Keio University School of Medicine, Tokyo, Japan
| | - Tadashi Ikegami
- Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| |
Collapse
|
9
|
Gao L, Gao D, Zhang J, Li C, Wu M, Xiao Y, Yang L, Ma T, Wang X, Zhang M, Yang D, Pan T, Zhang H, Wang A, Jin Y, Chen H. Age-related endoplasmic reticulum stress represses testosterone synthesis via attenuation of the circadian clock in Leydig cells. Theriogenology 2022; 189:137-149. [PMID: 35753227 DOI: 10.1016/j.theriogenology.2022.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 11/18/2022]
Abstract
Senile animals exhibit a high risk of elevated endoplasmic reticulum (ER) stress, attenuated circadian clock, and impaired steroidogenesis in testes. However, how these three processes are intertwined in mouse Leydig cells remains unclear. In this study, a mouse model of aging and hydrogen peroxide (H2O2)-induced senescent TM3 Leydig cells were used to dissect the connections among ER stress, circadian oscillators, and steroidogenesis in Leydig cells. Additionally, thapsigargin (Tg, 60 nM)/tunicamycin (Tm, 60 ng/mL)-induced ER stress were established to investigate the underlying mechanisms by which ER stress regulated testosterone synthesis via circadian clock-related signaling pathways in TM3 cells and primary Leydig cells. Elevated ER stress, attenuated circadian clock, and diminished steroidogenesis were detected in the testes of aged mice (24-month-old) and H2O2-induced (200 μM) senescent TM3 cells in comparison with their control groups. Tg/Tm-induced ER stress reduced the transcription of the circadian clock and steroidogenic genes in TM3 cells and LH-treated (100 ng/mL) primary Leydig cells. Furthermore, 4-phenylbutyric acid (4-PBA, 1 μM), an inhibitor of ER stress, alleviated the inhibitory effect of Tg-mediated ER stress on Per2:Luc oscillations in primary Leydig cells isolated from mPer2Luc knock-in mice, and attenuated the repressive effect of H2O2-induced or Tg-mediated ER stress on the transcription of circadian clock and steroidogenic genes expression and testosterone synthesis in TM3 cells. Collectively, these data indicate that age-related ER stress represses testosterone synthesis via attenuation of the circadian clock in Leydig cells.
Collapse
Affiliation(s)
- Lei Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; College of Agriculture and Animal Husbandry, Qing Hai University, Xining, 810006, Qinghai, China
| | - Dengke Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jing Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Cuimei Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Meina Wu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Yaoyao Xiao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Luda Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Tiantian Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaoyu Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Manhui Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Dan Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Tao Pan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Haisen Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Aihua Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yaping Jin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Huatao Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
10
|
Thirouard L, Holota H, Monrose M, Garcia M, de Haze A, Damon‐Soubeyrand C, Renaud Y, Saru J, Perino A, Schoonjans K, Beaudoin C, Volle DH. Identification of a Crosstalk among TGR5, GLIS2, and TP53 Signaling Pathways in the Control of Undifferentiated Germ Cell Homeostasis and Chemoresistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200626. [PMID: 35435331 PMCID: PMC9189661 DOI: 10.1002/advs.202200626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Spermatogonial stem cells regenerate and maintain spermatogenesis throughout life, making testis a good model for studying stem cell biology. The effects of chemotherapy on fertility have been well-documented previously. This study investigates how busulfan, an alkylating agent that is often used for chemotherapeutic purposes, affects male fertility. Specifically, the role of the TGR5 pathway is investigated on spermatogonia homeostasis using in vivo, in vitro, and pharmacological methods. In vivo studies are performed using wild-type and Tgr5-deficient mouse models. The results clearly show that Tgr5 deficiency can facilitate restoration of the spermatogonia homeostasis and allow faster resurgence of germ cell lineage after exposure to busulfan. TGR5 modulates the expression of key genes of undifferentiated spermatogonia such as Gfra1 and Fgfr2. At the molecular level, the present data highlight molecular mechanisms underlying the interactions among the TGR5, GLIS2, and TP53 pathways in spermatogonia associated with germ cell apoptosis following busulfan exposure. This study makes a significant contribution to the literature because it shows that TGR5 plays key role on undifferentiated germ cell homeostasis and that modulating the TGR5 signaling pathway could be used as a potential therapeutic tool for fertility disorders.
Collapse
Affiliation(s)
- Laura Thirouard
- INSERM U1103Université Clermont AuvergneCNRS UMR‐6293GReD InstituteTeam‐VolleClermont‐FerrandF‐63037France
| | - Hélène Holota
- INSERM U1103Université Clermont AuvergneCNRS UMR‐6293GReD InstituteTeam‐VolleClermont‐FerrandF‐63037France
| | - Mélusine Monrose
- INSERM U1103Université Clermont AuvergneCNRS UMR‐6293GReD InstituteTeam‐VolleClermont‐FerrandF‐63037France
| | - Manon Garcia
- INSERM U1103Université Clermont AuvergneCNRS UMR‐6293GReD InstituteTeam‐VolleClermont‐FerrandF‐63037France
| | - Angélique de Haze
- INSERM U1103Université Clermont AuvergneCNRS UMR‐6293GReD InstituteTeam‐VolleClermont‐FerrandF‐63037France
| | | | - Yoan Renaud
- INSERM U1103Université Clermont AuvergneCNRS UMR‐6293GReD InstituteBio‐informatic facilityClermont‐FerrandF‐63037France
| | - Jean‐Paul Saru
- INSERM U1103Université Clermont AuvergneCNRS UMR‐6293GReD InstituteTeam‐VolleClermont‐FerrandF‐63037France
| | - Alessia Perino
- Laboratory of Metabolic SignalingInstitute of BioengineeringSchool of Life SciencesEcole Polytechnique Fédérale de LausanneLausanneCH‐1015Switzerland
| | - Kristina Schoonjans
- Laboratory of Metabolic SignalingInstitute of BioengineeringSchool of Life SciencesEcole Polytechnique Fédérale de LausanneLausanneCH‐1015Switzerland
| | - Claude Beaudoin
- INSERM U1103Université Clermont AuvergneCNRS UMR‐6293GReD InstituteTeam‐VolleClermont‐FerrandF‐63037France
| | - David H. Volle
- INSERM U1103Université Clermont AuvergneCNRS UMR‐6293GReD InstituteTeam‐VolleClermont‐FerrandF‐63037France
| |
Collapse
|
11
|
Analysis of the Reversible Impact of the Chemodrug Busulfan on Mouse Testes. Cells 2021; 10:cells10092403. [PMID: 34572051 PMCID: PMC8472455 DOI: 10.3390/cells10092403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 12/21/2022] Open
Abstract
Spermatogenesis is a process within the testis that leads to the production of spermatozoa. It is based on a population of spermatogonial stem cells, which have the capacity to self-renew and to differentiate throughout life to ensure the functions of reproduction are maintained. Male fertility disorders are responsible for half of the cases of infertility in couples worldwide. It is well known that cancer treatments are associated with reversible or irreversible fertility disorders. Busulfan (Bu) is an alkylating agent that significantly inhibits spermatogenesis. The present study relied on a combination of in vivo and in vitro approaches as well as RNAseq analysis to characterize the effects of Bu, in which mouse testes were used as a model. An in silico analysis revealed that many of the Bu-modulated genes are potentially regulated by the SIN3 Transcription Regulator Family Member A (SIN3A) and E2F Transcription Factor (E2F) families of transcription factors. The results demonstrate that the deregulated genes function in processes related to the cell cycle, DNA repair, and cell death mechanisms, including the Tumor Protein 53 (TP53) pathway. This reinforces the role of the TP53 signaling pathway as a major player in Bu effects. In addition, Bu altered the patterns of mRNA accumulation for various genes in undifferentiated spermatogonia. This work provides significant insight into the kinetics and impacts of busulfan, which could pave the way for developing strategies to minimize the impact of chemodrugs and, thus, could lead to germ cell lineage regeneration following anticancer treatments.
Collapse
|
12
|
Bakhtyukov AA, Derkach KV, Romanova IV, Sorokoumov VN, Sokolova TV, Govdi AI, Morina IY, Perminova AA, Shpakov AO. Effect of Low-Molecular-Weight Allosteric
Agonists of the Luteinizing Hormone Receptor on Its Expression and Distribution
in Rat Testes. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021020034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Holota H, Thirouard L, Monrose M, Garcia M, De Haze A, Saru JP, Caira F, Beaudoin C, Volle DH. FXRα modulates leydig cell endocrine function in mouse. Mol Cell Endocrinol 2020; 518:110995. [PMID: 32827571 DOI: 10.1016/j.mce.2020.110995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/27/2020] [Accepted: 08/14/2020] [Indexed: 01/14/2023]
Abstract
The hypothalamic-pituitary axis exert a major control over endocrine and exocrine testicular functions. The hypothalamic-pituitary axis corresponds to a cascade with the Gonadotropin Releasing Hormone secreted by the hypothalamus, which stimulates the synthesis and the release of Luteinizing Hormone (LH) and Follicle Stimulating Hormone by the gonadotropic cells of the anterior pituitary. The LH signaling pathway controls the steroidogenic activity of the Leydig cells via the activation of the luteinizing hormone/choriogonadotropin receptor. In order to avoid a runaway system, sex steroids exert a negative feedback within hypothalamus and pituitary. Testicular steroidogenesis is locally controlled within Leydig cells. The present work reviews some local regulations of steroidogenesis within the Leydig cells focusing mainly on the roles of the Farnesoid-X-Receptor-alpha and its interactions with several orphan members of the nuclear receptor superfamily. Further studies are required to reinforce our knowledge of the regulation of testicular endocrine function, which is necessary to ensure a better understanding of fertility disorders and then proposed an adequate treatment of the diseases.
Collapse
Affiliation(s)
- Hélène Holota
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France
| | - Laura Thirouard
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France
| | - Mélusine Monrose
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France
| | - Manon Garcia
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France
| | - Angélique De Haze
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France
| | - Jean-Paul Saru
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France
| | - Françoise Caira
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France
| | - Claude Beaudoin
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France
| | - David H Volle
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France.
| |
Collapse
|
14
|
Monrose M, Thirouard L, Garcia M, Holota H, De Haze A, Caira F, Beaudoin C, Volle DH. New perspectives on PPAR, VDR and FXRα as new actors in testicular pathophysiology. Mol Aspects Med 2020; 78:100886. [PMID: 32878696 DOI: 10.1016/j.mam.2020.100886] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/21/2022]
Abstract
The incidence of reproductive disorders is constantly increasing and affects 15% of couples, with male's abnormalities diagnosed in almost half of the cases. The male gonads exert two major functions of the testis with the productions of gametes (exocrine function) and of sexual hormones (endocrine function). In the last decades, next to steroid receptors such as estrogen and androgen receptors, the involvement of other members of the nuclear receptor superfamily have been described such as Steroidogenic factor-1 (SF-1), Nerve growth factor IB (NGFIB), Liver-X-Receptorα (LXRα) and Dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1 (DAX-1). The purpose of this review is to highlight the emerging roles of some members of the nuclear receptor superfamily among which the vitamin-D Receptor (VDR), Peroxisome Proliferator-Activated Receptor (PPAR), Farnesoid-X-Receptor-α (FXRα). We discuss how these receptors could participate to explain male fertility disorders; and their potential to be use as biomarkers or therapeutic targets for management of fertility disorders.
Collapse
Affiliation(s)
- M Monrose
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France
| | - L Thirouard
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France
| | - M Garcia
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France
| | - H Holota
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France
| | - A De Haze
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France
| | - F Caira
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France
| | - C Beaudoin
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France
| | - D H Volle
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France.
| |
Collapse
|
15
|
Garcia M, Thirouard L, Monrose M, Holota H, De Haze A, Caira F, Beaudoin C, Volle DH. Farnesoid X receptor alpha (FXRα) is a critical actor of the development and pathologies of the male reproductive system. Cell Mol Life Sci 2019; 76:4849-4859. [PMID: 31407019 PMCID: PMC11105758 DOI: 10.1007/s00018-019-03247-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 12/01/2022]
Abstract
The farnesoid-X-receptorα (FXRα; NR1H4) is one of the main bile acid (BA) receptors. During the last decades, through the use of pharmalogical approaches and transgenic mouse models, it has been demonstrated that the nuclear receptor FXRα controls numerous physiological functions such as glucose or energy metabolisms. It is also involved in the etiology or the development of several pathologies. Here, we will review the unexpected roles of FXRα on the male reproductive tract. FXRα has been demonstrated to play functions in the regulation of testicular and prostate homeostasis. Even though additional studies are needed to confirm these findings in humans, the reviewed reports open new field of research to better define the effects of bile acid-FXRα signaling pathways on fertility disorders and cancers.
Collapse
Affiliation(s)
- Manon Garcia
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, 28 Place Henri Dunant, 63001, Clermont-Ferrand, France
| | - Laura Thirouard
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, 28 Place Henri Dunant, 63001, Clermont-Ferrand, France
| | - Mélusine Monrose
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, 28 Place Henri Dunant, 63001, Clermont-Ferrand, France
| | - Hélène Holota
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, 28 Place Henri Dunant, 63001, Clermont-Ferrand, France
| | - Angélique De Haze
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, 28 Place Henri Dunant, 63001, Clermont-Ferrand, France
| | - Françoise Caira
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, 28 Place Henri Dunant, 63001, Clermont-Ferrand, France
| | - Claude Beaudoin
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, 28 Place Henri Dunant, 63001, Clermont-Ferrand, France.
| | - David H Volle
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, 28 Place Henri Dunant, 63001, Clermont-Ferrand, France.
| |
Collapse
|
16
|
Holota H, Thirouard L, Garcia M, Monrose M, de Haze A, Saru JP, Caira F, Beaudoin C, Volle DH. Fxralpha gene is a target gene of hCG signaling pathway and represses hCG induced steroidogenesis. J Steroid Biochem Mol Biol 2019; 194:105460. [PMID: 31470110 DOI: 10.1016/j.jsbmb.2019.105460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/19/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022]
Abstract
The bile acid receptor Farnesoid-X-Receptor alpha (FXRα), a member of the nuclear receptor superfamily, is well known for its roles in the enterohepatic tract. In addition, FXRα regulates testicular physiology through the control of both endocrine and exocrine functions. The endocrine function of the Leydig cells is mainly controlled by the hypothalamo-pituitary axis viaLH/chorionic gonadotropin (CG). If FXRα was demonstrated to control the expression of the Lhcgr gene, encoding the LH receptor; the impact of the LH/CG signaling on the Fxrα expression has not been defined so far. Here, we demonstrate that hCG increases the Fxrα gene expression through the protein kinase-A signaling pathway. Fxrα is then involved in a negative feedback of steroid synthesis. These data improve our knowledge of the local control of the testicular steroidogenesis with the identification of the link between the hypothalamo-pituitary axis and the FXRα signaling pathway.
Collapse
Affiliation(s)
- Hélène Holota
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001 Clermont-Ferrand, France
| | - Laura Thirouard
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001 Clermont-Ferrand, France
| | - Manon Garcia
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001 Clermont-Ferrand, France
| | - Mélusine Monrose
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001 Clermont-Ferrand, France
| | - Angélique de Haze
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001 Clermont-Ferrand, France
| | - Jean-Paul Saru
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001 Clermont-Ferrand, France
| | - Françoise Caira
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001 Clermont-Ferrand, France
| | - Claude Beaudoin
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001 Clermont-Ferrand, France.
| | - David H Volle
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001 Clermont-Ferrand, France.
| |
Collapse
|
17
|
Wang L, Lu M, Zhang R, Guo W, Lin P, Yang D, Chen H, Tang K, Zhou D, Wang A, Jin Y. Inhibition of Luman/CREB3 expression leads to the upregulation of testosterone synthesis in mouse Leydig cells. J Cell Physiol 2019; 234:15257-15269. [PMID: 30673139 DOI: 10.1002/jcp.28171] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Luman, also known as cAMP-response element-binding protein 3, is an endoplasmic reticulum stress-related protein that has been identified as a novel transcriptional coregulator of a variety of nuclear receptors. Herein, immunohistochemistry results showed that Luman was specifically expressed in mouse Leydig cells in an age-dependent increase manner, from prepuberty to sexual maturation. Luman was not detected in Sertoli cells within the seminiferous tubules at any developmental period. The immunofluorescent experiment indicated that Luman was mainly located within the cytoplasm of murine Leydig tumor cells (MLTC-1) and primary Leydig cells (PLCs). To investigate the physiological function of Luman, experiments were conducted to examine the consequences of short hairpin RNA- and small interfering RNA-mediated Luman knock-down in MLTC-1 and PLCs, respectively. Luman knock-down significantly upregulated the expression of steroidogenic acute regulatory, cytochrome P450 cholesterol side-chain cleavage enzymes, 3β-hydroxysteroid dehydrogenase, and 17-α-hydroxylase/C17-20 lyase in MLTC-1 cells and PLCs. Luman knock-down caused an increase in human chorionic gonadotropin-stimulated testosterone production in vitro and in vivo. The nuclear receptors SF-1 and Nur-77 were significantly increased upon Luman knock-down in MLTC-1. By contrast, the level of the nuclear receptor SHP decreased. Luciferase reporter assay results demonstrated that Luman knock-down upregulated the activity of SF-1 and Nur-77 promoters. These data suggested that Luman expressed in mouse Leydig cells in an age-dependent increase manner. Luman knock-down upregulated the activity of SF-1 and Nur-77 promoters, which lead to the increase of testosterone synthesis and steroidogenesis genes expression. In conclusion, these findings provide us with new insights into the role Luman played in male reproduction.
Collapse
Affiliation(s)
- Lei Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Minjie Lu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruixue Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenwen Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengfei Lin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Diqi Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Huatao Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Keqiong Tang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Dong Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Aihua Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yaping Jin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
18
|
Nuclear Receptor Metabolism of Bile Acids and Xenobiotics: A Coordinated Detoxification System with Impact on Health and Diseases. Int J Mol Sci 2018; 19:ijms19113630. [PMID: 30453651 PMCID: PMC6274770 DOI: 10.3390/ijms19113630] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023] Open
Abstract
Structural and functional studies have provided numerous insights over the past years on how members of the nuclear hormone receptor superfamily tightly regulate the expression of drug-metabolizing enzymes and transporters. Besides the role of the farnesoid X receptor (FXR) in the transcriptional control of bile acid transport and metabolism, this review provides an overview on how this metabolic sensor prevents the accumulation of toxic byproducts derived from endogenous metabolites, as well as of exogenous chemicals, in coordination with the pregnane X receptor (PXR) and the constitutive androstane receptor (CAR). Decrypting this network should provide cues to better understand how these metabolic nuclear receptors participate in physiologic and pathologic processes with potential validation as therapeutic targets in human disabilities and cancers.
Collapse
|
19
|
Baptissart M, Sèdes L, Holota H, Thirouard L, Martinot E, de Haze A, Rouaisnel B, Caira F, Beaudoin C, Volle DH. Multigenerational impacts of bile exposure are mediated by TGR5 signaling pathways. Sci Rep 2018; 8:16875. [PMID: 30443025 PMCID: PMC6237852 DOI: 10.1038/s41598-018-34863-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 08/16/2018] [Indexed: 01/26/2023] Open
Abstract
Besides their well-known roles in digestion and fat solubilization, bile acids (BAs) have been described as signaling molecules activating the nuclear receptor Farnesoid-X-receptor (FXRα) or the G-protein-coupled bile acid receptor-1 (GPBAR-1 or TGR5). In previous reports, we showed that BAs decrease male fertility due to abnormalities of the germ cell lineage dependent on Tgr5 signaling pathways. In the presentstudy, we tested whether BA exposure could impact germ cell DNA integrity leading to potential implications for progeny. For that purpose, adult F0 male mice were fed a diet supplemented with cholic acid (CA) or the corresponding control diet during 3.5 months prior mating. F1 progeny from CA exposed founders showed higher perinatal lethality, impaired BA homeostasis and reduced postnatal growth, as well as altered glucose metabolism in later life. The majority of these phenotypic traits were maintained up to the F2 generation. In F0 sperm cells, differential DNA methylation associated with CA exposure may contribute to the initial programming of developmental and metabolic defects observed in F1 and F2 offspring. Tgr5 knock-out mice combined with in vitro strategies defined the critical role of paternal Tgr5 dependent pathways in the multigenerational impacts of ancestral CA exposure.
Collapse
Affiliation(s)
- Marine Baptissart
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63000, Clermont-Ferrand, France
| | - Lauriane Sèdes
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63000, Clermont-Ferrand, France
| | - Hélène Holota
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63000, Clermont-Ferrand, France
| | - Laura Thirouard
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63000, Clermont-Ferrand, France
| | - Emmanuelle Martinot
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63000, Clermont-Ferrand, France
| | - Angélique de Haze
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63000, Clermont-Ferrand, France
| | - Betty Rouaisnel
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63000, Clermont-Ferrand, France
| | - Françoise Caira
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63000, Clermont-Ferrand, France
| | - Claude Beaudoin
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63000, Clermont-Ferrand, France
| | - David H Volle
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63000, Clermont-Ferrand, France.
| |
Collapse
|
20
|
Sèdes L, Desdoits-Lethimonier C, Rouaisnel B, Holota H, Thirouard L, Lesne L, Damon-Soubeyrand C, Martinot E, Saru JP, Mazaud-Guittot S, Caira F, Beaudoin C, Jégou B, Volle DH. Crosstalk between BPA and FXRα Signaling Pathways Lead to Alterations of Undifferentiated Germ Cell Homeostasis and Male Fertility Disorders. Stem Cell Reports 2018; 11:944-958. [PMID: 30245210 PMCID: PMC6178796 DOI: 10.1016/j.stemcr.2018.08.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 12/20/2022] Open
Abstract
Several studies have reported an association between the farnesoid X receptor alpha (FXRα) and estrogenic signaling pathways. Fxrα could thus be involved in the reprotoxic effects of endocrine disruptors such as bisphenol-A (BPA). To test this hypothesis, mice were exposed to BPA and/or stigmasterol (S), an FXRα antagonist. Following the exposure to both molecules, wild-type animals showed impaired fertility and lower sperm cell production associated with the alteration of the establishment and maintenance of the undifferentiated germ cell pool. The crosstalk between BPA and FXRα is further supported by the lower impact of BPA in mice genetically ablated for Fxrα and the fact that BPA counteracted the effects of FXRα agonists. These effects might result from the downregulation of Fxrα expression following BPA exposure. BPA and S act additively in human testis. Our data demonstrate that FXRα activity modulates the impact of BPA on male gonads and on undifferentiated germ cell population. BPA and S exposures synergistically induce male fertility disorders BPA regulates Fxr expression BPA and S act additively in human testis
Collapse
Affiliation(s)
- Lauriane Sèdes
- INSERM U 1103, Université Clermont Auvergne, CNRS, UMR 6293, GReD, Laboratoire Génétique, Reproduction & Développement, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Christèle Desdoits-Lethimonier
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Betty Rouaisnel
- INSERM U 1103, Université Clermont Auvergne, CNRS, UMR 6293, GReD, Laboratoire Génétique, Reproduction & Développement, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Hélène Holota
- INSERM U 1103, Université Clermont Auvergne, CNRS, UMR 6293, GReD, Laboratoire Génétique, Reproduction & Développement, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Laura Thirouard
- INSERM U 1103, Université Clermont Auvergne, CNRS, UMR 6293, GReD, Laboratoire Génétique, Reproduction & Développement, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Laurianne Lesne
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Christelle Damon-Soubeyrand
- INSERM U 1103, Université Clermont Auvergne, CNRS, UMR 6293, GReD, Laboratoire Génétique, Reproduction & Développement, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Emmanuelle Martinot
- INSERM U 1103, Université Clermont Auvergne, CNRS, UMR 6293, GReD, Laboratoire Génétique, Reproduction & Développement, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Jean-Paul Saru
- INSERM U 1103, Université Clermont Auvergne, CNRS, UMR 6293, GReD, Laboratoire Génétique, Reproduction & Développement, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Séverine Mazaud-Guittot
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Françoise Caira
- INSERM U 1103, Université Clermont Auvergne, CNRS, UMR 6293, GReD, Laboratoire Génétique, Reproduction & Développement, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Claude Beaudoin
- INSERM U 1103, Université Clermont Auvergne, CNRS, UMR 6293, GReD, Laboratoire Génétique, Reproduction & Développement, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Bernard Jégou
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - David H Volle
- INSERM U 1103, Université Clermont Auvergne, CNRS, UMR 6293, GReD, Laboratoire Génétique, Reproduction & Développement, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France.
| |
Collapse
|
21
|
Rizzetto L, Fava F, Tuohy KM, Selmi C. Connecting the immune system, systemic chronic inflammation and the gut microbiome: The role of sex. J Autoimmun 2018; 92:12-34. [PMID: 29861127 DOI: 10.1016/j.jaut.2018.05.008] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 12/12/2022]
Abstract
Unresolved low grade systemic inflammation represents the underlying pathological mechanism driving immune and metabolic pathways involved in autoimmune diseases (AID). Mechanistic studies in animal models of AID and observational studies in patients have found alterations in gut microbiota communities and their metabolites, suggesting a microbial contribution to the onset or progression of AID. The gut microbiota and its metabolites have been shown to influence immune functions and immune homeostasis both within the gut and systematically. Microbial derived-short chain fatty acid (SCFA) and bio-transformed bile acid (BA) have been shown to influence the immune system acting as ligands specific cell signaling receptors like GPRCs, TGR5 and FXR, or via epigenetic processes. Similarly, intestinal permeability (leaky gut) and bacterial translocation are important contributors to chronic systemic inflammation and, without repair of the intestinal barrier, might represent a continuous inflammatory stimulus capable of triggering autoimmune processes. Recent studies indicate gender-specific differences in immunity, with the gut microbiota shaping and being concomitantly shaped by the hormonal milieu governing differences between the sexes. A bi-directional cross-talk between microbiota and the endocrine system is emerging with bacteria being able to produce hormones (e.g. serotonin, dopamine and somatostatine), respond to host hormones (e.g. estrogens) and regulate host hormones' homeostasis (e.g by inhibiting gene prolactin transcription or converting glucocorticoids to androgens). We review herein how gut microbiota and its metabolites regulate immune function, intestinal permeability and possibly AID pathological processes. Further, we describe the dysbiosis within the gut microbiota observed in different AID and speculate how restoring gut microbiota composition and its regulatory metabolites by dietary intervention including prebiotics and probiotics could help in preventing or ameliorating AID. Finally, we suggest that, given consistent observations of microbiota dysbiosis associated with AID and the ability of SCFA and BA to regulate intestinal permeability and inflammation, further mechanistic studies, examining how dietary microbiota modulation can protect against AID, hold considerable potential to tackle increased incidence of AID at the population level.
Collapse
Affiliation(s)
- Lisa Rizzetto
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy.
| | - Francesca Fava
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| | - Kieran M Tuohy
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, Rozzano, Italy; BIOMETRA Department, University of Milan, Italy
| |
Collapse
|
22
|
Sèdes L, Thirouard L, Maqdasy S, Garcia M, Caira F, Lobaccaro JMA, Beaudoin C, Volle DH. Cholesterol: A Gatekeeper of Male Fertility? Front Endocrinol (Lausanne) 2018; 9:369. [PMID: 30072948 PMCID: PMC6060264 DOI: 10.3389/fendo.2018.00369] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/19/2018] [Indexed: 12/14/2022] Open
Abstract
Cholesterol is essential for mammalian cell functions and integrity. It is an important structural component maintaining the permeability and fluidity of the cell membrane. The balance between synthesis and catabolism of cholesterol should be tightly regulated to ensure normal cellular processes. Male reproductive function has been demonstrated to be dependent on cholesterol homeostasis. Here we review data highlighting the impacts of cholesterol homeostasis on male fertility and the molecular mechanisms implicated through the signaling pathways of some nuclear receptors.
Collapse
|
23
|
Yang W, Li L, Huang X, Kan G, Lin L, Cheng J, Xu C, Sun W, Cong W, Zhao S, Cui S. Levels of Leydig cell autophagy regulate the fertility of male naked mole-rats. Oncotarget 2017; 8:98677-98690. [PMID: 29228719 PMCID: PMC5716759 DOI: 10.18632/oncotarget.22088] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 09/03/2017] [Indexed: 01/02/2023] Open
Abstract
Fertility is abolished in nonbreeding males in colonies of natal naked mole-rats (NMRs). Although spermatogenesis occurs in both breeding and nonbreeding male NMRs, the mechanisms underlying the differences in fertility between breeders and nonbreeders remain unexplored. In this study, a significant decrease in autophagy was observed in Leydig cells of the testis from nonbreeding male NMRs. This alteration was visualised as a significant decrease in the levels of autophagy-related gene 7 (Atg7), Atg5, microtubule-associated protein 1A/B light chain 3 (LC3-II/I) and the number of autophagosomes and an increase in P62 levels using Western blotting analyses. Furthermore, monodansylcadaverine (MDC) staining and Western blot analyses revealed that testosterone production decreased in nonbreeding male NMR Leydig cells, this decrease was associated with a reduction in autophagy. Primary Leydig cells from breeding and nonbreeding male NMRs were processed to investigate the effect of an autophagy inhibitor (3-MA, 3-methyladenine) or an autophagy activator (rapamycin) on testosterone production. Rapamycin induced an increase in testosterone production in NMR Leydig cells, whereas 3-MA had the opposite effect. Consequently, spermatogenesis, the weight of the testis, and androgen levels were dramatically reduced in nonbreeding male NMRs. While rapamycin treatment restored the fertility of nonbreeding male NMRs. Based on these results, inadequate autophagy correlates with a decrease in steroid production in nonbreeding male NMR Leydig cells, which may ultimately influence the spermatogenesis and fertilities of these animals.
Collapse
Affiliation(s)
- Wenjing Yang
- Laboratory Animal Center, Second Military Medical University, Shanghai, China
| | - Li Li
- Department of Training, Second Military Medical University, Shanghai, China
| | - Xiaofeng Huang
- Medical Record Department, Ministry of Information, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Guanghan Kan
- China Astronaut Research and Training Center, Beijing, China
| | - Lifang Lin
- Laboratory Animal Center, Second Military Medical University, Shanghai, China
| | - Jishuai Cheng
- Laboratory Animal Center, Second Military Medical University, Shanghai, China
| | - Chen Xu
- Laboratory Animal Center, Second Military Medical University, Shanghai, China
| | - Wei Sun
- Laboratory Animal Center, Second Military Medical University, Shanghai, China
| | - Wei Cong
- Laboratory Animal Center, Second Military Medical University, Shanghai, China
| | - Shanmin Zhao
- Laboratory Animal Center, Second Military Medical University, Shanghai, China
| | - Shufang Cui
- Laboratory Animal Center, Second Military Medical University, Shanghai, China
| |
Collapse
|
24
|
Sèdes L, Martinot E, Baptissart M, Baron S, Caira F, Beaudoin C, Volle DH. Bile acids and male fertility: From mouse to human? Mol Aspects Med 2017; 56:101-109. [DOI: 10.1016/j.mam.2017.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/09/2017] [Accepted: 05/12/2017] [Indexed: 02/06/2023]
|
25
|
Martinot E, Sèdes L, Baptissart M, Holota H, Rouaisnel B, Damon-Soubeyrand C, De Haze A, Saru JP, Thibault-Carpentier C, Keime C, Lobaccaro JMA, Baron S, Benoit G, Caira F, Beaudoin C, Volle DH. The Bile Acid Nuclear Receptor FXRα Is a Critical Regulator of Mouse Germ Cell Fate. Stem Cell Reports 2017; 9:315-328. [PMID: 28669602 PMCID: PMC5511114 DOI: 10.1016/j.stemcr.2017.05.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 12/14/2022] Open
Abstract
Spermatogenesis is the process by which spermatozoa are generated from spermatogonia. This cell population is heterogeneous, with self-renewing spermatogonial stem cells (SSCs) and progenitor spermatogonia that will continue on a path of differentiation. Only SSCs have the ability to regenerate and sustain spermatogenesis. This makes the testis a good model to investigate stem cell biology. The Farnesoid X Receptor alpha (FXRα) was recently shown to be expressed in the testis. However, its global impact on germ cell homeostasis has not yet been studied. Here, using a phenotyping approach in Fxrα−/− mice, we describe unexpected roles of FXRα on germ cell physiology independent of its effects on somatic cells. FXRα helps establish and maintain an undifferentiated germ cell pool and in turn influences male fertility. FXRα regulates the expression of several pluripotency factors. Among these, in vitro approaches show that FXRα controls the expression of the pluripotency marker Lin28 in the germ cells. FXRα regulated germ cell apoptotis independently of androgen homeostasis FXRα controls germ cell differentiation FXRα regulates the establishment and maintenance of undifferentiated germ cells In germ cells, FXRα controls the expression of pluripotency markers such as Lin28
Collapse
Affiliation(s)
- Emmanuelle Martinot
- INSERM U 1103, Université Clermont Auvergne, CNRS UMR 6293, Laboratoire GReD, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Lauriane Sèdes
- INSERM U 1103, Université Clermont Auvergne, CNRS UMR 6293, Laboratoire GReD, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Marine Baptissart
- INSERM U 1103, Université Clermont Auvergne, CNRS UMR 6293, Laboratoire GReD, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Hélène Holota
- INSERM U 1103, Université Clermont Auvergne, CNRS UMR 6293, Laboratoire GReD, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Betty Rouaisnel
- INSERM U 1103, Université Clermont Auvergne, CNRS UMR 6293, Laboratoire GReD, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Christelle Damon-Soubeyrand
- INSERM U 1103, Université Clermont Auvergne, CNRS UMR 6293, Laboratoire GReD, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France; Centre de Recherche en Nutrition Humaine d'Auvergne, 63000 Clermont-Ferrand, France
| | - Angélique De Haze
- INSERM U 1103, Université Clermont Auvergne, CNRS UMR 6293, Laboratoire GReD, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France; Centre de Recherche en Nutrition Humaine d'Auvergne, 63000 Clermont-Ferrand, France
| | - Jean-Paul Saru
- INSERM U 1103, Université Clermont Auvergne, CNRS UMR 6293, Laboratoire GReD, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France; Centre de Recherche en Nutrition Humaine d'Auvergne, 63000 Clermont-Ferrand, France
| | | | - Céline Keime
- IGBMC - CNRS UMR 7104 - Inserm U 964, 1 BP 10142, 67404 Illkirch Cedex, France
| | - Jean-Marc A Lobaccaro
- INSERM U 1103, Université Clermont Auvergne, CNRS UMR 6293, Laboratoire GReD, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France; Centre de Recherche en Nutrition Humaine d'Auvergne, 63000 Clermont-Ferrand, France
| | - Silvère Baron
- INSERM U 1103, Université Clermont Auvergne, CNRS UMR 6293, Laboratoire GReD, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France; Centre de Recherche en Nutrition Humaine d'Auvergne, 63000 Clermont-Ferrand, France
| | - Gérard Benoit
- Laboratoire de Biologie Moléculaire de la Cellule, Ecole normale supérieure de Lyon, UMR5239 CNRS/ENS Lyon/UCBL/HCL, 46, allée d'Italie, 69364 Lyon Cedex 07, France
| | - Françoise Caira
- INSERM U 1103, Université Clermont Auvergne, CNRS UMR 6293, Laboratoire GReD, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Claude Beaudoin
- INSERM U 1103, Université Clermont Auvergne, CNRS UMR 6293, Laboratoire GReD, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - David H Volle
- INSERM U 1103, Université Clermont Auvergne, CNRS UMR 6293, Laboratoire GReD, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France.
| |
Collapse
|
26
|
Bile acid homeostasis controls CAR signaling pathways in mouse testis through FXRalpha. Sci Rep 2017; 7:42182. [PMID: 28181583 PMCID: PMC5299845 DOI: 10.1038/srep42182] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/06/2017] [Indexed: 12/11/2022] Open
Abstract
Bile acids (BAs) are molecules with endocrine activities controlling several physiological functions such as immunity, glucose homeostasis, testicular physiology and male fertility. The role of the nuclear BA receptor FXRα in the control of BA homeostasis has been well characterized. The present study shows that testis synthetize BAs. We demonstrate that mice invalidated for the gene encoding FXRα have altered BA homeostasis in both liver and testis. In the absence of FXRα, BA exposure differently alters hepatic and testicular expression of genes involved in BA synthesis. Interestingly, Fxrα-/- males fed a diet supplemented with BAs show alterations of testicular physiology and sperm production. This phenotype was correlated with the altered testicular BA homeostasis and the production of intermediate metabolites of BAs which led to the modulation of CAR signaling pathways within the testis. The role of the CAR signaling pathways within testis was validated using specific CAR agonist (TCPOBOP) and inverse agonist (androstanol) that respectively inhibited or reproduced the phenotype observed in Fxrα-/- males fed BA-diet. These data open interesting perspectives to better define how BA homeostasis contributes to physiological or pathophysiological conditions via the modulation of CAR activity.
Collapse
|
27
|
Martinot E, Sèdes L, Baptissart M, Lobaccaro JM, Caira F, Beaudoin C, Volle DH. Bile acids and their receptors. Mol Aspects Med 2017; 56:2-9. [PMID: 28153453 DOI: 10.1016/j.mam.2017.01.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 02/06/2023]
Abstract
Primary bile acids are synthetized from cholesterol within the liver and then transformed by the bacteria in the intestine to secondary bile acids. In addition to their involvement in digestion and fat solubilization, bile acids also act as signaling molecules. Several receptors are sensors of bile acids. Among these receptors, this review focuses on the nuclear receptor FXRα and the G-protein-coupled receptor TGR5. This review briefly presents the potential links between bile acids and cancers that are discussed in more details in the other articles of this special issue of Molecular Aspects of Medicine focused on "Bile acids, roles in integrative physiology and pathophysiology".
Collapse
Affiliation(s)
- Emmanuelle Martinot
- INSERM U 1103, Génétique Reproduction et Développement (GReD), F-63170 Aubière, France; Université Clermont Auvergne, GReD, F-63000 Clermont-Ferrand, F-63170 Aubière, France; CNRS, UMR 6293, GReD, F-63170 Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, F-63000 Clermont-Ferrand, France
| | - Lauriane Sèdes
- INSERM U 1103, Génétique Reproduction et Développement (GReD), F-63170 Aubière, France; Université Clermont Auvergne, GReD, F-63000 Clermont-Ferrand, F-63170 Aubière, France; CNRS, UMR 6293, GReD, F-63170 Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, F-63000 Clermont-Ferrand, France
| | - Marine Baptissart
- INSERM U 1103, Génétique Reproduction et Développement (GReD), F-63170 Aubière, France; Université Clermont Auvergne, GReD, F-63000 Clermont-Ferrand, F-63170 Aubière, France; CNRS, UMR 6293, GReD, F-63170 Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, F-63000 Clermont-Ferrand, France
| | - Jean-Marc Lobaccaro
- INSERM U 1103, Génétique Reproduction et Développement (GReD), F-63170 Aubière, France; Université Clermont Auvergne, GReD, F-63000 Clermont-Ferrand, F-63170 Aubière, France; CNRS, UMR 6293, GReD, F-63170 Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, F-63000 Clermont-Ferrand, France
| | - Françoise Caira
- INSERM U 1103, Génétique Reproduction et Développement (GReD), F-63170 Aubière, France; Université Clermont Auvergne, GReD, F-63000 Clermont-Ferrand, F-63170 Aubière, France; CNRS, UMR 6293, GReD, F-63170 Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, F-63000 Clermont-Ferrand, France
| | - Claude Beaudoin
- INSERM U 1103, Génétique Reproduction et Développement (GReD), F-63170 Aubière, France; Université Clermont Auvergne, GReD, F-63000 Clermont-Ferrand, F-63170 Aubière, France; CNRS, UMR 6293, GReD, F-63170 Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, F-63000 Clermont-Ferrand, France
| | - David H Volle
- INSERM U 1103, Génétique Reproduction et Développement (GReD), F-63170 Aubière, France; Université Clermont Auvergne, GReD, F-63000 Clermont-Ferrand, F-63170 Aubière, France; CNRS, UMR 6293, GReD, F-63170 Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, F-63000 Clermont-Ferrand, France.
| |
Collapse
|