1
|
Das GM, Oturkar CC, Menon V. Interaction between Estrogen Receptors and p53: A Broader Role for Tamoxifen? Endocrinology 2025; 166:bqaf020. [PMID: 39891710 PMCID: PMC11837209 DOI: 10.1210/endocr/bqaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/20/2025] [Accepted: 01/30/2025] [Indexed: 02/03/2025]
Abstract
Tamoxifen is one of the most widely used anticancer drugs in the world. It is a safe drug with generally well-tolerated side effects and has been prescribed for the treatment of early-stage and advanced-stage or metastatic estrogen receptor α (ERα/ESR1)-positive breast cancer. Tamoxifen therapy also provides a 38% reduction of the risk of developing breast cancer in women at high risk. With the advent of newer medications targeting ERα-positive breast cancer, tamoxifen is now mainly used as adjuvant therapy for lower-risk premenopausal breast cancer and cancer prevention. It is widely accepted that tamoxifen as a selective estrogen receptor modulator exerts its therapeutic effect by competitively binding to ERα, leading to the recruitment of corepressors and inhibition of transcription of genes involved in the proliferation of breast cancer epithelium. As such, expression of ERα in breast tumors has been considered necessary for tumors to be responsive to tamoxifen therapy. However, ERα-independent effects of tamoxifen in various in vitro and in vivo contexts have been reported over the years. Importantly, the recent discovery that ERα and estrogen receptor β (ERβ/ESR2) can bind tumor suppressor protein p53 with functional consequences has provided new insights into the mechanisms underlying response to tamoxifen therapy and resistance. Furthermore, these findings have paved the way for broadening the use of tamoxifen by potentially repurposing it to treat triple negative (negative for ERα, human epidermal growth factor receptor 2, and progesterone receptor) breast cancer. Herein, we summarize these developments and discuss their mechanistic underpinnings and clinical implications.
Collapse
Affiliation(s)
- Gokul M Das
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Chetan C Oturkar
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Vishnu Menon
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
2
|
Nagandla H, Thomas C. Estrogen Signals through ERβ in Breast Cancer; What We Have Learned since the Discovery of the Receptor. RECEPTORS (BASEL, SWITZERLAND) 2024; 3:182-200. [PMID: 39175529 PMCID: PMC11340209 DOI: 10.3390/receptors3020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Estrogen receptor (ER) β (ERβ) is the second ER subtype that mediates the effects of estrogen in target tissues along with ERα that represents a validated biomarker and target for endocrine therapy in breast cancer. ERα was the only known ER subtype until 1996 when the discovery of ERβ opened a new chapter in endocrinology and prompted a thorough reevaluation of the estrogen signaling paradigm. Unlike the oncogenic ERα, ERβ has been proposed to function as a tumor suppressor in breast cancer, and extensive research is underway to uncover the full spectrum of ERβ activities and elucidate its mechanism of action. Recent studies have relied on new transgenic models to capture effects in normal and malignant breast that were not previously detected. They have also benefited from the development of highly specific synthetic ligands that are used to demonstrate distinct mechanisms of gene regulation in cancer. As a result, significant new information about the biology and clinical importance of ERβ is now available, which is the focus of discussion in the present article.
Collapse
Affiliation(s)
- Harika Nagandla
- Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Christoforos Thomas
- Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
3
|
Yan S, Wang J, Chen H, Zhang D, Imam M. Divergent features of ERβ isoforms in triple negative breast cancer: progress and implications for further research. Front Cell Dev Biol 2023; 11:1240386. [PMID: 37936981 PMCID: PMC10626554 DOI: 10.3389/fcell.2023.1240386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023] Open
Abstract
Estrogen receptor β (ERβ) was discovered more than 20 years ago. However, the extent and role of ERβ expression in breast cancer remain controversial, especially in the context of triple-negative breast cancer (TNBC). ERβ exists as multiple isoforms, and a series of studies has revealed an inconsistent role of ERβ isoforms in TNBC. Our recent results demonstrated contrasting functions of ERβ1 and ERβ2/β5 in TNBC. Additional research should be conducted to explore the functions of individual ERβ isoforms and develop targeted drugs according to the relevant mechanisms. Consequently, a systematic review of ERβ isoforms is necessary. In this review, we overview the structure of ERβ isoforms and detail what is known about the function of ERβ isoforms in normal mammary tissue and breast cancer. Moreover, this review highlights the divergent features of ERβ isoforms in TNBC. This review also provides insights into the implications of targeting ERβ isoforms for clinical treatment. In conclusion, this review provides a framework delineating the roles and mechanisms of different ERβ isoforms in TNBC and sheds light on future directions for basic and clinical research.
Collapse
Affiliation(s)
- Shunchao Yan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | | | | | | | | |
Collapse
|
4
|
Kirkby M, Popatia AM, Lavoie JR, Wang L. The Potential of Hormonal Therapies for Treatment of Triple-Negative Breast Cancer. Cancers (Basel) 2023; 15:4702. [PMID: 37835396 PMCID: PMC10571841 DOI: 10.3390/cancers15194702] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is considered one of the most aggressive forms of breast cancer with poor survival rates compared to other breast cancer subtypes. TNBC is characterized by the absence of the estrogen receptor alpha, progesterone receptor, and the human epidermal growth factor receptor 2, limiting those viable treatment options available to patients with other breast cancer subtypes. Furthermore, due to the particularly high heterogeneity of TNBC, conventional treatments such as chemotherapy are not universally effective, leading to drug resistance and intolerable side effects. Thus, there is a pressing need to discover new therapies beneficial to TNBC patients. This review highlights current findings regarding the roles of three steroid hormone receptors, estrogen receptor beta, the androgen receptor, and the glucocorticoid receptor, in the progression of TNBC. In addition, we discussed several ongoing and completed clinical trials targeting these hormone receptors in TNBC patients.
Collapse
Affiliation(s)
- Melanie Kirkby
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (M.K.); (A.M.P.)
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- The Centre for Infection, Immunity, and Inflammation (CI3), University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Alyanna M. Popatia
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (M.K.); (A.M.P.)
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- The Centre for Infection, Immunity, and Inflammation (CI3), University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Jessie R. Lavoie
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (M.K.); (A.M.P.)
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (M.K.); (A.M.P.)
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- The Centre for Infection, Immunity, and Inflammation (CI3), University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
5
|
Scarpetti L, Oturkar CC, Juric D, Shellock M, Malvarosa G, Post K, Isakoff S, Wang N, Nahed B, Oh K, Das GM, Bardia A. Therapeutic Role of Tamoxifen for Triple-Negative Breast Cancer: Leveraging the Interaction Between ERβ and Mutant p53. Oncologist 2023; 28:358-363. [PMID: 36772966 PMCID: PMC10078911 DOI: 10.1093/oncolo/oyac281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/30/2022] [Indexed: 02/12/2023] Open
Abstract
The absence of effective therapeutic targets and aggressive nature of triple-negative breast cancer (TNBC) renders this disease subset difficult to treat. Although estrogen receptor beta (ERβ) is expressed in TNBC, studies on its functional role have yielded inconsistent results. However, recently, our preclinical studies, along with other observations, have shown the potential therapeutic utility of ERβ in the context of mutant p53 expression. The current case study examines the efficacy of the selective estrogen receptor modulator tamoxifen in p53-mutant TNBC with brain metastases. Significant increase in ERβ protein expression and anti-proliferative interaction between mutant p53 and ERβ were observed after cessation of tamoxifen therapy, with significant regression of brain metastases. This case study provides supporting evidence for the use of tamoxifen in p53-mutant, ERβ+TNBC, especially in the setting of brain metastasis.
Collapse
Affiliation(s)
- Lauren Scarpetti
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | | | - Dejan Juric
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Maria Shellock
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Giuliana Malvarosa
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Kathryn Post
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Steven Isakoff
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Nancy Wang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Brian Nahed
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Kevin Oh
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Gokul M Das
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Aditya Bardia
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Esmaeilniakooshkghazi A, Pham E, George SP, Ahrorov A, Villagomez FR, Byington M, Mukhopadhyay S, Patnaik S, Conrad JC, Naik M, Ravi S, Tebbutt N, Mooi J, Reehorst CM, Mariadason JM, Khurana S. In colon cancer cells fascin1 regulates adherens junction remodeling. FASEB J 2023; 37:e22786. [PMID: 36786724 DOI: 10.1096/fj.202201454r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/21/2022] [Accepted: 01/10/2023] [Indexed: 02/15/2023]
Abstract
Adherens junctions (AJs) are a defining feature of all epithelial cells. They regulate epithelial tissue architecture and integrity, and their dysregulation is a key step in tumor metastasis. AJ remodeling is crucial for cancer progression, and it plays a key role in tumor cell survival, growth, and dissemination. Few studies have examined AJ remodeling in cancer cells consequently, it remains poorly understood and unleveraged in the treatment of metastatic carcinomas. Fascin1 is an actin-bundling protein that is absent from the normal epithelium but its expression in colon cancer is linked to metastasis and increased mortality. Here, we provide the molecular mechanism of AJ remodeling in colon cancer cells and identify for the first time, fascin1's function in AJ remodeling. We show that in colon cancer cells fascin1 remodels junctional actin and actomyosin contractility which makes AJs less stable but more dynamic. By remodeling AJs fascin1 drives mechanoactivation of WNT/β-catenin signaling and generates "collective plasticity" which influences the behavior of cells during cell migration. The impact of mechanical inputs on WNT/β-catenin activation in cancer cells remains poorly understood. Our findings highlight the role of AJ remodeling and mechanosensitive WNT/β-catenin signaling in the growth and dissemination of colorectal carcinomas.
Collapse
Affiliation(s)
| | - Eric Pham
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Sudeep P George
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Afzal Ahrorov
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Fabian R Villagomez
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Michael Byington
- Department of Chemical and Bimolecular Engineering, University of Houston, Houston, Texas, USA
| | - Srijita Mukhopadhyay
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
| | - Srinivas Patnaik
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Jacinta C Conrad
- Department of Chemical and Bimolecular Engineering, University of Houston, Houston, Texas, USA
| | - Monali Naik
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Saathvika Ravi
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Niall Tebbutt
- Gastrointestinal Cancers Programs, Olivia Newton-John Cancer Research Institute, and La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
| | - Jennifer Mooi
- Gastrointestinal Cancers Programs, Olivia Newton-John Cancer Research Institute, and La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
| | - Camilla M Reehorst
- Gastrointestinal Cancers Programs, Olivia Newton-John Cancer Research Institute, and La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
| | - John M Mariadason
- Gastrointestinal Cancers Programs, Olivia Newton-John Cancer Research Institute, and La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
| | - Seema Khurana
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA.,School of Health Professions, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
7
|
Anticancer or carcinogenic? The role of estrogen receptor β in breast cancer progression. Pharmacol Ther 2023; 242:108350. [PMID: 36690079 DOI: 10.1016/j.pharmthera.2023.108350] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Estrogen receptor β (ERβ) is closely related to breast cancer (BC) progression. Traditional concepts regard ERβ as a tumor suppressor. As studies show the carcinogenic effect of ERβ, some people have come to a new conclusion that ERβ serves as a tumor suppressor in estrogen receptor α (ERα)-positive breast cancer, while it is a carcinogen in ERα-negative breast cancer. However, we re-examine the role of ERβ and find this conclusion to be misleading based on the last decade's research. A large number of studies have shown that ERβ plays an anticancer role in both ERα-positive and ERα-negative breast cancers, and its carcinogenicity does not depend solely on the presence of ERα. Herein, we review the anticancer and oncogenic effects of ERβ on breast cancer progression in the past ten years, discuss the mechanism respectively, analyze the main reasons for the inconsistency and update ERβ selective ligand library. We believe a detailed and continuously updated review will help correct the one-sided understanding of ERβ, promoting ERβ-targeted breast cancer therapy.
Collapse
|
8
|
Devoy C, Flores Bueso Y, Tangney M. Understanding and harnessing triple-negative breast cancer-related microbiota in oncology. Front Oncol 2022; 12:1020121. [PMID: 36505861 PMCID: PMC9730816 DOI: 10.3389/fonc.2022.1020121] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
Bacterial inhabitants of the body have the potential to play a role in various stages of cancer initiation, progression, and treatment. These bacteria may be distal to the primary tumour, such as gut microbiota, or local to the tissue, before or after tumour growth. Breast cancer is well studied in this context. Amongst breast cancer types, Triple Negative Breast Cancer (TNBC) is more aggressive, has fewer treatment options than receptor-positive breast cancers, has an overall worse prognosis and higher rates of reoccurrence. Thus, an in-depth understanding of the bacterial influence on TNBC progression and treatment is of high value. In this regard, the Gut Microbiota (GM) can be involved in various stages of tumour progression. It may suppress or promote carcinogenesis through the release of carcinogenic metabolites, sustenance of proinflammatory environments and/or the promotion of epigenetic changes in our genome. It can also mediate metastasis and reoccurrence through interactions with the immune system and has been recently shown to influence chemo-, radio-, and immune-therapies. Furthermore, bacteria have also been found to reside in normal and malignant breast tissue. Several studies have now described the breast and breast tumour microbiome, with the tumour microbiota of TNBC having the least taxonomic diversity among all breast cancer types. Here, specific conditions of the tumour microenvironment (TME) - low O2, leaky vasculature and immune suppression - are supportive of tumour selective bacterial growth. This innate bacterial ability could enable their use as delivery agents for various therapeutics or as diagnostics. This review aims to examine the current knowledge on bacterial relevance to TNBC and potential uses while examining some of the remaining unanswered questions regarding mechanisms underpinning observed effects.
Collapse
Affiliation(s)
- Ciaran Devoy
- Cancer Research@UCC, College of Medicine and Health, University College Cork, Cork, Ireland,SynBio Center, University College Cork, Cork, Ireland,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Yensi Flores Bueso
- Cancer Research@UCC, College of Medicine and Health, University College Cork, Cork, Ireland,SynBio Center, University College Cork, Cork, Ireland,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Mark Tangney
- Cancer Research@UCC, College of Medicine and Health, University College Cork, Cork, Ireland,SynBio Center, University College Cork, Cork, Ireland,APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Pharmacy, College of Medicine and Health, University College Cork, Cork, Ireland,*Correspondence: Mark Tangney,
| |
Collapse
|
9
|
Estrogen Receptor-Beta2 (ERβ2)-Mutant p53-FOXM1 Axis: A Novel Driver of Proliferation, Chemoresistance, and Disease Progression in High Grade Serous Ovarian Cancer (HGSOC). Cancers (Basel) 2022; 14:cancers14051120. [PMID: 35267428 PMCID: PMC8909529 DOI: 10.3390/cancers14051120] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/08/2022] [Accepted: 02/17/2022] [Indexed: 12/31/2022] Open
Abstract
Simple Summary High grade serous ovarian cancer (HGSOC) is the most common and lethal subtype of ovarian cancer without effective therapeutic options. The high prevalence of mutations (~96%) in tumor suppressor p53 is a hallmark of HGSOC. Estrogen receptor-beta (ERβ) has been reported to be another important player in HGSOC, although the pro-versus anti-tumorigenic role of its different isoforms remains unclear. The aim of this study was to analyze the crosstalk between ERβ and mutant p53 and its impact on the pro-tumorigenic processes in HGSOC. Using the HGSOC cell line models and patient tumor tissue specimens, we demonstrated functional interaction between the ERβ2 isoform and mutant p53 and their ability to co-dependently increase FOXM1 gene transcription, decrease cell death, increase cell proliferation, and mediate resistance to carboplatin treatment. Furthermore, high levels of ERβ2 as well as FOXM1 correlated with worse patient survival. Collectively, our data suggest that the ERβ2-mutant p53-FOXM1 axis could be a novel therapeutic target for HGSOC. Abstract High grade serous ovarian cancer (HGSOC) is the most common and lethal subtype of epithelial ovarian cancer. Prevalence (~96%) of mutant p53 is a hallmark of HGSOC. Estrogen receptor-beta (ERβ) has been reported to be another important player in HGSOC, although the pro-versus anti-tumorigenic role of its different isoforms remains unsettled. However, whether there is functional interaction between ERβ and mutant p53 in HGSOC is unknown. ERβ1 and ERβ2 mRNA and protein analysis in HGSOC cell lines demonstrated that ERβ2 is the predominant isoform in HGSOC. Specificity of ERβ2 antibody was ascertained using cells depleted of ERβ2 and ERβ1 separately with isoform-specific siRNAs. ERβ2-mutant p53 interaction in cell lines was confirmed by co-immunoprecipitation and in situ proximity ligation assay (PLA). Expression levels of ERβ2, ERα, p53, and FOXM1 proteins and ERβ2-mutant p53 interaction in patient tumors were determined by immunohistochemistry (IHC) and PLA, respectively. ERβ2 levels correlate positively with FOXM1 levels and negatively with progression-free survival (PFS) and overall survival (OS). Quantitative chromatin immunoprecipitation (qChIP) and mRNA expression analysis revealed that ERβ2 and mutant p53 co-dependently regulated FOXM1 gene transcription. The combination of ERβ2-specific siRNA and PRIMA-1MET that converts mutant p53 to wild type conformation increased apoptosis. Our work provides the first evidence for a novel ERβ2-mutant p53-FOXM1 axis that can be exploited for new therapeutic strategies against HGSOC.
Collapse
|
10
|
Aspros KGM, Carter JM, Hoskin TL, Suman VJ, Subramaniam M, Emch MJ, Ye Z, Sun Z, Sinnwell JP, Thompson KJ, Tang X, Rodman EPB, Wang X, Nelson AW, Chernukhin I, Hamdan FH, Bruinsma ES, Carroll JS, Fernandez-Zapico ME, Johnsen SA, Kalari KR, Huang H, Leon-Ferre RA, Couch FJ, Ingle JN, Goetz MP, Hawse JR. Estrogen receptor beta repurposes EZH2 to suppress oncogenic NFκB/p65 signaling in triple negative breast cancer. NPJ Breast Cancer 2022; 8:20. [PMID: 35177654 PMCID: PMC8854734 DOI: 10.1038/s41523-022-00387-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 01/21/2022] [Indexed: 12/14/2022] Open
Abstract
Triple Negative Breast Cancer (TNBC) accounts for 15-20% of all breast cancer cases, yet is responsible for a disproportionately high percentage of breast cancer mortalities. Thus, there is an urgent need to identify novel biomarkers and therapeutic targets based on the molecular events driving TNBC pathobiology. Estrogen receptor beta (ERβ) is known to elicit anti-cancer effects in TNBC, however its mechanisms of action remain elusive. Here, we report the expression profiles of ERβ and its association with clinicopathological features and patient outcomes in the largest cohort of TNBC to date. In this cohort, ERβ was expressed in approximately 18% of TNBCs, and expression of ERβ was associated with favorable clinicopathological features, but correlated with different overall survival outcomes according to menopausal status. Mechanistically, ERβ formed a co-repressor complex involving enhancer of zeste homologue 2/polycomb repressive complex 2 (EZH2/PRC2) that functioned to suppress oncogenic NFκB/RELA (p65) activity. Importantly, p65 was shown to be required for formation of this complex and for ERβ-mediated suppression of TNBC. Our findings indicate that ERβ+ tumors exhibit different characteristics compared to ERβ- tumors and demonstrate that ERβ functions as a molecular switch for EZH2, repurposing it for tumor suppressive activities and repression of oncogenic p65 signaling.
Collapse
Affiliation(s)
- Kirsten G M Aspros
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jodi M Carter
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Tanya L Hoskin
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Vera J Suman
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Malayannan Subramaniam
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Michael J Emch
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Zhenqing Ye
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Zhifu Sun
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jason P Sinnwell
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kevin J Thompson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Xiaojia Tang
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Esther P B Rodman
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Xiyin Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Adam W Nelson
- Cancer Research UK Cambridge Research Institute, University of Cambridge, Cambridge, UK
| | - Igor Chernukhin
- Cancer Research UK Cambridge Research Institute, University of Cambridge, Cambridge, UK
| | - Feda H Hamdan
- Gene Regulatory Mechanisms and Molecular Epigenetics Lab, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Elizabeth S Bruinsma
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jason S Carroll
- Cancer Research UK Cambridge Research Institute, University of Cambridge, Cambridge, UK
| | - Martin E Fernandez-Zapico
- Shulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Steven A Johnsen
- Gene Regulatory Mechanisms and Molecular Epigenetics Lab, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Krishna R Kalari
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Urology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Fergus J Couch
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - James N Ingle
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Matthew P Goetz
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
11
|
Abstract
Despite the improvements in diagnostic and therapeutic approaches, breast cancer still remains one of the world’s leading causes of death among women. Particularly, triple negative breast cancer (TNBC) is characterized by aggressiveness, metastatic spreading, drug resistance and a very high percentage of death in patients. Nowadays, identification of new targets in TNBC appears very compelling. TNBC are considered negative for the estrogen receptor alpha (ERα) expression. Nevertheless, they often express ERβ and its variants. As such, this TNBC subtype still responds to estrogens. While the ERβ1 variant seems to act as a tumor-suppressor, the two variants ERβ2 and 5 exhibit pro-oncogenic activities in TNBC. Thus, ERβ1 activation might be used to limit the growth and spreading as well as to increase the drug sensitivity of TNBC. In contrast, the pro-oncogenic properties of ERβ2 and ERβ5 suggest the possible development and clinical use of specific antagonists in TNBC treatment. Furthermore, the role of ERβ might be regarded in the context of the androgen receptor (AR) expression, which represents another key marker in TNBC. The relationship between AR and ERβ as well as the ability to modulate the receptor-mediated effects through agonists/antagonists represent a challenge to develop more appropriate therapies in clinical management of TNBC patients. In this review, we will discuss the most recent data in the field. Therapeutic implications of these findings are also presented in the light of the discovery of specific ERβ modulators.
Collapse
|
12
|
Carcinogenesis of Triple-Negative Breast Cancer and Sex Steroid Hormones. Cancers (Basel) 2021; 13:cancers13112588. [PMID: 34070471 PMCID: PMC8197527 DOI: 10.3390/cancers13112588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/19/2021] [Accepted: 05/23/2021] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Triple-negative breast cancer (TNBC) lacks all of three treatment targets (estrogen receptor-α, ER-α; progesterone receptor, PgR; and human epidermal growth factor receptor 2, HER2) and is usually associated with a poor clinical outcome; however, several sex steroid receptors, such as androgen receptor (AR), ER-β, and G-protein-coupled estrogen receptor, are frequently expressed and their biological and clinical importance has been suggested. Despite the structural similarity between sex steroid hormones (androgens and estrogens) or receptors (AR and ER-β), similar signaling mechanisms of these hormones, and the coexistence of these hormones and their receptors in TNBC in a clinical setting, most studies or reviews focused on only one of these receptors, and rarely reviewed them in a comprehensive way. In this review, the carcinogenic or pathobiological role of sex steroid hormones in TNBC is considered, focusing on common and differing features of hormone actions. Abstract Triple-negative breast cancer (TNBC) lacks an effective treatment target and is usually associated with a poor clinical outcome; however, hormone unresponsiveness, which is the most important biological characteristic of TNBC, only means the lack of nuclear estrogenic signaling through the classical estrogen receptor (ER), ER-α. Several sex steroid receptors other than ER-α: androgen receptor (AR), second ER, ER-β, and non-nuclear receptors represented by G-protein-coupled estrogen receptor (GPER), are frequently expressed in TNBC and their biological and clinical importance has been suggested by a large number of studies. Despite the structural similarity between each sex steroid hormone (androgens and estrogens) or each receptor (AR and ER-β), and similarity in the signaling mechanisms of these hormones, most studies or reviews focused on one of these receptors, and rarely reviewed them in a comprehensive way. Considering the coexistence of these hormones and their receptors in TNBC in a clinical setting, a comprehensive viewpoint would be important to correctly understand the association between the carcinogenic mechanism or pathobiology of TNBC and sex steroid hormones. In this review, the carcinogenic or pathobiological role of sex steroid hormones in TNBC is considered, focusing on the common and divergent features of the action of these hormones.
Collapse
|
13
|
van Barele M, Heemskerk-Gerritsen BAM, Louwers YV, Vastbinder MB, Martens JWM, Hooning MJ, Jager A. Estrogens and Progestogens in Triple Negative Breast Cancer: Do They Harm? Cancers (Basel) 2021; 13:2506. [PMID: 34063736 PMCID: PMC8196589 DOI: 10.3390/cancers13112506] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 05/17/2021] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancers (TNBC) occur more frequently in younger women and do not express estrogen receptor (ER) nor progesterone receptor (PR), and are therefore often considered hormone-insensitive. Treatment of premenopausal TNBC patients almost always includes chemotherapy, which may lead to premature ovarian insufficiency (POI) and can severely impact quality of life. Hormone replacement therapy (HRT) is contraindicated for patients with a history of hormone-sensitive breast cancer, but the data on safety for TNBC patients is inconclusive, with a few randomized trials showing increased risk-ratios with wide confidence intervals for recurrence after HRT. Here, we review the literature on alternative pathways from the classical ER/PR. We find that for both estrogens and progestogens, potential alternatives exist for exerting their effects on TNBC, ranging from receptor conversion, to alternative receptors capable of binding estrogens, as well as paracrine pathways, such as RANK/RANKL, which can cause progestogens to indirectly stimulate growth and metastasis of TNBC. Finally, HRT may also influence other hormones, such as androgens, and their effects on TNBCs expressing androgen receptors (AR). Concluding, the assumption that TNBC is completely hormone-insensitive is incorrect. However, the direction of the effects of the alternative pathways is not always clear, and will need to be investigated further.
Collapse
Affiliation(s)
- Mark van Barele
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Centre, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.v.B.); (B.A.M.H.-G.); (J.W.M.M.); (M.J.H.)
| | - Bernadette A. M. Heemskerk-Gerritsen
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Centre, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.v.B.); (B.A.M.H.-G.); (J.W.M.M.); (M.J.H.)
| | - Yvonne V. Louwers
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Centre, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands;
| | - Mijntje B. Vastbinder
- Department of Internal Medicine, Ijsselland Hospital, Prins Constantijnweg 2, 2906 ZC Capelle aan den IJssel, The Netherlands;
| | - John W. M. Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Centre, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.v.B.); (B.A.M.H.-G.); (J.W.M.M.); (M.J.H.)
| | - Maartje J. Hooning
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Centre, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.v.B.); (B.A.M.H.-G.); (J.W.M.M.); (M.J.H.)
| | - Agnes Jager
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Centre, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.v.B.); (B.A.M.H.-G.); (J.W.M.M.); (M.J.H.)
| |
Collapse
|
14
|
Thomas C, Karagounis IV, Srivastava RK, Vrettos N, Nikolos F, Francois N, Huang M, Gong S, Long Q, Kumar S, Koumenis C, Krishnamurthy S, Ueno NT, Chakrabarti R, Maity A. Estrogen Receptor β-Mediated Inhibition of Actin-Based Cell Migration Suppresses Metastasis of Inflammatory Breast Cancer. Cancer Res 2021; 81:2399-2414. [PMID: 33514514 PMCID: PMC8570087 DOI: 10.1158/0008-5472.can-20-2743] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/16/2020] [Accepted: 01/25/2021] [Indexed: 11/16/2022]
Abstract
Inflammatory breast cancer (IBC) is a highly metastatic breast carcinoma with high frequency of estrogen receptor α (ERα) negativity. Here we explored the role of the second ER subtype, ERβ, and report expression in IBC tumors and its correlation with reduced metastasis. Ablation of ERβ in IBC cells promoted cell migration and activated gene networks that control actin reorganization, including G-protein-coupled receptors and downstream effectors that activate Rho GTPases. Analysis of preclinical mouse models of IBC revealed decreased metastasis of IBC tumors when ERβ was expressed or activated by chemical agonists. Our findings support a tumor-suppressive role of ERβ by demonstrating the ability of the receptor to inhibit dissemination of IBC cells and prevent metastasis. On the basis of these findings, we propose ERβ as a potentially novel biomarker and therapeutic target that can inhibit IBC metastasis and reduce its associated mortality. SIGNIFICANCE: These findings demonstrate the capacity of ERβ to elicit antimetastatic effects in highly aggressive inflammatory breast cancer and propose ERβ and the identified associated genes as potential therapeutic targets in this disease.
Collapse
Affiliation(s)
- Christoforos Thomas
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Ilias V Karagounis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ratnesh K Srivastava
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nicholas Vrettos
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Fotis Nikolos
- Cedars-Sinai Medical Center, Los Angeles, California
| | - Noëlle Francois
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Menggui Huang
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Siliang Gong
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Qi Long
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sushil Kumar
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Constantinos Koumenis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Savitri Krishnamurthy
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naoto T Ueno
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rumela Chakrabarti
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amit Maity
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
15
|
Estrogen receptor β regulates AKT activity through up-regulation of INPP4B and inhibits migration of prostate cancer cell line PC-3. Proc Natl Acad Sci U S A 2020; 117:26347-26355. [PMID: 33020300 DOI: 10.1073/pnas.2007160117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Loss of the tumor suppressor, PTEN, is one of the most common findings in prostate cancer (PCa). This loss leads to overactive Akt signaling, which is correlated with increased metastasis and androgen independence. However, another tumor suppressor, inositol-polyphosphate 4-phosphatase type II (INPP4B), can partially compensate for the loss of PTEN. INPP4B is up-regulated by androgens, and this suggests that androgen-deprivation therapy (ADT) would lead to hyperactivity of AKT. However, in the present study, we found that in PCa, samples from men treated with ADT, ERβ, and INPP4B expression were maintained in some samples. To investigate the role of ERβ1 in regulation of INPPB, we engineered the highly metastatic PCa cell line, PC3, to express ERβ1. In these cells, INPP4B was induced by ERβ ligands, and this induction was accompanied by inhibition of Akt activity and reduction in cell migration. These findings reveal that, in the absence of androgens, ERβ1 induces INPP4B to dampen AKT signaling. Since the endogenous ERβ ligand, 3β-Adiol, is lost upon long-term ADT, to obtain the beneficial effects of ERβ1 on AKT signaling, an ERβ agonist should be added along with ADT.
Collapse
|
16
|
Abstract
Breast cancer, a malignant tumor originating from mammary epithelial tissue, is the most common cancer among women worldwide. Challenges facing the diagnosis and treatment of breast cancer necessitate the search for new mechanisms and drugs to improve outcomes. Estrogen receptor (ER) is considered to be important for determining the diagnosis and treatment strategy. The discovery of the second estrogen receptor, ERβ, provides an opportunity to understand estrogen action. The emergence of ERβ can be traced back to 1996. Over the past 20 years, an increasing body of evidence has implicated the vital effect of ERβ in breast cancer. Although there is controversy among scholars, ERβ is generally thought to have antiproliferative effects in disease progression. This review summarizes available evidence regarding the involvement of ERβ in the clinical treatment and prognosis of breast cancer and describes signaling pathways associated with ERβ. We hope to highlight the potential of ERβ as a therapeutic target.
Collapse
|
17
|
Bellat V, Verchère A, Ashe SA, Law B. Transcriptomic insight into salinomycin mechanisms in breast cancer cell lines: synergistic effects with dasatinib and induction of estrogen receptor β. BMC Cancer 2020; 20:661. [PMID: 32678032 PMCID: PMC7364656 DOI: 10.1186/s12885-020-07134-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Tumors are heterogeneous in nature, composed of different cell populations with various mutations and/or phenotypes. Using a single drug to encounter cancer progression is generally ineffective. To improve the treatment outcome, multiple drugs of distinctive mechanisms but complementary anticancer activities (combination therapy) are often used to enhance antitumor efficacy and minimize the risk of acquiring drug resistance. We report here the synergistic effects of salinomycin (a polyether antibiotic) and dasatinib (a Src kinase inhibitor). METHODS Functionally, both drugs induce cell cycle arrest, intracellular reactive oxygen species (iROS) production, and apoptosis. We rationalized that an overlapping of the drug activities should offer an enhanced anticancer effect, either through vertical inhibition of the Src-STAT3 axis or horizontal suppression of multiple pathways. We determined the toxicity induced by the drug combination and studied the kinetics of iROS production by fluorescence imaging and flow cytometry. Using genomic and proteomic techniques, including RNA-sequencing (RNA-seq), reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and Western Blot, we subsequently identified the responsible pathways that contributed to the synergistic effects of the drug combination. RESULTS Compared to either drug alone, the drug combination showed enhanced potency against MDA-MB-468, MDA-MB-231, and MCF-7 human breast cancer (BC) cell lines and tumor spheroids. The drug combination induces both iROS generation and apoptosis in a time-dependent manner, following a 2-step kinetic profile. RNA-seq data revealed that the drug combination exhibited synergism through horizontal suppression of multiple pathways, possibly through a promotion of cell cycle arrest at the G1/S phase via the estrogen-mediated S-phase entry pathway, and partially via the BRCA1 and DNA damage response pathway. CONCLUSION Transcriptomic analyses revealed for the first time, that the estrogen-mediated S-phase entry pathway partially contributed to the synergistic effect of the drug combination. More importantly, our studies led to the discoveries of new potential therapeutic targets, such as E2F2, as well as a novel drug-induced targeting of estrogen receptor β (ESR2) approach for triple-negative breast cancer treatment, currently lacking of targeted therapies.
Collapse
Affiliation(s)
- Vanessa Bellat
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Alice Verchère
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Sally A Ashe
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Benedict Law
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, USA. .,Lead contact, New York, USA.
| |
Collapse
|
18
|
Sellitto A, D’Agostino Y, Alexandrova E, Lamberti J, Pecoraro G, Memoli D, Rocco D, Coviello E, Giurato G, Nassa G, Tarallo R, Weisz A, Rizzo F. Insights into the Role of Estrogen Receptor β in Triple-Negative Breast Cancer. Cancers (Basel) 2020; 12:cancers12061477. [PMID: 32516978 PMCID: PMC7353068 DOI: 10.3390/cancers12061477] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
Estrogen receptors (ERα and ERβ) are ligand-activated transcription factors that play different roles in gene regulation and show both overlapping and specific tissue distribution patterns. ERβ, contrary to the oncogenic ERα, has been shown to act as an oncosuppressor in several instances. However, while the tumor-promoting actions of ERα are well-known, the exact role of ERβ in carcinogenesis and tumor progression is not yet fully understood. Indeed, to date, highly variable and even opposite effects have been ascribed to ERβ in cancer, including for example both proliferative and growth-inhibitory actions. Recently ERβ has been proposed as a potential target for cancer therapy, since it is expressed in a variety of breast cancers (BCs), including triple-negative ones (TNBCs). Because of the dependence of TNBCs on active cellular signaling, numerous studies have attempted to unravel the mechanism(s) behind ERβ-regulated gene expression programs but the scenario has not been fully revealed. We comprehensively reviewed the current state of knowledge concerning ERβ role in TNBC biology, focusing on the different signaling pathways and cellular processes regulated by this transcription factor, as they could be useful in identifying new diagnostic and therapeutic approaches for TNBC.
Collapse
Affiliation(s)
- Assunta Sellitto
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Ylenia D’Agostino
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Elena Alexandrova
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Jessica Lamberti
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Giovanni Pecoraro
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Domenico Memoli
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Domenico Rocco
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Elena Coviello
- Genomix4Life, via S. Allende 43/L, 84081 Baronissi (SA), Italy;
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
- CRGS (Genome Research Center for Health), University of Salerno Campus of Medicine, 84081 Baronissi (SA), Italy
- Correspondence: (A.W.); (F.R.); Tel.: (39+)-089-965043 (A.W.); Tel.: (39+)-089-965221 (F.R.)
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
- CRGS (Genome Research Center for Health), University of Salerno Campus of Medicine, 84081 Baronissi (SA), Italy
- Correspondence: (A.W.); (F.R.); Tel.: (39+)-089-965043 (A.W.); Tel.: (39+)-089-965221 (F.R.)
| |
Collapse
|
19
|
Klinge CM. Estrogenic control of mitochondrial function. Redox Biol 2020; 31:101435. [PMID: 32001259 PMCID: PMC7212490 DOI: 10.1016/j.redox.2020.101435] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/15/2022] Open
Abstract
Sex-based differences in human disease are caused in part by the levels of endogenous sex steroid hormones which regulate mitochondrial metabolism. This review updates a previous review on how estrogens regulate metabolism and mitochondrial function that was published in 2017. Estrogens are produced by ovaries and adrenals, and in lesser amounts by adipose, breast stromal, and brain tissues. At the cellular level, the mechanisms by which estrogens regulate diverse cellular functions including reproduction and behavior is by binding to estrogen receptors α, β (ERα and ERβ) and G-protein coupled ER (GPER1). ERα and ERβ are transcription factors that bind genomic and mitochondrial DNA to regulate gene transcription. A small proportion of ERα and ERβ interact with plasma membrane-associated signaling proteins to activate intracellular signaling cascades that ultimately alter transcriptional responses, including mitochondrial morphology and function. Although the mechanisms and targets by which estrogens act directly and indirectly to regulate mitochondrial function are not fully elucidated, it is clear that estradiol regulates mitochondrial metabolism and morphology via nuclear and mitochondrial-mediated events, including stimulation of nuclear respiratory factor-1 (NRF-1) transcription that will be reviewed here. NRF-1 is a transcription factor that interacts with coactivators including peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC-1α) to regulate nuclear-encoded mitochondrial genes. One NRF-1 target is TFAM that binds mtDNA to regulate its transcription. Nuclear-encoded miRNA and lncRNA regulate mtDNA-encoded and nuclear-encoded transcripts that regulate mitochondrial function, thus acting as anterograde signals. Other estrogen-regulated mitochondrial activities including bioenergetics, oxygen consumption rate (OCR), and extracellular acidification (ECAR), are reviewed.
Collapse
Affiliation(s)
- Carolyn M Klinge
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, 40292, KY, USA.
| |
Collapse
|
20
|
Hall C, Muller PA. The Diverse Functions of Mutant 53, Its Family Members and Isoforms in Cancer. Int J Mol Sci 2019; 20:ijms20246188. [PMID: 31817935 PMCID: PMC6941067 DOI: 10.3390/ijms20246188] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/29/2019] [Accepted: 12/05/2019] [Indexed: 02/08/2023] Open
Abstract
The p53 family of proteins has grown substantially over the last 40 years. It started with p53, then p63, p73, isoforms and mutants of these proteins. The function of p53 as a tumour suppressor has been thoroughly investigated, but the functions of all isoforms and mutants and the interplay between them are still poorly understood. Mutant p53 proteins lose p53 function, display dominant-negative (DN) activity and display gain-of-function (GOF) to varying degrees. GOF was originally attributed to mutant p53′s inhibitory function over the p53 family members p63 and p73. It has become apparent that this is not the only way in which mutant p53 operates as a large number of transcription factors that are not related to p53 are activated on mutant p53 binding. This raises the question to what extent mutant p53 binding to p63 and p73 plays a role in mutant p53 GOF. In this review, we discuss the literature around the interaction between mutant p53 and family members, including other binding partners, the functional consequences and potential therapeutics.
Collapse
|
21
|
Hawse JR, Carter JM, Aspros KGM, Bruinsma ES, Koepplin JW, Negron V, Subramaniam M, Ingle JN, Rech KL, Goetz MP. Optimized immunohistochemical detection of estrogen receptor beta using two validated monoclonal antibodies confirms its expression in normal and malignant breast tissues. Breast Cancer Res Treat 2019; 179:241-249. [PMID: 31571071 DOI: 10.1007/s10549-019-05441-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Significant controversy exists regarding the expression patterns of estrogen receptor beta (ERβ) in normal and diseased breast tissue. To address this issue, we have validated two ERβ antibodies, optimized the IHC protocols for both antibodies and now report the expression patterns of ERβ in normal and malignant breast tissues. METHODS ERβ antibody specificity was determined using western blot and IHC analysis. ERβ protein expression patterns were assessed via IHC in normal breast tissue and invasive breast carcinoma. Further, we report the detailed protocol of the ERβ IHC assay developed in our CAP/CLIA certified laboratory to provide a standardized method for future studies. RESULTS We have confirmed the specificity of two independent ERβ monoclonal antibodies, one that detects total (i.e., full length plus splice variants 2-5, which do not include the ligand binding domain) ERβ protein (PPZ0506) and one that detects only the full-length form, which includes the ligand binding domain, of ERβ (PPG5/10). Using these two antibodies, we demonstrate that ERβ is highly expressed in normal human breast tissue as well as in 20-30% of invasive breast cancers. Further, these two antibodies exhibited similar staining patterns across multiple different tissues and were highly concordant with regard to determining ERβ positivity in breast cancers. CONCLUSIONS ERβ protein was shown to be abundant in the majority of normal breast epithelial cells and is present in 20-30% of breast cancers. Use of these two antibodies, along with their standardized IHC protocols, provide a reference for future studies aimed at determining the utility of ERβ as a prognostic and/or predictive biomarker in various tissues of benign or malignant states.
Collapse
Affiliation(s)
- John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 13-21B Guggenheim Building, 200 First St. SW, Rochester, MN, 55905, USA.
| | - Jodi M Carter
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Kirsten G M Aspros
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 13-21B Guggenheim Building, 200 First St. SW, Rochester, MN, 55905, USA
| | - Elizabeth S Bruinsma
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 13-21B Guggenheim Building, 200 First St. SW, Rochester, MN, 55905, USA
| | - Justin W Koepplin
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Vivian Negron
- Department of Pathology, Mayo Clinic, Rochester, MN, USA
| | - Malayannan Subramaniam
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 13-21B Guggenheim Building, 200 First St. SW, Rochester, MN, 55905, USA
| | - James N Ingle
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Karen L Rech
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Matthew P Goetz
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
22
|
Goto Y, Thike AA, Ong CCH, Lim JX, Md Nasir ND, Li H, Koh VCY, Chen XY, Yeong JPS, Sasano H, Tan PH. Characteristics, behaviour and role of biomarkers in metastatic triple-negative breast cancer. J Clin Pathol 2019; 73:147-153. [PMID: 31563883 DOI: 10.1136/jclinpath-2019-206078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/04/2019] [Accepted: 09/15/2019] [Indexed: 12/24/2022]
Abstract
AIMS Characterising the factors responsible for metastatic triple-negative breast cancer (TNBC) is of significant importance, considering its high mortality rate and scant data. In this study, we evaluated the characteristics, clinical behaviour and role of biomarkers (androgen receptor (AR), oestrogen receptor beta (ERβ) and p53) in metastatic TNBC. METHODS Immunohistochemistry was performed for AR, ERβ and p53 on 125 primary TNBCs with known metastasis and correlated with clinicopathological parameters and outcome. AR and p53 mRNA profiling was also carried out on 34 tumours from the same series and correlated with outcomes. RESULTS In this cohort, grade 3 and pT2 tumours predominated. The most common site for metastasis was the lung and pleura (41, 32.8%), and 15 (12.0%) cases demonstrated metastasis in multiple sites. Among these, 92% of tumours metastasised without preceding local recurrences. Five- and ten-year overall survival (OS) rates were 27% and 7.2%, while 5- and 10- year survival rates after metastasis were 9.6% and 3.2% respectively. AR, ERβ and p53 protein expressions were observed in 16%, 96.8% and 58.1% of tumours, respectively. A combinational phenotype of AR-ERβ+p53+ tumours was associated with poorer OS (HR 1.543, 95%CI 1.030 to 2.310, p=0.035). Higher AR mRNA levels were significantly associated with favourable OS (p=0.015) and survival after metastasis (p=0.027). CONCLUSIONS Metastatic TNBC harboured aggressive behaviour and displayed predominantly visceral metastasis with most metastatic events occurring without intervening local recurrences. A combinational phenotype of AR-ERβ+p53+ was significantly associated with poorer OS.
Collapse
Affiliation(s)
- Yutaro Goto
- Anatomic Pathology, Tohoku University School of Medicine, Sendai, Miyagi, Japan.,Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Aye Aye Thike
- Anatomical Pathology, Singapore General Hospital, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | | | | | | | - Huihua Li
- Health Services Research Unit, Singapore General Hospital, Singapore, Singapore.,Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Singapore
| | | | - Xiao-Yang Chen
- Anatomical Pathology, Singapore General Hospital, Singapore, Singapore.,Anatomy, National University Singapore Yong Loo Lin School of Medicine, Singapore, Singapore
| | - Joe Poh Sheng Yeong
- Anatomical Pathology, Singapore General Hospital, Singapore, Singapore.,Integrative Biology for Theranostics, Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Hironobu Sasano
- Anatomic Pathology, Tohoku University School of Medicine, Sendai, Miyagi, Japan.,Pathology, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Puay Hoon Tan
- Duke-NUS Medical School, Singapore, Singapore .,Anatomy, National University Singapore Yong Loo Lin School of Medicine, Singapore, Singapore.,Pathology, Singapore General Hospital, Singapore, Singapore
| |
Collapse
|
23
|
Mukhopadhyay UK, Oturkar CC, Adams C, Wickramasekera N, Bansal S, Medisetty R, Miller A, Swetzig WM, Silwal-Pandit L, Børresen-Dale AL, Creighton CJ, Park JH, Konduri SD, Mukhopadhyay A, Caradori A, Omilian A, Bshara W, Kaipparettu BA, Das GM. TP53 Status as a Determinant of Pro- vs Anti-Tumorigenic Effects of Estrogen Receptor-Beta in Breast Cancer. J Natl Cancer Inst 2019; 111:1202-1215. [PMID: 30990221 PMCID: PMC6855950 DOI: 10.1093/jnci/djz051] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 12/28/2018] [Accepted: 04/01/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Anti-tumorigenic vs pro-tumorigenic roles of estrogen receptor-beta (ESR2) in breast cancer remain unsettled. We investigated the potential of TP53 status to be a determinant of the bi-faceted role of ESR2 and associated therapeutic implications for triple negative breast cancer (TNBC). METHODS ESR2-TP53 interaction was analyzed with multiple assays including the in situ proximity ligation assay. Transcriptional effects on TP53-target genes and cell proliferation in response to knocking down or overexpressing ESR2 were determined. Patient survival according to ESR2 expression levels and TP53 mutation status was analyzed in the basal-like TNBC subgroup in the Molecular Taxonomy of Breast Cancer International Consortium (n = 308) and Roswell Park Comprehensive Cancer Center (n = 46) patient cohorts by univariate Cox regression and log-rank test. All statistical tests are two-sided. RESULTS ESR2 interaction with wild-type and mutant TP53 caused pro-proliferative and anti-proliferative effects, respectively. Depleting ESR2 in cells expressing wild-type TP53 resulted in increased expression of TP53-target genes CDKN1A (control group mean [SD] = 1 [0.13] vs ESR2 depletion group mean [SD] = 2.08 [0.24], P = .003) and BBC3 (control group mean [SD] = 1 [0.06] vs ESR2 depleted group mean [SD] = 1.92 [0.25], P = .003); however, expression of CDKN1A (control group mean [SD] = 1 [0.21] vs ESR2 depleted group mean [SD] = 0.56 [0.12], P = .02) and BBC3 (control group mean [SD] = 1 [0.03] vs ESR2 depleted group mean [SD] = 0.55 [0.09], P = .008) was decreased in cells expressing mutant TP53. Overexpressing ESR2 had opposite effects. Tamoxifen increased ESR2-mutant TP53 interaction, leading to reactivation of TP73 and apoptosis. High levels of ESR2 expression in mutant TP53-expressing basal-like tumors is associated with better prognosis (Molecular Taxonomy of Breast Cancer International Consortium cohort: log-rank P = .001; hazard ratio = 0.26, 95% confidence interval = 0.08 to 0.84, univariate Cox P = .02). CONCLUSIONS TP53 status is a determinant of the functional duality of ESR2. Our study suggests that ESR2-mutant TP53 combination prognosticates survival in TNBC revealing a novel strategy to stratify TNBC for therapeutic intervention potentially by repurposing tamoxifen.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Gokul M Das
- Correspondence to: Gokul M. Das, PhD, Department of Pharmacology and Therapeutics, Center for Genetics and Pharmacology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY 14263 (e-mail: )
| |
Collapse
|
24
|
ERβ modulates genistein’s cisplatin-enhancing activities in breast cancer MDA-MB-231 cells via P53-independent pathway. Mol Cell Biochem 2019; 456:205-216. [DOI: 10.1007/s11010-019-03505-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/01/2019] [Indexed: 11/25/2022]
|
25
|
Gandhi N, Das GM. Metabolic Reprogramming in Breast Cancer and Its Therapeutic Implications. Cells 2019; 8:E89. [PMID: 30691108 PMCID: PMC6406734 DOI: 10.3390/cells8020089] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/20/2019] [Accepted: 01/22/2019] [Indexed: 12/22/2022] Open
Abstract
Current standard-of-care (SOC) therapy for breast cancer includes targeted therapies such as endocrine therapy for estrogen receptor-alpha (ERα) positive; anti-HER2 monoclonal antibodies for human epidermal growth factor receptor-2 (HER2)-enriched; and general chemotherapy for triple negative breast cancer (TNBC) subtypes. These therapies frequently fail due to acquired or inherent resistance. Altered metabolism has been recognized as one of the major mechanisms underlying therapeutic resistance. There are several cues that dictate metabolic reprogramming that also account for the tumors' metabolic plasticity. For metabolic therapy to be efficacious there is a need to understand the metabolic underpinnings of the different subtypes of breast cancer as well as the role the SOC treatments play in targeting the metabolic phenotype. Understanding the mechanism will allow us to identify potential therapeutic vulnerabilities. There are some very interesting questions being tackled by researchers today as they pertain to altered metabolism in breast cancer. What are the metabolic differences between the different subtypes of breast cancer? Do cancer cells have a metabolic pathway preference based on the site and stage of metastasis? How do the cell-intrinsic and -extrinsic cues dictate the metabolic phenotype? How do the nucleus and mitochondria coordinately regulate metabolism? How does sensitivity or resistance to SOC affect metabolic reprogramming and vice-versa? This review addresses these issues along with the latest updates in the field of breast cancer metabolism.
Collapse
Affiliation(s)
- Nishant Gandhi
- Department of Pharmacology and Therapeutics, Center for Genetics & Pharmacology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| | - Gokul M Das
- Department of Pharmacology and Therapeutics, Center for Genetics & Pharmacology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| |
Collapse
|
26
|
Jeong BK, Sung CO, Kim KR. Uterine Malignant Mixed Müllerian Tumors Following Treatment with Selective Estrogen Receptor Modulators in Patients with Breast Cancer: A Report of 13 Cases and Their Clinicopathologic Characteristics. J Pathol Transl Med 2018; 53:31-39. [PMID: 30558398 PMCID: PMC6344802 DOI: 10.4132/jptm.2018.11.16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/16/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Breast cancer treatment with selective estrogen receptor modulators (SERMs) increasesthe incidence of uterine malignant mixed Müllerian tumors (uMMMTs). We examine clinicopathologiccharacteristics and prognosis of SERM-associated uMMMTs (S-uMMMTs) and discusspossible pathogenetic mechanisms. METHODS Among 28,104 patients with breast cancer, clinicopathologicfeatures and incidence of uMMMT were compared between patients who underwentSERM treatment and those who did not. Of 92 uMMMT cases that occurred during the same period,incidence, dose, and duration of SERM treatment, as well as overall survival rate, were comparedfor patients with breast cancer who underwent SERM treatment and those who did not (S-uMMMTvs NS-uMMMT) and for patients without breast cancer (de novo-uMMMT). Histopathologicalfindings and immunophenotypes for myogenin, desmin, p53, WT-1, estrogen receptor (ER) α, ERβ,progesterone receptor, and GATA-3 were compared between S-uMMMT and de novo-uMMMT. RESULTS The incidence of S-uMMMT was significantly higher than that of NS-uMMMT (6.35-fold).All patients with SERM were postmenopausal and received daily 20-40 mg SERM. CumulativeSERM dose ranged from 21.9 to 73.0 g (mean, 46.0) over 39-192 months (mean, 107). Clinicopathologicfeatures, such as International Federation of Gynecology and Obstetrics stage andoverall survival, were not significantly different between patients with S-uMMMT and NS-uMMMTor between patients with S-uMMMT and de novo-uMMMT. All 11 S-uMMMT cases available forimmunostaining exhibited strong overexpression/null expression of p53 protein and significantlyincreased ERβ expression in carcinomatous and sarcomatous components. CONCLUSIONS SERMtherapy seemingly increases risk of S-uMMMT development; however, clinicopathologic featureswere similar in all uMMMTs from different backgrounds. p53 mutation and increased ERβ expressionmight be involved in the etiology of S-uMMMT.
Collapse
Affiliation(s)
- Byung-Kwan Jeong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Chang O Sung
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyu-Rae Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
27
|
Wild-type p53 oligomerizes more efficiently than p53 hot-spot mutants and overcomes mutant p53 gain-of-function via a "dominant-positive" mechanism. Oncotarget 2018; 9:32063-32080. [PMID: 30174797 PMCID: PMC6112834 DOI: 10.18632/oncotarget.25944] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/21/2018] [Indexed: 12/24/2022] Open
Abstract
Human p53 protein acts as a transcription factor predominantly in a tetrameric form. Single residue changes, caused by hot-spot mutations of the TP53 gene in human cancer, transform wild-type (wt) p53 tumor suppressor proteins into potent oncoproteins - with gain-of-function, tumor-promoting activity. Oligomerization of p53 allows for a direct interplay between wt and mutant p53 proteins if both are present in the same cells - where a mutant p53's dominant-negative effect known to inactivate wt p53, co-exists with an opposite mechanism - a "dominant-positive" suppression of the mutant p53's gain-of-function activity by wt p53. In this study we determine the oligomerization efficiency of wt and mutant p53 in living cells using FRET-based assays and describe wt p53 to be more efficient than mutant p53 in entering p53 oligomers. The biased p53 oligomerization helps to interpret earlier reports of a low efficiency of the wt p53 inactivation via the dominant-negative effect, while it also implies that the "dominant-positive" effect may be more pronounced. Indeed, we show that at similar wt:mutant p53 concentrations in cells - the mutant p53 gain-of-function stimulation of gene transcription and cell migration is more efficiently inhibited than the wt p53's tumor-suppressive transactivation and suppression of cell migration. These results suggest that the frequent mutant p53 accumulation in human tumor cells does not only directly strengthen its gain-of-function activity, but also protects the oncogenic p53 mutants from the functional dominance of wt p53.
Collapse
|
28
|
Jin J, Fang H, Yang F, Ji W, Guan N, Sun Z, Shi Y, Zhou G, Guan X. Combined Inhibition of ATR and WEE1 as a Novel Therapeutic Strategy in Triple-Negative Breast Cancer. Neoplasia 2018; 20:478-488. [PMID: 29605721 PMCID: PMC5915994 DOI: 10.1016/j.neo.2018.03.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/02/2018] [Accepted: 03/06/2018] [Indexed: 12/20/2022]
Abstract
Triple negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer that poses a clinical challenge. Thus, new therapy strategies are urgently needed. The selective WEE1 inhibitor, AZD1775, has shown strong anti-proliferative effects on a variety of tumors. Here, we first demonstrate that inhibition of ATR by selective inhibitor AZD6738 can enhance AZD1775-caused growth inhibition in TNBC. Our results show that the enhanced cell death is attributed to repressed DNA damage repair and excessive replication stress, thereby causing increased DNA damage reflected by accumulation of the DNA double-strand-break marker γH2AX. On the other hand, combined treatment with AZD6738 and AZD1775 forces mitotic entry of cells with DNA damages by activating CDK1 activity, inducing severely aberrant mitosis and mitotic catastrophe, ultimately resulting in cell death. Dual inhibition of WEE1 and ATR also inactivated RAD51-mediated homologous recombination, which sensitized TNBC cells to cisplatin and PARP inhibitor. Here, based on the preclinical results that ATR inhibition synergizes with WEE1 inhibition in TNBC, we propose that this combination therapy alone, or in parallel with chemotherapy, represents an innovative and potent targeted therapy in TNBC.
Collapse
Affiliation(s)
- Juan Jin
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hehui Fang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Fang Yang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wenfei Ji
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing Medical University, Nanjing, China
| | - Nan Guan
- International Department American Division, Nanjing Jinling High School, Nanjing, China
| | - Zijia Sun
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yaqin Shi
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guohua Zhou
- Department of Pharmacology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaoxiang Guan
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China; Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
29
|
Bado I, Pham E, Soibam B, Nikolos F, Gustafsson JÅ, Thomas C. ERβ alters the chemosensitivity of luminal breast cancer cells by regulating p53 function. Oncotarget 2018; 9:22509-22522. [PMID: 29854295 PMCID: PMC5976481 DOI: 10.18632/oncotarget.25147] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 03/21/2018] [Indexed: 01/13/2023] Open
Abstract
Estrogen receptor α (ERα)-positive breast cancers tend to develop resistance to both endocrine therapy and chemotherapy. Despite recent progress in defining molecular pathways that confer endocrine resistance, the mechanisms that regulate chemotherapy response in luminal tumors remain largely elusive. Luminal tumors often express wild-type p53 that is a major determinant of the cellular DNA damage response. Similar to p53, the second ER subtype, ERβ, has been reported to inhibit breast tumorigenesis by acting alone or in collaboration with p53. However, a synergistic mechanism of action has not been described. Here, we suggest that ERβ relies on p53 to elicit its tumor repressive actions in ERα-positive breast cancer cells. Upregulation of ERβ and treatment with ERβ agonists potentiates the tumor suppressor function of p53 resulting in decreased survival. This effect requires molecular interaction between the two proteins that disrupts the inhibitory action of ERα on p53 leading to increased transcriptional activity of p53. In addition, we show that the same interaction alters the chemosensitivity of endocrine-resistant cells including their response to tamoxifen therapy. Our results suggest a collaboration of ERβ and p53 tumor suppressor activity in breast cancer cells that indicates the importance of ligand-regulated ERβ as a tool to target p53 activity and improve the clinical management of resistant disease.
Collapse
Affiliation(s)
- Igor Bado
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
| | - Eric Pham
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Benjamin Soibam
- Department of Computer Science and Engineering Technology, University of Houston-Downtown, Huston, Texas, USA
| | - Fotis Nikolos
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
| | - Jan-Åke Gustafsson
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
- Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Christoforos Thomas
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
| |
Collapse
|
30
|
Yang YM, Yang WX. Epithelial-to-mesenchymal transition in the development of endometriosis. Oncotarget 2018; 8:41679-41689. [PMID: 28415639 PMCID: PMC5522315 DOI: 10.18632/oncotarget.16472] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/11/2017] [Indexed: 12/15/2022] Open
Abstract
Endometriosis, an estrogen-dependent chronic gynecological disease, is common in reproductive-age women and profoundly affects their life quality. Although various pathogenic theories have been proposed, the origin of endometriosis remains unclear. Epithelial to mesenchymal transition (EMT) is a process that epithelial cells lose polarized organization of the cytoskeleton and cell-to-cell contacts, acquiring the high motility of mesenchymal cells. These changes are thought to be prerequisites for the original establishment of endometriotic lesions. However, no study exactly indicates which type of EMT occurs in endometriosis. In this review, we conclude that two different types of EMT may participate in this disease. Besides, two stimulating signals, hypoxia and estrogen, can through different pathways to activate the EMT process in endometriosis. Those pathways involve many cellular factors such as TGF-beta and Wnt, ultimately leading to cell proliferation and migration. As infertility is becoming a serious and intractable issue for women, EMT, during the implantation process, is gaining attention. In this review, we will describe the known functions of EMT in endometriosis, and suggest further studies that may aid in the development of medical therapy.
Collapse
Affiliation(s)
- Yan-Meng Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
31
|
Nikolos F, Thomas C, Bado I, Gustafsson JÅ. ERβ Sensitizes NSCLC to Chemotherapy by Regulating DNA Damage Response. Mol Cancer Res 2017; 16:233-242. [PMID: 29117942 DOI: 10.1158/1541-7786.mcr-17-0201] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/12/2017] [Accepted: 10/16/2017] [Indexed: 11/16/2022]
Abstract
The expression of wild-type estrogen receptor β (ESR2/ERβ1) correlates with clinical outcome in patients with non-small cell lung cancer (NSCLC). However, the molecular mechanism that accounts for this association is currently poorly understood. ERβ1 was previously linked to chemotherapy response in patients with breast cancer and in breast cancer cells. The effect of the receptor in NSCLC cells after chemotherapy treatment, a common remedy for advanced NSCLC, has not been studied. Here, upregulation of ERβ1 increases the sensitivity of NSCLC cells to treatment with doxorubicin and etoposide. This effect was primarily observed in p53-defecient NSCLC cells. In these cells, ERβ1 either enhanced G2-M cell-cycle arrest by activating the checkpoint kinase 1 (Chk1) and altering downstream signaling or induced apoptosis. The expression of p63 target genes that control G2-M checkpoint activation was altered by ERβ1 suggesting an ERβ1-p63 transcriptional cooperation in lung cancer cells that affects DNA damage response (DDR). These results suggest involvement of ERβ1 in the mechanism that regulates DNA damage response in NSCLC cells and support the potential predictive and therapeutic value of the receptor in clinical management of the disease.Implications: This study demonstrating the impact of ERβ1 on chemosensitivity of NSCLC cells suggests the predictive value of the receptor for successful response of tumors to chemotherapy and the potential benefit of chemotherapy-treated patients from the use of ER ligands. Mol Cancer Res; 16(2); 233-42. ©2017 AACR.
Collapse
Affiliation(s)
- Fotis Nikolos
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas
| | - Christoforos Thomas
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas.
| | - Igor Bado
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas
| | - Jan-Åke Gustafsson
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas
| |
Collapse
|
32
|
Tarallo R, Giurato G, Bruno G, Ravo M, Rizzo F, Salvati A, Ricciardi L, Marchese G, Cordella A, Rocco T, Gigantino V, Pierri B, Cimmino G, Milanesi L, Ambrosino C, Nyman TA, Nassa G, Weisz A. The nuclear receptor ERβ engages AGO2 in regulation of gene transcription, RNA splicing and RISC loading. Genome Biol 2017; 18:189. [PMID: 29017520 PMCID: PMC5634881 DOI: 10.1186/s13059-017-1321-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 09/20/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The RNA-binding protein Argonaute 2 (AGO2) is a key effector of RNA-silencing pathways It exerts a pivotal role in microRNA maturation and activity and can modulate chromatin remodeling, transcriptional gene regulation and RNA splicing. Estrogen receptor beta (ERβ) is endowed with oncosuppressive activities, antagonizing hormone-induced carcinogenesis and inhibiting growth and oncogenic functions in luminal-like breast cancers (BCs), where its expression correlates with a better prognosis of the disease. RESULTS Applying interaction proteomics coupled to mass spectrometry to characterize nuclear factors cooperating with ERβ in gene regulation, we identify AGO2 as a novel partner of ERβ in human BC cells. ERβ-AGO2 association was confirmed in vitro and in vivo in both the nucleus and cytoplasm and is shown to be RNA-mediated. ChIP-Seq demonstrates AGO2 association with a large number of ERβ binding sites, and total and nascent RNA-Seq in ERβ + vs ERβ - cells, and before and after AGO2 knock-down in ERβ + cells, reveals a widespread involvement of this factor in ERβ-mediated regulation of gene transcription rate and RNA splicing. Moreover, isolation and sequencing by RIP-Seq of ERβ-associated long and small RNAs in the cytoplasm suggests involvement of the nuclear receptor in RISC loading, indicating that it may also be able to directly control mRNA translation efficiency and stability. CONCLUSIONS These results demonstrate that AGO2 can act as a pleiotropic functional partner of ERβ, indicating that both factors are endowed with multiple roles in the control of key cellular functions.
Collapse
Affiliation(s)
- Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
- Genomix4Life srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Giuseppina Bruno
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Maria Ravo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
- Genomix4Life srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Annamaria Salvati
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Luca Ricciardi
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Giovanna Marchese
- Genomix4Life srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | | | - Teresa Rocco
- Genomix4Life srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Valerio Gigantino
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Biancamaria Pierri
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Giovanni Cimmino
- Department of Cardiothoracic and Respiratory Sciences, University of Campania'L. Vanvitelli', Naples, Italy
| | - Luciano Milanesi
- Institute of Biomedical Technologies, National Research Council, Segregate, MI, Italy
| | - Concetta Ambrosino
- Department of Science and Technology, University of Sannio, Benevento, Italy
- IRGS Biogem, Ariano Irpino, AV, Italy
| | - Tuula A Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Rikshospitalet Oslo, Oslo, Norway
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy.
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy.
| |
Collapse
|
33
|
Bado I, Gugala Z, Fuqua SAW, Zhang XHF. Estrogen receptors in breast and bone: from virtue of remodeling to vileness of metastasis. Oncogene 2017; 36:4527-4537. [PMID: 28368409 PMCID: PMC5552443 DOI: 10.1038/onc.2017.94] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 12/11/2022]
Abstract
Bone metastasis is a prominent cause of morbidity and mortality in cancer. High rates of bone colonization in breast cancer, especially in the subtype expressing estrogen receptors (ERs), suggest tissue-specific proclivities for metastatic tumor formation. The mechanisms behind this subtype-specific organ-tropism remains largely elusive. Interestingly, as the major driver of ER+ breast cancer, ERs also have important roles in bone development and homeostasis. Thus, any agents targeting ER will also inevitably affect the microenvironment, which involves the osteoblasts and osteoclasts. Yet, how such microenvironmental effects are integrated with direct therapeutic responses of cancer cells remain poorly understood. Recent findings on ER mutations, especially their enrichment in bone metastasis, raised even more provocative questions on the role of ER in cancer-bone interaction. In this review, we evaluate the importance of ERs in bone metastasis and discuss new avenues of investigation for bone metastasis treatment based on current knowledge.
Collapse
Affiliation(s)
- Igor Bado
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
- Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
| | - Zbigniew Gugala
- Department of Orthopaedic Surgery and Rehabilitation, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555
| | - Suzanne A. W. Fuqua
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
- Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
| | - Xiang H.-F. Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
- Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
- McNair Medical Institute, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
| |
Collapse
|
34
|
Bado I, Nikolos F, Rajapaksa G, Wu W, Castaneda J, Krishnamurthy S, Webb P, Gustafsson JÅ, Thomas C. Somatic loss of estrogen receptor beta and p53 synergize to induce breast tumorigenesis. Breast Cancer Res 2017; 19:79. [PMID: 28673316 PMCID: PMC5494907 DOI: 10.1186/s13058-017-0872-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 06/20/2017] [Indexed: 11/13/2022] Open
Abstract
Background Upregulation of estrogen receptor beta (ERβ) in breast cancer cells is associated with epithelial maintenance, decreased proliferation and invasion, and a reduction in the expression of the receptor has been observed in invasive breast tumors. However, proof of an association between loss of ERβ and breast carcinogenesis is still missing. Methods To study the role of ERβ in breast oncogenesis, we generated mouse conditional mutants with specific inactivation of ERβ and p53 in the mammary gland epithelium. For epithelium-specific knockout of ERβ and p53, ERβF/F and p53F/F mice were crossed to transgenic mice that express the Cre recombinase under the control of the human keratin 14 promoter. Results Somatic loss of ERβ significantly accelerated formation of p53-deficient mammary tumors. Loss of the receptor also resulted in the development of less differentiated carcinomas with stronger spindle cell morphology and decreased expression of luminal epithelial markers. Conclusions Our results show that synergism between ERβ and p53 inactivation functions to determine important aspects of breast oncogenesis and cancer progression. Electronic supplementary material The online version of this article (doi:10.1186/s13058-017-0872-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Igor Bado
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, 3517 Cullen Blvd, Houston, TX, 77204, USA
| | - Fotis Nikolos
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, 3517 Cullen Blvd, Houston, TX, 77204, USA
| | - Gayani Rajapaksa
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, 3517 Cullen Blvd, Houston, TX, 77204, USA
| | - Wanfu Wu
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, 3517 Cullen Blvd, Houston, TX, 77204, USA
| | - Jessica Castaneda
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, 3517 Cullen Blvd, Houston, TX, 77204, USA
| | - Savitri Krishnamurthy
- Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Paul Webb
- Department of Genomic Medicine, Houston Methodist Research Institute, Houston Methodist, 6670 Bertner Avenue, Houston, TX, 77030, USA
| | - Jan-Åke Gustafsson
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, 3517 Cullen Blvd, Houston, TX, 77204, USA
| | - Christoforos Thomas
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, 3517 Cullen Blvd, Houston, TX, 77204, USA.
| |
Collapse
|
35
|
Andersson S, Sundberg M, Pristovsek N, Ibrahim A, Jonsson P, Katona B, Clausson CM, Zieba A, Ramström M, Söderberg O, Williams C, Asplund A. Insufficient antibody validation challenges oestrogen receptor beta research. Nat Commun 2017. [PMID: 28643774 PMCID: PMC5501969 DOI: 10.1038/ncomms15840] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The discovery of oestrogen receptor β (ERβ/ESR2) was a landmark discovery. Its reported expression and homology with breast cancer pharmacological target ERα (ESR1) raised hopes for improved endocrine therapies. After 20 years of intense research, this has not materialized. We here perform a rigorous validation of 13 anti-ERβ antibodies, using well-characterized controls and a panel of validation methods. We conclude that only one antibody, the rarely used monoclonal PPZ0506, specifically targets ERβ in immunohistochemistry. Applying this antibody for protein expression profiling in 44 normal and 21 malignant human tissues, we detect ERβ protein in testis, ovary, lymphoid cells, granulosa cell tumours, and a subset of malignant melanoma and thyroid cancers. We do not find evidence of expression in normal or cancerous human breast. This expression pattern aligns well with RNA-seq data, but contradicts a multitude of studies. Our study highlights how inadequately validated antibodies can lead an exciting field astray. A large body of work into the role of oestrogen receptor b (ERb) in breast cancer is contradictory, hindering future progress. Here the authors conduct extensive validation of anti-ERb antibodies , and show that normal and cancerous breast tissue do not express ERb, consistent with RNA-seq data.
Collapse
Affiliation(s)
- Sandra Andersson
- Department of Immunology, Genetics and Pathology, Uppsala University, Science for Life Laboratory, 751 85 Uppsala, Sweden
| | - Mårten Sundberg
- Department of Chemistry, Uppsala University, Science for Life Laboratory, 75123 Uppsala, Sweden
| | - Nusa Pristovsek
- Department of Immunology, Genetics and Pathology, Uppsala University, Science for Life Laboratory, 751 85 Uppsala, Sweden
| | - Ahmed Ibrahim
- Division of Proteomics and Nanotechnology, School of Biotechnology, Science for Life Laboratory, KTH Royal Institute of Technology, 171 21 Solna, Sweden.,Division of Pharmaceutical Industries, National Research Centre, Dokki 12622, Egypt
| | - Philip Jonsson
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
| | - Borbala Katona
- Department of Immunology, Genetics and Pathology, Uppsala University, Science for Life Laboratory, 751 85 Uppsala, Sweden
| | - Carl-Magnus Clausson
- Department of Immunology, Genetics and Pathology, Uppsala University, Science for Life Laboratory, 751 85 Uppsala, Sweden
| | - Agata Zieba
- Department of Immunology, Genetics and Pathology, Uppsala University, Science for Life Laboratory, 751 85 Uppsala, Sweden
| | - Margareta Ramström
- Department of Chemistry, Uppsala University, Science for Life Laboratory, 75123 Uppsala, Sweden
| | - Ola Söderberg
- Department of Pharmaceutical Biosciences, Uppsala University, 75124 Uppsala, Sweden
| | - Cecilia Williams
- Division of Proteomics and Nanotechnology, School of Biotechnology, Science for Life Laboratory, KTH Royal Institute of Technology, 171 21 Solna, Sweden.,Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA.,Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Stockholm, Sweden
| | - Anna Asplund
- Department of Immunology, Genetics and Pathology, Uppsala University, Science for Life Laboratory, 751 85 Uppsala, Sweden
| |
Collapse
|
36
|
Wu ST, Ku WC, Huang CJ, Wang YC, Lin CM, Chen SK. Cellular effects induced by 17-β-estradiol to reduce the survival of renal cell carcinoma cells. J Biomed Sci 2016; 23:67. [PMID: 27680214 PMCID: PMC5041337 DOI: 10.1186/s12929-016-0282-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 08/23/2016] [Indexed: 12/21/2022] Open
Abstract
Background Renal cell carcinoma (RCC) is an adult malignancy with 2:1 men-to-women ratio, which implies the possible role of sex hormones in RCC carcinogenesis. One of the predominant sex hormones in women before menopause, 17-β-estradiol (or E2), may regulate RCC growth by cellular mechanisms that are still not fully understood. Methods The expression levels of E2 receptors (ER1 and ER2) were determined in different RCC cell lines. The DNA damage response induced by E2 was determined by a DNA double-strand break marker γH2AX. To study the possible effect of E2 on oxidative stress response, RCC cells were stained with 2,7-dichlorofluorescein diacetate and analyzed by flow cytometry. Upregulation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) ser40 phosphorylation in response to oxidative stress was detected by immunoblotting. Finally, annexin V/propidium iodide (PI) double staining assay was used to determine E2-induced cellular apoptosis. Results Variable expression of ER1 and ER2 were found in the RCC cell lines studied (786-O, A498, and ACHN), in which ACHN and A498 showed highest and lowest ER expression, respectively. In A498 cells, E2 induced DNA double-strand breaks with positive staining of γH2AX. On the other hand, the level of reactive oxidative species were elevated in ACHN cells after E2 treatment. The E2-induced oxidative stress also induced the Ser40 phosphorylation and nuclear translocation of Nrf2. Finally, we also demonstrated that E2 induced apoptosis as revealed by annexin V/PI double staining. Conclusions In this study, we demonstrated the cellular effects of E2 on DNA repair, ROS production as well as Nrf2 activation, and apoptosis in RCC cell lines. Together these cellular alterations may contribute to the reduced viability of RCC cells following E2 treatment.
Collapse
Affiliation(s)
- Sheng-Tang Wu
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Chi Ku
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
| | - Chi-Jung Huang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan.,Department of Medical Research, Cathay General Hospital, Taipei, Taiwan
| | - Yen-Chieh Wang
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan.,Department of Surgery, Sijhih Cathay General Hospital, No. 2, Ln. 59, Jiancheng Rd., Sijhih Dist., New Taipei, 22174, Taiwan
| | - Chih-Ming Lin
- Department of Surgery, Cathay General Hospital, Taipei, Taiwan
| | - Shao-Kuan Chen
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan. .,Department of Surgery, Sijhih Cathay General Hospital, No. 2, Ln. 59, Jiancheng Rd., Sijhih Dist., New Taipei, 22174, Taiwan.
| |
Collapse
|