1
|
Guo Y, Zhang L, Ma Q. A novel association between Bmi-1 protein expression and the SUVmax obtained by 18F-FDG PET/CT in patients with gastric adenocarcinoma. Open Life Sci 2022; 17:1617-1628. [PMID: 36561502 PMCID: PMC9743198 DOI: 10.1515/biol-2022-0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/11/2022] [Accepted: 03/29/2022] [Indexed: 12/13/2022] Open
Abstract
This study aimed to examine B-cell-specific Moloney murine leukemia virus integration site 1 (Bmi-1) in gastric adenocarcinoma (GAC) and its association with the maximal standard uptake value (SUVmax) of preoperative fluorine-18-fludeoosyglucose positron emission tomography/computed tomography (18F-FDG PET/CT). Clinicopathological data were retrospectively collected from 60 primary GAC patients. The Bmi-1 protein expression in GAC and adjacent noncancerous tissues was examined by immunohistochemistry and western blot analysis. Pearson's correlation analysis was conducted to assess the correlation between Bmi-1 expression and the SUVmax. The Bmi-1 protein levels were significantly greater in GAC versus noncancerous tissues, and higher Bmi-1 was significantly correlated with a lower degree of tumor differentiation, higher tumor stages, more lymph node metastasis, and depth of invasion. The SUVmax value was significantly correlated with the T stage, N stage, and clinical stage, but not with age, gender, tumor size, histological differentiation degree, or Lauren classification. Moreover, a significant positive correlation between Bmi-1 and SUVmax was observed in GAC tissues. In conclusion, our findings demonstrate a novel correlation between Bmi-1 and preoperative SUVmax in GAC patients who did not receive radiotherapy, chemotherapy, or targeted treatment before surgery, and both are positively correlated with unfavorable prognostic factors and a higher grade of malignancy.
Collapse
Affiliation(s)
- Ying Guo
- Department of Nephrology, China-Japan Union Hospital, Jilin University, 126 Xiantai St. Changchun, Jilin 130033, China
| | - Li Zhang
- Department of Neurology, China-Japan Union Hospital, Jilin University, 126 Xiantai St. Changchun, Jilin 130033, China
| | - Qingjie Ma
- Department of Nuclear Medicine, China-Japan Union Hospital, Jilin University, 126 Xiantai St., Changchun, Jilin 130033, China
| |
Collapse
|
2
|
Xu J, Li L, Shi P, Cui H, Yang L. The Crucial Roles of Bmi-1 in Cancer: Implications in Pathogenesis, Metastasis, Drug Resistance, and Targeted Therapies. Int J Mol Sci 2022; 23:ijms23158231. [PMID: 35897796 PMCID: PMC9367737 DOI: 10.3390/ijms23158231] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 12/01/2022] Open
Abstract
B-cell-specific Moloney murine leukemia virus integration region 1 (Bmi-1, also known as RNF51 or PCGF4) is one of the important members of the PcG gene family, and is involved in regulating cell proliferation, differentiation and senescence, and maintaining the self-renewal of stem cells. Many studies in recent years have emphasized the role of Bmi-1 in the occurrence and development of tumors. In fact, Bmi-1 has multiple functions in cancer biology and is closely related to many classical molecules, including Akt, c-MYC, Pten, etc. This review summarizes the regulatory mechanisms of Bmi-1 in multiple pathways, and the interaction of Bmi-1 with noncoding RNAs. In particular, we focus on the pathological processes of Bmi-1 in cancer, and explore the clinical relevance of Bmi-1 in cancer biomarkers and prognosis, as well as its implications for chemoresistance and radioresistance. In conclusion, we summarize the role of Bmi-1 in tumor progression, reveal the pathophysiological process and molecular mechanism of Bmi-1 in tumors, and provide useful information for tumor diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Jie Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (J.X.); (L.L.); (P.S.)
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Lin Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (J.X.); (L.L.); (P.S.)
| | - Pengfei Shi
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (J.X.); (L.L.); (P.S.)
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (J.X.); (L.L.); (P.S.)
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
- Correspondence: (H.C.); (L.Y.)
| | - Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (J.X.); (L.L.); (P.S.)
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
- Correspondence: (H.C.); (L.Y.)
| |
Collapse
|
3
|
Wuputra K, Ku CC, Pan JB, Liu CJ, Liu YC, Saito S, Kato K, Lin YC, Kuo KK, Chan TF, Chong IW, Lin CS, Wu DC, Yokoyama KK. Stem Cell Biomarkers and Tumorigenesis in Gastric Cancer. J Pers Med 2022; 12:jpm12060929. [PMID: 35743714 PMCID: PMC9224738 DOI: 10.3390/jpm12060929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 02/01/2023] Open
Abstract
Stomach cancer has a high mortality, which is partially caused by an absence of suitable biomarkers to allow detection of the initiation stages of cancer progression. Thus, identification of critical biomarkers associated with gastric cancer (GC) is required to advance its clinical diagnoses and treatment. Recent studies using tracing models for lineage analysis of GC stem cells indicate that the cell fate decision of the gastric stem cells might be an important issue for stem cell plasticity. They include leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5+), Cholecystokinin receptor 2 (Cckr2+), and axis inhibition protein 2 (Axin2+) as the stem cell markers in the antrum, Trefoil Factor 2 (TFF2+), Mist1+ stem cells, and Troy+ chief cells in the corpus. By contrast, Estrogen receptor 1 (eR1), Leucine-rich repeats and immunoglobulin-like domains 1 (Lrig1), SRY (sex determining region Y)-box 2 (Sox2), and B lymphoma Mo-MLV insertion region 1 homolog (Bmi1) are rich in both the antrum and corpus regions. These markers might help to identify the cell-lineage identity and analyze the plasticity of each stem cell population. Thus, identification of marker genes for the development of GC and its environment is critical for the clinical application of cancer stem cells in the prevention of stomach cancers.
Collapse
Affiliation(s)
- Kenly Wuputra
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-S.L.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (K.-K.K.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
| | - Chia-Chen Ku
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-S.L.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (K.-K.K.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
| | - Jia-Bin Pan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-S.L.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (K.-K.K.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
| | - Chung-Jung Liu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (K.-K.K.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Department of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Chang Liu
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
| | - Shigeo Saito
- Saito Laboratory of Cell Technology, Yaita 329-2192, Japan;
- Horus Co., Ltd., Nakano, Tokyo 164-0001, Japan
| | - Kohsuke Kato
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences, The University of Tsukuba, Tsukuba 305-8577, Japan;
| | - Ying-Chu Lin
- School of Dentistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Kung-Kai Kuo
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (K.-K.K.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
- Division of General & Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Te-Fu Chan
- Department of Obstetrics and Genecology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
| | - Inn-Wen Chong
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
| | - Chang-Shen Lin
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-S.L.)
| | - Deng-Chyang Wu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (K.-K.K.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Department of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Obstetrics and Genecology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
| | - Kazunari K. Yokoyama
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-S.L.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (K.-K.K.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
- Correspondence: ; Tel.: +886-7312-1101 (ext. 2729); Fax: +886-7313-3849
| |
Collapse
|
4
|
Zhang J, Lv W, Liu Y, Fu W, Chen B, Ma Q, Gao X, Cui X. Nucleoporin 37 promotes the cell proliferation, migration, and invasion of gastric cancer through activating the PI3K/AKT/mTOR signaling pathway. In Vitro Cell Dev Biol Anim 2021; 57:987-997. [PMID: 34888748 DOI: 10.1007/s11626-021-00627-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/03/2021] [Indexed: 02/07/2023]
Abstract
Gastric cancer is a kind of malignant tumor in the world. Emerging studies have proved the regulatory role of nucleoporin 37 in the development of several malignant tumors. However, the potential effect of NUP37 in gastric cancer is still unclear. In this study, we searched for the Cancer Genome Atlas analysis to explore the potential correlation between NUP37 and gastric cancer. Then, we analyzed NUP37 expression in gastric cancer tissues and cell lines. After constructing a NUP37-silenced model in NCI-N87 cells and a NUP37-overexpressed model in MKN45 cells, we evaluated the role of NUP37 in cell proliferation, migration, and invasion as well as its underlying mechanism. TCGA analysis showed that NUP37 expression was highly expressed in stomach adenocarcinoma, which showed a lower survival rate than normal samples. Moreover, NUP37 was found to be highly expressed in gastric cancer tissues and cell lines. Functionally, NUP37 deficiency promoted gastric cancer cell apoptosis and inhibited cell proliferation, migration, and invasion, whereas NUP37 overexpression exhibited the opposite results. Mechanically, upregulation of NUP37 activated the PI3K/AKT/mTOR signaling pathway. Furthermore, the rescue assay exhibited that the mTOR inhibitor rapamycin significantly reversed the promoting effect of NUP37 in cell proliferation, migration, and invasion. In conclusion, our study identified that NUP37 promoted malignant behavior of gastric cancer cells including invasion, proliferation, and migration through activating the PI3K and its downregulated signaling pathway, indicating that NUP37 might become a novel prognostic target for further gastric cancer therapy.
Collapse
Affiliation(s)
- Jishui Zhang
- The Second Department of General Surgery, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061001, Hebei, China.
| | - Wenhao Lv
- The Second Department of General Surgery, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061001, Hebei, China
| | - Yagang Liu
- The Second Department of General Surgery, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061001, Hebei, China
| | - Weihua Fu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Baosheng Chen
- The Second Department of General Surgery, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061001, Hebei, China
| | - Qiutong Ma
- The Second Department of General Surgery, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061001, Hebei, China
| | - Xin Gao
- Department of Radiotherapy, Cangzhou Central Hospital, Cangzhou, 061001, Hebei, China
| | - Xiuxia Cui
- Department of Nuclear Medicine, Cangzhou Central Hospital, Cangzhou, 061001, Hebei, China
| |
Collapse
|
5
|
Olesiński T, Lutkowska A, Balcerek A, Sowińska A, Piotrowski P, Trzeciak T, Maj T, Hevelke P, Jagodziński PP. Long noncoding RNA CCAT1 rs67085638 SNP contribution to the progression of gastric cancer in a Polish population. Sci Rep 2021; 11:15369. [PMID: 34321511 PMCID: PMC8319342 DOI: 10.1038/s41598-021-94576-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/07/2021] [Indexed: 01/17/2023] Open
Abstract
The role of the long noncoding RNA CCAT1 NC_000008.10:g.128220661C > T (rs67085638) in the development of colon cancer has been reported. Therefore, we assessed the prevalence of rs67085638 in patients with gastric cancer (GC). We also evaluated the effect of rs67085638 on B-cell-specific Moloney leukaemia virus insertion site 1 (BMI1) transcripts in primary GC and counterpart histopathologically confirmed disease-free margin tissue. Using high-resolution melting analysis, we evaluated rs67085638 frequency in patients with the GC genotype (n = 214) and controls (n = 502) in a Polish Caucasian population. qRT-PCR was used to determine BMI1 transcripts. We observed the trend of rs67085638 association in all patients with GC (ptrend = 0.028), a strong risk of the GC genotype in male (ptrend = 0.035) but not female (ptrend = 0.747) patients, and the association with non-cardia GC (ptrend = 0.041), tumour stages T3 (ptrend = 0.014) and T4 (ptrend = 0.032), differentiation grading G3 (ptrend = 0.009), lymph node metastasis stage N3 (ptrend = 0.0005) and metastasis stage M0 (ptrend = 0.027). We found that significantly increased BMI1 transcripts were associated with the primary GC genotype classified as grade G3 (p = 0.011) and as lymph node metastasis N3 (p = 0.010) and counterpart marginal tissues (p = 0.026, p = 0.040, respectively) from carriers of the T/T versus C/C genotypes. rs67085638 may contribute to increased BMI1 transcripts and the progression and rapid growth of GC.
Collapse
Affiliation(s)
- Tomasz Olesiński
- Department of Oncological Gastroenterology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Anna Lutkowska
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, 6 Święcickiego St., 60-781, Poznan, Poland
| | - Adam Balcerek
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, 6 Święcickiego St., 60-781, Poznan, Poland
| | - Anna Sowińska
- Department of Computer Science and Statistics, Poznań University of Medical Sciences, Poznan, Poland
| | - P Piotrowski
- Molecular Biology Department, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Tomasz Trzeciak
- Department of Orthopedics and Traumatology, Poznan University of Medical Sciences, Poznan, Poland
| | - Tomasz Maj
- Department of Oncological Gastroenterology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Piotr Hevelke
- Department of Oncological Gastroenterology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Pawel P Jagodziński
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, 6 Święcickiego St., 60-781, Poznan, Poland.
| |
Collapse
|
6
|
Liu X, Ma R, Yi B, Riker AI, Xi Y. MicroRNAs are involved in the development and progression of gastric cancer. Acta Pharmacol Sin 2021; 42:1018-1026. [PMID: 33037405 PMCID: PMC8208993 DOI: 10.1038/s41401-020-00540-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/14/2020] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) are recognized as an essential component of the RNA family, exerting multiple and intricate biological functions, particularly in the process of tumorigenesis, proliferation, and metastatic progression. MiRNAs are altered in gastric cancer (GC), showing activity as both tumor suppressors and oncogenes, although their true roles have not been fully understood. This review will focus upon the recent advances of miRNA studies related to the regulatory mechanisms of gastric tumor cell proliferation, apoptosis, and cell cycle. We hope to provide an in-depth insight into the mechanistic role of miRNAs in GC development and progression. In particular, we summarize the latest studies relevant to miRNAs' impact upon the epithelial-mesenchymal transition, tumor microenvironment, and chemoresistance in GC cells. We expect to elucidate the molecular mechanisms involving miRNAs for better understanding the etiology of GC, and facilitating the development of new treatment regimens for the treatment of GC.
Collapse
Affiliation(s)
- Xiaolin Liu
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Department of Oncology, the First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Ruixia Ma
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221000, China
| | - Bin Yi
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Adam I Riker
- Geaton and JoAnn DeCesaris Cancer Institute, Department of Surgery, Anne Arundel Medical Center, Cancer Service Line, Luminis Health, Annapolis, MD, USA.
| | - Yaguang Xi
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
7
|
Zhang J, Lv W, Liu Y, Fu W, Chen B, Ma Q, Gao X. LINC_00355 promotes gastric cancer progression by upregulating PHF19 expression through sponging miR-15a-5p. BMC Cancer 2021; 21:657. [PMID: 34078310 PMCID: PMC8170819 DOI: 10.1186/s12885-021-08227-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/20/2021] [Indexed: 12/24/2022] Open
Abstract
Background Long non-coding RNAs exert vital roles in several types of cancer. The objective of this study was to explore the role of LINC_00355 in gastric cancer (GC) progression and its potential mechanism. Methods The expression levels of LINC_00355 in GC tissues and cells were detected by quantitative real-time PCR, followed by assessing the effects of LINC_00355 knockdown or overexpression on cell properties. Dual-luciferase reporter assay was utilized to identify the relationship between LINC_00355 and microRNA (miR)-15a-5p and miR-15a-5p and PHD finger protein 19 (PHF19), followed by the rescue experiments. Results The results showed that LINC_00355 was highly expressed in GC tissues and cells compared with the corresponding control. LINC_00355 knockdown decreased the viability, migration, and invasion and increased the accumulation of GC cells in G1 phase and apoptosis. Meanwhile, LINC_00355 downregulation markedly increased cleaved caspase 3 and cleaved poly (ADP-ribose) polymerase protein levels, whereas decreased cyclin D1, cyclin E, matrix metalloproteinase (MMP) 9, MMP2, and N-cadherin protein levels in GC cells. However, LINC_00355 overexpression had the opposite effects. It was verified that LINC_00355 upregulated the expression of PHF19 through sponging miR-15a-5p. Furthermore, PHF19 overexpression reversed the effect of LINC_00355 knockdown on GC cell properties, including cell viability, migration, invasion, and apoptosis. Conclusions Collectively, these results suggest that LINC_00355 promotes GC progression by up-regulating PHF19 through sponging miR-15a-5p. Our findings may provide an important clinical basis for reversing the malignant phenotype of GC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08227-3.
Collapse
Affiliation(s)
- Jishui Zhang
- Department of Gastrointestinal Surgery, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061001, Hebei, China.
| | - Wenhao Lv
- Department of Gastrointestinal Surgery, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061001, Hebei, China
| | - Yagang Liu
- Department of Gastrointestinal Surgery, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061001, Hebei, China
| | - Weihua Fu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Baosheng Chen
- Department of Gastrointestinal Surgery, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061001, Hebei, China
| | - Qiutong Ma
- Department of Gastrointestinal Surgery, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061001, Hebei, China
| | - Xin Gao
- Department of Radiotherapy, Cangzhou Central Hospital, Cangzhou, 061001, Hebei, China
| |
Collapse
|
8
|
Zhou M, Xu Q, Huang D, Luo L. Regulation of gene transcription of B lymphoma Mo-MLV insertion region 1 homolog (Review). Biomed Rep 2021; 14:52. [PMID: 33884195 PMCID: PMC8056379 DOI: 10.3892/br.2021.1428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 02/19/2021] [Indexed: 12/18/2022] Open
Abstract
B lymphoma Mo-MLV insertion region 1 homolog (Bmi-1) is a core protein component of the polycomb repressive complex 1 that inhibits cell senescence and maintains the self-renewal ability of stem cells via downregulation of p16Ink4a and p19Arf expression. Bmi-1 serves an important role in hematopoietic stem cell maintenance and neurodevelopment during embryonic development, and it has been shown to enhance tumorigenesis by promoting cancer stem cell self-renewal and epithelial to mesenchymal transition. Emerging evidence suggests that Bmi-1 overexpression is closely related to the development and progression of various types of cancer, and that downregulation of Bmi-1 expression can inhibit the proliferation, invasion and metastasis of cancer cells. It is therefore important to elucidate the mechanisms underlying the regulation of Bmi-1 expression both under normal growth conditions and in malignant tissues. In the present review, the current body of knowledge pertaining to the transcriptional and post-transcriptional regulation of the BMI-1 gene is discussed, and the potential mechanisms by which Bmi-1 is dysregulated in various types of cancer are highlighted. Bmi-1 expression is primarily controlled via transcriptional regulation, and is regulated by the transcription https://www.ushuaia.pl/hyphen/?ln=en factors of the Myc family, including Myb, Twist1, SALL4 and E2F-1. Post-transcriptionally, regulation of Bmi-1 expression is inhibited by several microRNAs and certain small-molecule drugs. Thus, regulatory transcriptional factors are potential therapeutic targets to reduce Bmi-1 expression in cancer cells. Thus, the present review provides an up-to-date review on the regulation of BMI-1 gene expression at the transcriptional and post-transcriptional level.
Collapse
Affiliation(s)
- Meizhen Zhou
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qichao Xu
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Deqiang Huang
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lingyu Luo
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
9
|
Razmi M, Ghods R, Vafaei S, Sahlolbei M, Saeednejad Zanjani L, Madjd Z. Clinical and prognostic significances of cancer stem cell markers in gastric cancer patients: a systematic review and meta-analysis. Cancer Cell Int 2021; 21:139. [PMID: 33639931 PMCID: PMC7912890 DOI: 10.1186/s12935-021-01840-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/17/2021] [Indexed: 12/24/2022] Open
Abstract
Background Gastric cancer (GC) is considered one of the most lethal malignancies worldwide, which is accompanied by a poor prognosis. Although reports regarding the importance of cancer stem cell (CSC) markers in gastric cancer progression have rapidly developed over the last few decades, their clinicopathological and prognostic values in gastric cancer still remain inconclusive. Therefore, the current meta-analysis aimed to quantitatively re-evaluate the association of CSC markers expression, overall and individually, with GC patients’ clinical and survival outcomes. Methods Literature databases including PubMed, Scopus, ISI Web of Science, and Embase were searched to identify the eligible articles. Hazard ratios (HRs) or odds ratios (ORs) with 95% confidence intervals (CIs) were recorded or calculated to determine the relationships between CSC markers expression positivity and overall survival (OS), disease-free survival (DFS)/relapse-free survival (RFS), disease-specific survival (DSS)/ cancer-specific survival (CSS), and clinicopathological features. Results We initially retrieved 4,425 articles, of which a total of 66 articles with 89 studies were considered as eligible for this meta-analysis, comprising of 11,274 GC patients. Overall data analyses indicated that the overexpression of CSC markers is associated with TNM stage (OR = 2.19, 95% CI 1.84–2.61, P = 0.013), lymph node metastasis (OR = 1.76, 95% CI 1.54–2.02, P < 0.001), worse OS (HR = 1.65, 95% CI 1.54–1.77, P < 0.001), poor CSS/DSS (HR = 1.69, 95% CI 1.33–2.15, P < 0.001), and unfavorable DFS/RFS (HR = 2.35, 95% CI 1.90–2.89, P < 0.001) in GC patients. However, CSC markers expression was found to be slightly linked to tumor differentiation (OR = 1.25, 95% CI 1.01–1.55, P = 0.035). Sub-analysis demonstrated a significant positive relationship between most of the individual markers, specially Gli-1, Oct-4, CD44, CD44V6, and CD133, and clinical outcomes as well as the reduced survival, whereas overexpression of Lgr-5, Nanog, and sonic hedgehog (Shh) was not found to be related to the majority of clinical outcomes in GC patients. Conclusion The expression of CSC markers is mostly associated with worse outcomes in patients with GC, both overall and individual. The detection of a combined panel of CSC markers might be appropriate as a prognostic stratification marker to predict tumor aggressiveness and poor prognosis in patients with GC, which probably results in identifying novel potential targets for therapeutic approaches.
Collapse
Affiliation(s)
- Mahdieh Razmi
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Somayeh Vafaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Sahlolbei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran. .,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Liu B, Qian D, Zhou W, Jiang H, Xiang Z, Wu D. A Novel Androgen-Induced lncRNA FAM83H-AS1 Promotes Prostate Cancer Progression via the miR-15a/CCNE2 Axis. Front Oncol 2021; 10:620306. [PMID: 33614501 PMCID: PMC7890020 DOI: 10.3389/fonc.2020.620306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 11/23/2020] [Indexed: 01/07/2023] Open
Abstract
Prostate cancer (PCa) is one of the most common types of tumors among males worldwide. However, the roles of long noncoding RNAs (lncRNAs) in PCa remain unclear. This study shows that lncRNA FAM83H-AS1 is upregulated in prostate adenocarcinoma, bladder urothelial carcinoma, and kidney renal papillary cell carcinoma samples. Androgen receptor (AR) signaling plays the most important role in PCa tumorigenesis and development. In this study, the results validate that AR signaling is involved in upregulating FAM83H-AS1 expression in PCa cells. Loss-of-function assays demonstrate that FAM83H-AS1 acts as an oncogene in PCa by modulating cell proliferation, cell cycle, and migration. Bioinformatics analysis demonstrates that FAM83H-AS1 is remarkably related to the regulation of the cell cycle and DNA replication through affecting multiple regulators related to these pathways, such as CCNE2. Mechanically, we found that FAM83H-AS1 plays its roles through sponging miR-15a to promote CCNE2 expression. These findings indicate that FAM83H-AS1 is a novel diagnostic and therapeutic marker for PCa.
Collapse
Affiliation(s)
- Bo Liu
- Department of Urology, Tongji Hospital, Tongji University of Medicine, Shanghai, China
| | - Duocheng Qian
- Department of Urology, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, China
| | - Weidong Zhou
- Department of Urology, Tongji Hospital, Tongji University of Medicine, Shanghai, China
| | - Huiyang Jiang
- Department of Urology, Tongji Hospital, Tongji University of Medicine, Shanghai, China
| | - Zhendong Xiang
- Department of Urology, Tongji Hospital, Tongji University of Medicine, Shanghai, China
| | - Denglong Wu
- Department of Urology, Tongji Hospital, Tongji University of Medicine, Shanghai, China
| |
Collapse
|
11
|
O'Loughlin J, Hall RJ, Bhaker S, Portelli MA, Henry A, Pang V, Bates DO, Sharp TV, Sayers I. Extended lifespan of bronchial epithelial cells maintains normal cellular phenotype and transcriptome integrity. ERJ Open Res 2021; 7:00254-2020. [PMID: 33532474 PMCID: PMC7836642 DOI: 10.1183/23120541.00254-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/17/2020] [Indexed: 11/30/2022] Open
Abstract
Genetic studies have identified several epithelial-derived genes associated with airway diseases. However, techniques used to study gene function frequently exceed the proliferative potential of primary human bronchial epithelial cells (HBECs) isolated from patients. Increased expression of the polycomb group protein BMI-1 extends the lifespan of HBECs while maintaining cell context plasticity. Herein we aimed to assess how BMI-1 expression impacted cellular functions and global mRNA expression. HBECs from six donors were transduced with lentivirus containing BMI-1 and cells were characterised, including by RNA sequencing and impedance measurement. BMI-1-expressing HBECs (B-HBECs) have a proliferative advantage and show comparable in vitro properties to low passage primary HBECs, including cell attachment/spreading and barrier formation. The B-HBEC mRNA signature was modestly different to HBECs, with only 293 genes differentially expressed (5% false discovery rate). Genes linked to epithelial mesenchymal transition and cell cycle were enriched in B-HBECs. We investigated the expression of genes implicated in asthma from genetic and expression studies and found that 97.6% of genes remained unaltered. We have shown that increased BMI-1 expression in HBECs delays lung epithelial cell senescence by promoting cell cycle progression and highlighted the flexible utility for B-HBECs as an important platform for studying airway epithelial mechanisms. A method to extend the lifespan of primary human bronchial epithelial cells that maintain a normal epithelial cell phenotype, thus providing a platform to investigate respiratory disease mechanisms over prolonged periodshttps://bit.ly/353Rklc
Collapse
Affiliation(s)
- Jonathan O'Loughlin
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK.,These authors contributed equally
| | - Robert J Hall
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK.,These authors contributed equally
| | - Sangita Bhaker
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Michael A Portelli
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Amanda Henry
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Vincent Pang
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Biodiscovery Institute, Nottingham, UK
| | - David O Bates
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Biodiscovery Institute, Nottingham, UK
| | - Tyson V Sharp
- Centre of Cancer Cell and Molecular Biology, Barts Cancer Institute Queen Mary University of London, London, UK
| | - Ian Sayers
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK.,These authors contributed equally
| |
Collapse
|
12
|
Hydrogen peroxide and Helicobacter pylori extract treatment combined with APE1 knockdown induce DNA damage, G2/M arrest and cell death in gastric cancer cell line. DNA Repair (Amst) 2020; 96:102976. [DOI: 10.1016/j.dnarep.2020.102976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 08/28/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
|
13
|
Chen X, Cao R, Liu H, Zhang T, Yuan X, Xu S. MicroRNA‑15a‑5p‑targeting oncogene YAP1 inhibits cell viability and induces cell apoptosis in cervical cancer cells. Int J Mol Med 2020; 46:1301-1310. [PMID: 32945353 PMCID: PMC7447307 DOI: 10.3892/ijmm.2020.4704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 03/23/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) have been reported to have important regulatory roles in the progression of several types of cancer, including cervical cancer (CC). However, the biological roles and regulatory mechanisms of miRNAs in CC remain to be fully elucidated. The aim of the present study was to examine the functions of miRNAs in CC and the possible mechanisms. Using a microarray, it was identified that miRNA-15a-5p (miR-15a-5p) was one of the most down-regulated miRNAs in CC tissues compared with adjacent noncancerous tissues. The low expression of miR-15a-5p was observed in CC tumor tissues with distant metastasis and in CC cell lines. In addition, the effects of miR-15a-5p upregulation on cell viability, apoptosis, invasion and migration of CC cells were investigated using CCK-8, flow cytometry, Transwell and wound healing assays, respectively. It was demonstrated that upregulation of miR-15a-5p significantly suppressed the viability, migration and invasion, and promoted the apoptosis of SiHa and C-33A cells. Furthermore, yes-associated protein 1 (YAP1), a well-known oncogene, was confirmed to be directly targeted by miR-15a-5p and was found to be negatively regulated by miR-15a-5p. Further correlation analysis indicated that miR-15a-5p expression was negatively correlated with YAP1 expression in CC tissues. Notably, overexpression of YAP1 abrogated the tumor suppressive effects of miR-15a-5p in CC cells. Taken together, these present findings indicated that the miR-15a-5p/YAP1 axis may provide a novel strategy for the clinical treatment of CC.
Collapse
Affiliation(s)
- Xu Chen
- Department of Obstetrics and Gynaecology, Huashan Hospital North, Fudan University, Shanghai 200040, P.R. China
| | - Ruiqin Cao
- Department of Obstetrics and Gynaecology, Huashan Hospital North, Fudan University, Shanghai 200040, P.R. China
| | - Haifang Liu
- Department of Obstetrics and Gynaecology, Huashan Hospital North, Fudan University, Shanghai 200040, P.R. China
| | - Tuanying Zhang
- Department of Obstetrics and Gynaecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Xinrong Yuan
- Department of Obstetrics and Gynaecology, No.1 Hospital of Naval Force of Southern Theater Command, PLA, Zhanjiang, Guangdong 524005, P.R. China
| | - Shuxiang Xu
- Department of Obstetrics and Gynaecology, Huashan Hospital North, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
14
|
Wang T, Liu Z, Wang X, Bai P, Sun A, Shao Z, Luo R, Wu Z, Zhang K, Li W, Xiao W, Duan B, Wang Y, Chen B, Xing J. Identification of potential therapeutic targets in urothelial bladder carcinoma of Chinese population by targeted next-generation sequencing. Cancer Biol Ther 2020; 21:709-716. [PMID: 32449441 DOI: 10.1080/15384047.2020.1763148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Patients with urothelial carcinoma (UC) of the bladder have a high risk of death in China. However, a lack of comprehensive molecular profiling in Chinese Han population hinders the development of targeted therapies for bladder cancer. In our present study, we collected fresh bladder tumors from low-grade (T1, N0, M0, G1) non-muscle invasive bladder cancer (NMIBC) patients (n = 16) and high-grade (T2-4, N0, M0, Gx) muscle-invasive bladder cancer (MIBC) patients (n = 16) with their paired normal bladder tissues, and subjected the total genomic DNAs to targeted next-generation sequencing (NGS) for 94 cancer-associated genes. NGS results showed that 30.9% of detected genes (29/94) was mutated in 32 urothelial carcinoma bladder tissues. Furthermore, our results and ICGC database showed that FGFR3, KMT2D, TP53, KDM6A, and ARID1A were the most frequently mutated genes in UC patients. Of note, NMIBC and MIBC displayed distinguishable genomic alterations. FGFR3, KMT2D, AKT1, ARID1A, and STAG2 were the most frequently mutated genes in NMIBC patients, whereas mutations of TP53, CREBBP, FGFR3, KDM6A, KMT2D, and ARID1A were frequently detected in MIBC. Intriguingly, gene ontology and clustering analysis revealed that these frequently mutated genes were highly enriched in signaling pathways responsible for cancer development. Taken together, the mutation frequency of genes associated with UC development in NMIBC and MIBC was screened out in Chinese Han population and elucidation of the related mechanisms provides theoretical basis and technical support for the development of early diagnosis and therapeutic strategies in UC.
Collapse
Affiliation(s)
- Tao Wang
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University , Xiamen, China
| | - Zhengsheng Liu
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University , Xiamen, China
| | - Xuegang Wang
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University , Xiamen, China
| | - Peide Bai
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University , Xiamen, China
| | - Anran Sun
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University , Xiamen, China
| | - Zhiqiang Shao
- Xiamen University Laboratory Animal Center, Xiamen University , Xiamen, China
| | - Rongtuan Luo
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University , Xiamen, China
| | - Zhun Wu
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University , Xiamen, China
| | - Kaiyan Zhang
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University , Xiamen, China
| | - Wei Li
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University , Xiamen, China
| | - Wen Xiao
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University , Xiamen, China
| | - Bo Duan
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University , Xiamen, China
| | - Yongfeng Wang
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University , Xiamen, China
| | - Bin Chen
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University , Xiamen, China
| | - Jinchun Xing
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University , Xiamen, China
| |
Collapse
|
15
|
Liu Q, Li Q, Zhu S, Yi Y, Cao Q. B lymphoma Moloney murine leukemia virus insertion region 1: An oncogenic mediator in prostate cancer. Asian J Androl 2020; 21:224-232. [PMID: 29862993 PMCID: PMC6498728 DOI: 10.4103/aja.aja_38_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
B lymphoma Moloney murine leukemia virus insertion region 1 (BMI1), a core member of polycomb repressive complex 1 (PRC1), has been intensely investigated in the field of cancer epigenetics for decades. Widely known as a critical regulator in cellular physiology, BMI1 is essential in self-renewal and differentiation in different lineages of stem cells. BMI1 also plays a significant role in cancer etiology for its involvement in pathological progress such as epithelial–mesenchymal transition (EMT) and cancer stem cell maintenance, propagation, and differentiation. Importantly, overexpression of BMI1 is predictive for drug resistance, tumor recurrence, and eventual therapy failure of various cancer subtypes, which renders the pharmacological targeting at BMI1 as a novel and promising therapeutic approach. The study on prostate cancer, a prevalent hormone-related cancer among men, has promoted enormous research advancements in cancer genetics and epigenetics. This review summarizes the role of BMI1 as an oncogenic and epigenetic regulator in tumor initiation, progression, and relapse of prostate cancer.
Collapse
Affiliation(s)
- Qipeng Liu
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA.,Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Qiaqia Li
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA.,Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Sen Zhu
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Yang Yi
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA.,Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China.,Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qi Cao
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA.,Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA.,Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| |
Collapse
|
16
|
Abstract
Despite extensive research efforts on diagnosis and treatment, pancreatic ductal adenocarcinoma (PDAC) remains a devastating disease and the third leading cause of cancer-related death in the United States. Resistance to current therapeutic approaches is a major reason for the poor survival of pancreatic patients. In order to overcome this major challenge and improve patient outcomes, we are in desperate need of novel therapeutic approaches. PDAC chemoresistance mechanisms are complex and multifaceted. Novel therapeutics must be equipped to deal with this challenge. microRNAs (miRNAs) have emerged as strong candidates to fill this role due to their multitargeted function. miRNAs have been shown to have important roles in pancreatic cancer resistance. In this review, we summarize the recent advancement in miRNA research related to PDAC therapeutic resistance mechanisms and the potential of miRNAs as therapeutic agents for future clinical management of PDAC.
Collapse
|
17
|
Functional Significance and Therapeutic Potential of miR-15a Mimic in Pancreatic Ductal Adenocarcinoma. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 19:228-239. [PMID: 31846800 PMCID: PMC6921186 DOI: 10.1016/j.omtn.2019.11.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/18/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022]
Abstract
Treatment of pancreatic ductal adenocarcinoma (PDAC) remains a clinical challenge. There is an urgent need to develop novel strategies to enhance survival and improve patient prognosis. MicroRNAs (miRNAs) play critical roles as oncogenes or tumor suppressors in the regulation of cancer development and progression. In this study, we demonstrate that low expression of miR-15a is associated with poor prognosis of PDAC patients. miR-15a expression is reduced in PDAC while closely related miR-16 expression remains relatively unchanged. miR-15a suppresses several important targets such as Wee1, Chk1, Yap-1, and BMI-1, causing cell cycle arrest and inhibiting cell proliferation. Ectopic expression of miR-15a sensitizes PDAC cells to gemcitabine reducing the half maximal inhibitory concentration (IC50) more than 6.5-fold. To investigate the therapeutic potential of miR-15a, we used a modified miR-15a (5-FU-miR-15a) with uracil (U) residues in the guide strand replaced with 5-fluorouracil (5-FU). We demonstrated enhanced inhibition of PDAC cell proliferation by 5-FU-miR-15a compared to native miR-15a. In vivo we showed the therapeutic power of 5-FU-miR-15a alone or in combination with gemcitabine with near complete elimination of PDAC lung metastatic tumor growth. These results support the future development of 5-FU-miR-15a as a novel therapeutic agent as well as a prognostic biomarker in the clinical management of PDAC.
Collapse
|
18
|
Yuan L, Ma T, Liu W, Chen Y, Yuan Q, Ye M, Yu L, Li J, Niu Y, Nan Y. LINC00994 promoted invasion and proliferation of gastric cancer cell via regulating miR-765-3p. Am J Transl Res 2019; 11:6641-6649. [PMID: 31737214 PMCID: PMC6834511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Emerging studies indicated that lncRNA is one crucial regulator in development and tumorigenesis. We firstly showed that LINC00994 was overexpressed in GC cells compare with GES-1. Compared to adjacent samples, the LINC00994 expression was increased in GC tissues by qRT-PCR assay. Furthermore, Elevated expression of LINC00994 induced GC cell invasion, proliferation and cycle. Luciferase reporter analysis indicated that ectopic miR-765-3p expression suppressed wild type LINC00994 luciferase activity, but not mutant LINC00994 in GC cells. Elevated expression of LINC00994 inhibited the miR-765-3p expression in GC cells. Compared to adjacent samples, the miR-765-3p expression was decreased in GC tissues by qRT-PCR assay. LINC00994 induced GC cell invasion and growth via modulating miR-765-3p. Thus, our data suggested an oncogenic role of LINC00994 in development of GC.
Collapse
Affiliation(s)
- Ling Yuan
- Pharmacy College of Ningxia Medical UniversityYinchuan 750004, China
- Ningxia Medical University Key Laboratory of Hui Ethnic Medicine Modernization Ministry of EducationYinchuan 750004, China
| | - Tingting Ma
- Pharmacy College of Ningxia Medical UniversityYinchuan 750004, China
| | - Wenjing Liu
- Traditional Chinese Medicine College of Ningxia Medical UniversityYinchuan 750004, China
| | - Yan Chen
- Traditional Chinese Medicine College of Ningxia Medical UniversityYinchuan 750004, China
| | - Qihui Yuan
- Traditional Chinese Medicine College of Ningxia Medical UniversityYinchuan 750004, China
| | - Mengyi Ye
- Traditional Chinese Medicine College of Ningxia Medical UniversityYinchuan 750004, China
| | - Lei Yu
- Department of Infectious Disease, The Fourth Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang, China
| | - Jiaxin Li
- Pharmacy College of Ningxia Medical UniversityYinchuan 750004, China
| | - Yang Niu
- Ningxia Medical University Key Laboratory of Hui Ethnic Medicine Modernization Ministry of EducationYinchuan 750004, China
- Traditional Chinese Medicine College of Ningxia Medical UniversityYinchuan 750004, China
| | - Yi Nan
- Ningxia Medical University Key Laboratory of Hui Ethnic Medicine Modernization Ministry of EducationYinchuan 750004, China
- Traditional Chinese Medicine College of Ningxia Medical UniversityYinchuan 750004, China
| |
Collapse
|
19
|
He H, Wu W, Sun Z, Chai L. MiR-4429 prevented gastric cancer progression through targeting METTL3 to inhibit m 6A-caused stabilization of SEC62. Biochem Biophys Res Commun 2019; 517:581-587. [PMID: 31395342 DOI: 10.1016/j.bbrc.2019.07.058] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/17/2019] [Indexed: 02/06/2023]
Abstract
Gastric cancer (GC) has been recognized as the major reason for global cancer-associated mortality. SEC62 homolog, preprotein translocation factor (SEC62) has been documented to possess carcinogenic functions in cancers, but its influence on GC remains elusive. Present study aimed to uncover the impact and mechanism of SEC62 in GC. We validated the upregulation of SEC62 in GC samples by GEPIA, and revealed its high level in GC cell lines. Functionally, depletion of SEC62 hindered proliferation and encouraged apoptosis in GC cells. Furthermore, we found through Starbase 3.0 and validated that methyltransferase like 3 (METTL3) interacted with SEC62 to induce the m6A on SEC62 mRNA, therefore facilitated the stabilizing effect of IGF2 binding protein 1 (IGF2BP1) on SEC62 mRNA. Moreover, we predicted through miRmap and validated that miR-4429 targeted and inhibited METTL3 to repress SEC62. Rescue assays demonstrated that miR-4429 inhibited GC progression through METTL3/SEC62 axis. Together, our study firstly revealed that miR-4429 prevented gastric cancer progression through targeting METTL3 to inhibit m6A-caused stabilization of SEC62, indicating miR-4429 as a promising target for treatment improvement for GC.
Collapse
Affiliation(s)
- Huabo He
- Department of Gastrointestinal and Hepatobiliary Surgery, The Affiliated Hospital of Hangzhou Normal University, 126 Wenzhou Road, Hangzhou, Zhejiang, 310000, PR China
| | - Wei Wu
- Department of Gastrointestinal and Hepatobiliary Surgery, The Affiliated Hospital of Hangzhou Normal University, 126 Wenzhou Road, Hangzhou, Zhejiang, 310000, PR China
| | - Zhener Sun
- Department of Gastrointestinal and Hepatobiliary Surgery, The Affiliated Hospital of Hangzhou Normal University, 126 Wenzhou Road, Hangzhou, Zhejiang, 310000, PR China
| | - Lixin Chai
- Department of Gastrointestinal and Hepatobiliary Surgery, The Affiliated Hospital of Hangzhou Normal University, 126 Wenzhou Road, Hangzhou, Zhejiang, 310000, PR China.
| |
Collapse
|
20
|
Manoel-Caetano FS, Rossi AFT, Calvet de Morais G, Severino FE, Silva AE. Upregulation of the APE1 and H2AX genes and miRNAs involved in DNA damage response and repair in gastric cancer. Genes Dis 2019; 6:176-184. [PMID: 31194025 PMCID: PMC6545450 DOI: 10.1016/j.gendis.2019.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 03/28/2019] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer remains one of the leading causes of cancer-related death worldwide, and most of the cases are associated with Helicobacter pylori infection. This bacterium promotes the production of reactive oxygen species (ROS), which cause DNA damage in gastric epithelial cells. In this study, we evaluated the expression of important genes involved in the recognition of DNA damage (ATM, ATR, and H2AX) and ROS-induced damage repair (APE1) and the expression of some miRNAs (miR-15a, miR-21, miR-24, miR-421 and miR-605) that target genes involved in the DNA damage response (DDR) in 31 fresh tissues of gastric cancer. Cytoscape v3.1.1 was used to construct the postulated miRNA:mRNA interaction network. Analysis performed by real-time quantitative PCR exhibited significantly increased levels of the APE1 (RQ = 2.55, p < 0.0001) and H2AX (RQ = 2.88, p = 0.0002) genes beyond the miR-421 and miR-605 in the gastric cancer samples. In addition, significantly elevated levels of miR-21, miR-24 and miR-421 were observed in diffuse-type gastric cancer. Correlation analysis reinforced some of the gene:gene (ATM/ATR/H2AX) and miRNA:mRNA relationships obtained also with the interaction network. Thus, our findings show that tumor cells from gastric cancer presents deregulation of genes and miRNAs that participate in the recognition and repair of DNA damage, which could confer an advantage to cell survival and proliferation in the tumor microenvironment.
Collapse
Affiliation(s)
- Fernanda S Manoel-Caetano
- Department of Biology, UNESP, São Paulo State University, Campus of São José do Rio Preto, Rua Cristóvão Colombo, 2265, 15.054-000, São José do Rio Preto, São Paulo, Brazil
| | - Ana Flávia T Rossi
- Department of Biology, UNESP, São Paulo State University, Campus of São José do Rio Preto, Rua Cristóvão Colombo, 2265, 15.054-000, São José do Rio Preto, São Paulo, Brazil
| | - Gabriela Calvet de Morais
- Department of Biology, UNESP, São Paulo State University, Campus of São José do Rio Preto, Rua Cristóvão Colombo, 2265, 15.054-000, São José do Rio Preto, São Paulo, Brazil
| | - Fábio Eduardo Severino
- Department of Surgery and Orthopedics, Faculty of Medicine, UNESP, São Paulo State University, Campus of Botucatu, Av. Prof. Mário Rubens Guimarães Montenegro, s/n, 18.618-687, Botucatu, São Paulo, Brazil
| | - Ana Elizabete Silva
- Department of Biology, UNESP, São Paulo State University, Campus of São José do Rio Preto, Rua Cristóvão Colombo, 2265, 15.054-000, São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
21
|
Liu T, Xu Z, Ou D, Liu J, Zhang J. The miR-15a/16 gene cluster in human cancer: A systematic review. J Cell Physiol 2018; 234:5496-5506. [PMID: 30246332 DOI: 10.1002/jcp.27342] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/10/2018] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are an important class of endogenous small noncoding single-stranded RNAs that suppress the expression of their target genes through messenger RNA (mRNA) degradation to inhibit transcription and translation. MiRNAs play a crucial regulatory role in many biological processes including proliferation, metabolism, and cellular malignancy. miR-15a/16 is an important tumor suppressor gene cluster with a variety of factors that regulate its transcriptional activity. It has been discovered that a relative reduction of miR-15a/16 expression in various cancers is closely related to the occurrence and progression of tumors. miR-15a/16 takes part in a wide array of biological processes including tumor cell proliferation, apoptosis, invasion, and chemoresistance by binding to the 3'-untranslated region of its target gene's mRNA. In this review, we will examine the complex regulatory network of miR-15a/16 gene expression and its biological functions in human cancers to further elucidate the molecular mechanisms of its antitumor effects.
Collapse
Affiliation(s)
- Ting Liu
- Department of Rheumatology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Zhenru Xu
- Department of Rheumatology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Daming Ou
- Department of Rheumatology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Jing Liu
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Ji Zhang
- Department of Rheumatology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China.,Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
22
|
Zhu K, Li K, Yuan DW, Xu G, Kang L, Dang CX, Zhang Y. Clinicopathological and Prognostic Significance of Expression of B-Cell-Specific Moloney Murine Leukemia Virus Insertion Site 1 (BMI-1) Gene and Protein in Gastrointestinal Stromal Tumors. Med Sci Monit 2018; 24:6414-6421. [PMID: 30209248 PMCID: PMC6149236 DOI: 10.12659/msm.909443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/08/2018] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Gastrointestinal stromal tumor (GIST) is an uncommon visceral sarcoma that arises predominantly in the gastrointestinal tract. Since GISTs are encountered infrequently and inflexible to traditional therapy, the aim of the present study was to explore the correlation of B-cell-specific Moloney murine leukemia virus insertion site 1 (BMI-1) mRNA and BMI-1 protein levels with the clinicopathological characteristics and prognosis significance of GISTs. MATERIAL AND METHODS GIST tissues and normal tissues were collected from 156 patients who had undergone surgical treatment. RT-qPCR and immunohistochemistry were used to measure the BMI-1 mRNA and protein levels in GIST tissues and normal tissues. Univariate survival analysis was used for determination of the factors that affect prognosis of GIST patients. Cox proportional hazards model was plotted to determine the independent risk factors for prognosis of GIST patients. RESULTS The BMI-1 mRNA and protein levels in GIST tissues were higher than those in normal tissues. BMI-1 mRNA and positive protein levels were correlated with the National Institutes of Health (NIH) risk grade, tumor diameter and infiltration, and metastasis. There was a short survival period for the patients with a positive protein level and a high mRNA level of BMI-1. The site of primary tumor, tumor diameter, NIH risk grade, infiltration, and metastasis, as well as BMI-1 mRNA and protein levels were independent risk factors for prognosis of GIST patients. CONCLUSIONS Taken together, these findings suggest there might be a relationship between BMI-1 mRNA and protein levels, and clinicopathological characteristics, including NIH risk grade, tumor size as well as infiltration and metastasis, of GIST patients. In addition, BMI-1 mRNA and protein levels were identified as independent risk factors for prognosis of GIST patients.
Collapse
Affiliation(s)
- Kun Zhu
- Department of Oncology Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P.R. China
| | - Kang Li
- Department of Oncology Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P.R. China
| | - Da-Wei Yuan
- Department of Oncology Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P.R. China
| | - Gang Xu
- Department of Oncology Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P.R. China
| | - Li Kang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P.R. China
| | - Cheng-Xue Dang
- Department of Oncology Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P.R. China
| | - Yong Zhang
- Department of Oncology Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P.R. China
| |
Collapse
|
23
|
Shao Y, Zhang D, Li X, Yang J, Chen L, Ning Z, Xu Y, Deng G, Tao M, Zhu Y, Jiang J. MicroRNA-203 Increases Cell Radiosensitivity via Directly Targeting Bmi-1 in Hepatocellular Carcinoma. Mol Pharm 2018; 15:3205-3215. [PMID: 29906128 DOI: 10.1021/acs.molpharmaceut.8b00302] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND B-cell-specific moloney leukemia virus insertion site 1 (Bmi-1) plays important roles in various cancers, but its regulation through microRNAs (miRNAs) and its functions in hepatocellular carcinoma (HCC) remains unclear. METHODS We evaluated the expression and prognostic significance of Bmi-1 in HCC by using tissue samples and The Cancer Genome Atlas (TCGA) data sets. The relationship between miRNAs and Bmi-1 was verified by bioinformatics prediction and immunofluorescence. Colony formation and apoptosis assays were used to reveal the effect of miR-203 on radiosensitivity. RESULTS The Bmi-1 mRNA and protein were upregulated in HCC tissues. Cox regression multivariate analyses showed that Bmi-1 overexpression was an independent prognostic parameter for HCC patients. The expression level of Bmi-1 was negatively associated with miR-203 levels in HCC tissues. Dual-luciferase reporter assays showed that miR-203 could target the 3' untranslated region (3'-UTR) of Bmi-1 directly. Overexpression of miR-203 in HepG2 and Smmc-7721 cells increases their sensitivity to ionizing radiation in vitro and in vivo. Moreover, the improved cell radiosensitivity induced by miR-203 could be rescued by restoration of Bmi-1 expression. CONCLUSIONS Bmi-1 could improve the predictive accuracy for HCC patients' survival. Moreover, miR-203 enhance cell radiosensitivity in vitro and in vivo by targeting Bmi-1 in HCC.
Collapse
Affiliation(s)
- Yingjie Shao
- Jiangsu Engineering Research Center for Tumor Immunotherapy , Changzhou 213003 , China
| | - Dachuan Zhang
- Jiangsu Engineering Research Center for Tumor Immunotherapy , Changzhou 213003 , China.,Institute of Cell Therapy , Soochow University , Changzhou 213003 , China
| | - Xiaodong Li
- Jiangsu Engineering Research Center for Tumor Immunotherapy , Changzhou 213003 , China.,Institute of Cell Therapy , Soochow University , Changzhou 213003 , China
| | - Jing Yang
- Jiangsu Engineering Research Center for Tumor Immunotherapy , Changzhou 213003 , China.,Institute of Cell Therapy , Soochow University , Changzhou 213003 , China
| | - Lujun Chen
- Jiangsu Engineering Research Center for Tumor Immunotherapy , Changzhou 213003 , China.,Institute of Cell Therapy , Soochow University , Changzhou 213003 , China
| | - Zhonghua Ning
- Jiangsu Engineering Research Center for Tumor Immunotherapy , Changzhou 213003 , China
| | - Yun Xu
- Jiangsu Engineering Research Center for Tumor Immunotherapy , Changzhou 213003 , China.,Institute of Cell Therapy , Soochow University , Changzhou 213003 , China
| | - Guohua Deng
- Jiangsu Engineering Research Center for Tumor Immunotherapy , Changzhou 213003 , China.,Institute of Cell Therapy , Soochow University , Changzhou 213003 , China
| | - Min Tao
- Institute of Cell Therapy , Soochow University , Changzhou 213003 , China
| | - Yibei Zhu
- Institute of Cell Therapy , Soochow University , Changzhou 213003 , China
| | - Jingting Jiang
- Jiangsu Engineering Research Center for Tumor Immunotherapy , Changzhou 213003 , China.,Institute of Cell Therapy , Soochow University , Changzhou 213003 , China
| |
Collapse
|
24
|
Xin X, Wu M, Meng Q, Wang C, Lu Y, Yang Y, Li X, Zheng Q, Pu H, Gui X, Li T, Li J, Jia S, Lu D. Long noncoding RNA HULC accelerates liver cancer by inhibiting PTEN via autophagy cooperation to miR15a. Mol Cancer 2018; 17:94. [PMID: 29895332 PMCID: PMC5998602 DOI: 10.1186/s12943-018-0843-8] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 06/01/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Long noncoding RNA HULC is highly up-regulation in human hepatocellular carcinoma (HCC). However, the functions of HULC in hepatocarcinogenesis remains unclear. METHODS RT-PCR, Western blotting, Chromatin immunoprecipitation (CHIP) assay, RNA Immunoprecipitation (RIP) and tumorignesis test in vitro and in vivo were performed. RESULTS HULC is negatively associated with expression of PTEN or miR15a in patients of human liver cancer. Moreover, HULC accelerates malignant progression of liver cancer cells in vitro and in vivo. Mechanistically, HULC increasesthe expression of P62 via decreasing mature miR15a. On the other hand, excessive HULC increases the expression of LC3 on the level of transcription and then activates LC3 through Sirt1 (a deacetylase). Notably, HULC enhanced the interplay between LC3 and ATG3. Furthermore, HULC also increases the expression of becline-1(autophagy related gene). Therefore, HULC increases the cellular autophagy by increasing LC3II dependent on Sirt1.Noteworthy, excessive HULC reduces the expression of PTEN, β-catenin and enhances the expression of SAPK/JUNK, PKM2, CDK2, NOTCH1, C-Jun in liver cancer cells. Of significance, our observations also revealed that HULC inhibited PTEN through ubiquitin-proteasome system mediated by autophagy-P62.Ultimately,HULC activates AKT-PI3K-mTOR pathway through inhibiting PTEN in human liver cancer cells. CONCLUSIONS This study elucidates a novel mechanism that lncRNA HULC produces a vital function during hepatocarcinogenesis.
Collapse
Affiliation(s)
- Xiaoru Xin
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Mengying Wu
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Qiuyu Meng
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Chen Wang
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Yanan Lu
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Yuxin Yang
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Xiaonan Li
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Qidi Zheng
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Hu Pu
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Xin Gui
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Tianming Li
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Jiao Li
- School of Medicine, Tongji University, Shanghai, 200092, China
| | - Song Jia
- School of Medicine, Tongji University, Shanghai, 200092, China
| | - Dongdong Lu
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China. .,Tongji University School of Life Science and Technology, Shanghai, 200092, China.
| |
Collapse
|
25
|
Lim B, Kim HJ, Heo H, Huh N, Baek SJ, Kim JH, Bae DH, Seo EH, Lee SI, Song KS, Kim SY, Kim YS, Kim M. Epigenetic silencing of miR-1271 enhances MEK1 and TEAD4 expression in gastric cancer. Cancer Med 2018; 7:3411-3424. [PMID: 29862663 PMCID: PMC6051202 DOI: 10.1002/cam4.1605] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/01/2018] [Accepted: 05/16/2018] [Indexed: 12/20/2022] Open
Abstract
Epigenetic dysregulation is a major driver of tumorigenesis. To identify tumor-suppressive microRNAs repressed by DNA methylation in gastric cancer (GC), we analyzed the genome-wide DNA methylation and microRNA expression profiles of EpCAM+/CD44+ GC cells. Among the set of microRNAs screened, miR-1271 was identified as a microRNA repressed by DNA methylation in GC. Forced miR-1271 expression substantially suppressed the growth, migration, and invasion of GC cells. To identify candidate target genes and signaling pathways regulated by miR-1271, we performed RNA sequencing. Among the genes down-regulated by miR-1271, MAP2K1 (MEK1) was significantly repressed by miR-1271, and the associated ERK/MAPK signaling pathway was also inhibited. TEAD4 was also repressed by miR-1271, and the associated YAP1 signatures within genes regulated by miR-1271 were significantly enriched. These findings uncovered MEK1 and TEAD4 as novel miR-1271 targets and suggest that the epigenetic silencing of miR-1271 is crucial for GC development.
Collapse
Affiliation(s)
- Byungho Lim
- Division of Drug Discovery Research, Research Center for Drug Discovery Technology, Korea Research Institute of Chemical Technology, Daejeon, Korea
| | - Hee-Jin Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Haejeong Heo
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Functional Genomics, University of Science and Technology (UST), Daejeon, Korea
| | - Nanhyung Huh
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Functional Genomics, University of Science and Technology (UST), Daejeon, Korea
| | - Su-Jin Baek
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Functional Genomics, University of Science and Technology (UST), Daejeon, Korea
| | - Jong-Hwan Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Functional Genomics, University of Science and Technology (UST), Daejeon, Korea
| | - Dong-Hyuck Bae
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Functional Genomics, University of Science and Technology (UST), Daejeon, Korea
| | - Eun-Hye Seo
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Functional Genomics, University of Science and Technology (UST), Daejeon, Korea
| | - Sang-Il Lee
- Department of Surgery, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Kyu-Sang Song
- Department of Pathology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Seon-Young Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Functional Genomics, University of Science and Technology (UST), Daejeon, Korea
| | - Yong Sung Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Functional Genomics, University of Science and Technology (UST), Daejeon, Korea
| | - Mirang Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Functional Genomics, University of Science and Technology (UST), Daejeon, Korea
| |
Collapse
|
26
|
Fesler A, Liu H, Ju J. Modified miR-15a has therapeutic potential for improving treatment of advanced stage colorectal cancer through inhibition of BCL2, BMI1, YAP1 and DCLK1. Oncotarget 2017; 9:2367-2383. [PMID: 29416778 PMCID: PMC5788646 DOI: 10.18632/oncotarget.23414] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/08/2017] [Indexed: 12/17/2022] Open
Abstract
Despite advances in colon cancer treatments, resistance and recurrence remain a significant challenge in treating patients. Novel therapeutic strategies are in urgent need to overcome resistance and improve patient outcomes. MicroRNA based therapeutics have potential to help combat resistance. In this study, we have shown that low miR-15a expression correlates with poor patient prognosis. We have demonstrated the therapeutic potential of miR-15a in colon cancer. miR-15a inhibits several important genes (BCL2, BMI1, YAP1 and DCLK1), decreasing cancer progression and resistance. Additionally, by replacing uracil in miR-15a with 5-fluorouracil, we created a novel miR-15a mimic with enhanced therapeutic potential. This mimic maintains target specificity and is more potent than unmodified miR-15a in vitro and inhibits colon tumor metastasis in vivo. This mimic has great potential for therapeutic development for treating colon cancer patients. This novel modification has potential to advance the development of other microRNA based therapeutics beyond miR-15a.
Collapse
Affiliation(s)
- Andrew Fesler
- Department of Pathology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Hua Liu
- Department of Pathology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jingfang Ju
- Department of Pathology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
27
|
Wang JL, Wu JH, Hong C, Wang YN, Zhou Y, Long ZW, Zhou Y, Qin HS. Involvement of Bmi-1 gene in the development of gastrointestinal stromal tumor by regulating p16 Ink4A /p14 ARF gene expressions: An in vivo and in vitro study. Pathol Res Pract 2017; 213:1542-1551. [DOI: 10.1016/j.prp.2017.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/05/2017] [Accepted: 09/15/2017] [Indexed: 12/31/2022]
|
28
|
Li F, Liang A, Lv Y, Liu G, Jiang A, Liu P. MicroRNA-200c Inhibits Epithelial-Mesenchymal Transition by Targeting the BMI-1 Gene Through the Phospho-AKT Pathway in Endometrial Carcinoma Cells In Vitro. Med Sci Monit 2017; 23:5139-5149. [PMID: 29080395 PMCID: PMC5673031 DOI: 10.12659/msm.907207] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background MicroRNA-200c (miR-200c) is a short non-coding RNA that has a role in tumorigenesis and cancer progression. The aims of this study were to investigate the role of miR-200c in cell migration and epithelial-mesenchymal transition (EMT) in endometrial carcinoma cells in vitro. Material/Methods Potential direct targets of miR-200c were identified through the TargetScan database. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used study the expression of miR-200c in the endometrial carcinoma cell lines, Ishikawa and JEC, in vitro. Cell migration was studied using transwell assays. Expression of the mesenchymal marker, N-cadherin, the epithelial marker, E-cadherin, the transcription factor, Slug, the BMI-1 protein, AKT, and p-AKT were measured using Western blot. Small interfering RNA (siRNA) was used to silence the BMI-1 gene to study the targeting effect. Results Over-expression of miR-200c in Ishikawa and JEC cells resulted in reduced cell migration and proliferation. Western blot showed that overexpression of miR-200c downregulated the expression of the BMI-1 protein, p-AKT, N-cadherin and Slug, and the expression E-cadherin was upregulated; silencing miR-200c reversed these results. Silencing the BMI-1 gene inhibited EMT and suppressed p-AKT in miR-200c-inhibited endometrial carcinoma cells by increasing E-cadherin expression, reducing the expression of N-cadherin and the EMT-associated transcription factor, Slug. Conclusions In endometrial carcinoma cells in vitro, miR-200c inhibited EMT by targeting the BMI-1 gene through the p-AKT pathway.
Collapse
Affiliation(s)
- Fengling Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland).,Department of Obstetrics and Gynecology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China (mainland)
| | - Aihua Liang
- Department of Obstetrics and Gynecology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China (mainland)
| | - Yan Lv
- Department of Obstetrics and Gynecology, First Peoples' Hospital of Guiyang City, Guiyang, Guizhou, China (mainland)
| | - Guohong Liu
- Department of Obstetrics and Gynecology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China (mainland)
| | - Aili Jiang
- Department of Obstetrics and Gynecology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China (mainland)
| | - Peishu Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
29
|
Liu J, Li Y, Zou Y, Zhang J, An J, Guo J, Ma M, Dai D. MicroRNA-497 acts as a tumor suppressor in gastric cancer and is downregulated by DNA methylation. Oncol Rep 2017; 38:497-505. [DOI: 10.3892/or.2017.5698] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/18/2017] [Indexed: 11/06/2022] Open
|
30
|
Wang T, Hou J, Li Z, Zheng Z, Wei J, Song D, Hu T, Wu Q, Yang JY, Cai JC. miR-15a-3p and miR-16-1-3p Negatively Regulate Twist1 to Repress Gastric Cancer Cell Invasion and Metastasis. Int J Biol Sci 2017; 13:122-134. [PMID: 28123352 PMCID: PMC5264267 DOI: 10.7150/ijbs.14770] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 10/30/2016] [Indexed: 12/30/2022] Open
Abstract
MicroRNAs are a novel class of gene regulators that function as oncogenes or tumor suppressors. In our current study, we investigated the role of miR-15a-3p and miR-16-1-3p in the regulation of Twist1 expression and EMT process. Our bioinformatics analysis suggested that on the 3' UTR of Twist1, there are two conserved miRNA recognition sites for miR-15a-3p and miR-16-1-3p respectively. Interestingly, overexpression of miR-15a-3p and miR-16-1-3p significantly suppressed the activity of luciferase reporter containing Twist1-3' UTR, reduced mRNA and protein level of EMT related genes such as TWIST1, N-cadherin, α-SMA and Fibronectin, and repressed MMP9 and MMP2 activity, as well as cell migration and invasion. Conversely, inhibition of miR-15a-3p and miR-16-1-3p significantly increased TWIST1, N-cadherin, α-SMA and Fibronectin protein expression. In addition, Twist1 co-transfection significantly ameliorated the loss of cell migration and invasion. Moreover, overexpression of miR-15a-3p and miR-16-1-3p dramatically suppressed the ability of BGC823 cells to form colonies in vitro and develop tumors in vivo in nude mice. Finally, qPCR and Western blot analysis showed that miR-15a-3p and miR-16-1-3p were significantly reduced in clinical gastric cancer tissue, whereas Twist1 mRNA and protein were significantly up-regulated, suggesting that this aberrant down-regulation of miR-15a-3p and miR-16-1-3p might be associated with the abnormal regulation of Twist1 and the EMT process in gastric cancer development. Our results help to elucidate a novel and important mechanism for the regulation of Twist1 in the development of cancer.
Collapse
Affiliation(s)
- Tao Wang
- Department of Gastrointestinal Surgery, Zhongshan Hospital affiliated to Xiamen University, Xiamen, China 361004.; Institute of Gastrointestinal Oncology, Medical college of Xiamen University, Xiang'an, Xiamen, China 361102.; Xiehe Clinical Medical College, Fujian Medical University, Fuzhou, China 350001
| | - Jingjing Hou
- Department of Gastrointestinal Surgery, Zhongshan Hospital affiliated to Xiamen University, Xiamen, China 361004.; Institute of Gastrointestinal Oncology, Medical college of Xiamen University, Xiang'an, Xiamen, China 361102.; Xiehe Clinical Medical College, Fujian Medical University, Fuzhou, China 350001
| | - Zengpeng Li
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, 184 University Road, Xiamen, China 361005
| | - Zihan Zheng
- College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514
| | - Jie Wei
- Department of Basic Medical Sciences of Medical College, Xiamen University, Xiang'an, Xiamen, China 361102
| | - Dan Song
- State Key Laboratory of Cellular Stress Biology and Department of Biomedical Sciences, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, China 361102
| | - Tao Hu
- Department of Basic Medical Sciences of Medical College, Xiamen University, Xiang'an, Xiamen, China 361102
| | - Qiao Wu
- State Key Laboratory of Cellular Stress Biology and Department of Biomedical Sciences, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, China 361102
| | - James Y Yang
- State Key Laboratory of Cellular Stress Biology and Department of Biomedical Sciences, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, China 361102
| | - Jian-Chun Cai
- Department of Gastrointestinal Surgery, Zhongshan Hospital affiliated to Xiamen University, Xiamen, China 361004.; Institute of Gastrointestinal Oncology, Medical college of Xiamen University, Xiang'an, Xiamen, China 361102.; Xiehe Clinical Medical College, Fujian Medical University, Fuzhou, China 350001
| |
Collapse
|
31
|
Sousa LO, Sobral LM, Matsumoto CS, Saggioro FP, López RVM, Panepucci RA, Curti C, Silva WA, Greene LJ, Leopoldino AM. Lymph node or perineural invasion is associated with low miR-15a, miR-34c and miR-199b levels in head and neck squamous cell carcinoma. BBA CLINICAL 2016; 6:159-164. [PMID: 27896137 PMCID: PMC5123084 DOI: 10.1016/j.bbacli.2016.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/21/2016] [Accepted: 11/02/2016] [Indexed: 12/31/2022]
Abstract
Background MicroRNAs (miRNAs or miRs) are post-transcriptional regulators of eukaryotic cells and knowledge of differences in miR levels may provide new approaches to diagnosis and therapy. Methods The present study measured the levels of nine miRs in head and neck squamous cell carcinomas (HNSCC) and determined whether clinical pathological features are associated with differences in miR levels. SET (I2PP2A) and PTEN protein levels were also measured, since their levels can be regulated by miR-199b and miR-21, respectively. Nine miRs (miR-15a, miR-21, miR-29b, miR-34c, miR-100, miR-125b, miR-137, miR-133b and miR-199b) were measured by real time qRT-PCR in HNSCC samples from 32 patients and eight resection margins. SET (I2PP2A) and PTEN protein levels were estimated by immunohistochemistry in paired HNSCC tissues and their matched resection margins. Results In HNSCC, the presence of lymph node invasion was associated with low miR-15a, miR-34c and miR-199b levels, whereas the presence of perineural invasion was associated with low miR-199b levels. In addition, miR-21 levels were high whereas miR-100 and miR-125b levels were low in HNSCC compared to the resection margins. When HNSCC line HN12, with or without knockdown of SET, were transfected with miR-34c inhibitor or miR-34c mimic, the miR-34c inhibitor increased cell invasion capacity while miR-34c mimic decreased the cell invasion. Conclusions We showed that the levels of specific miRs in tumor tissue can provide insight into the maintenance and progression of HNSCC. General significance MiRNAs are up- or down-regulated during cancer development and progression; they can be prognosis markers and therapeutic targets in HNSCC. Association between miR-15a, miR-34c and miR-199b levels and lymph node metastasis in HNSCC. miR-199b is reduced while SET protein is accumulated in HNSCC. Levels of miR-34c control invasion in HNSCC.
Collapse
Affiliation(s)
- Lucas O Sousa
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Brazil; Hemotherapy Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Lays M Sobral
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Camila S Matsumoto
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Fabiano P Saggioro
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Rossana V M López
- Cancer Institute of the State of São Paulo (ICESP), São Paulo, Brazil
| | - Rodrigo A Panepucci
- Hemotherapy Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Carlos Curti
- Department of Chemistry and Physics, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Wilson A Silva
- Hemotherapy Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Lewis J Greene
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Brazil; Hemotherapy Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Andréia M Leopoldino
- Hemotherapy Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Brazil; Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| |
Collapse
|
32
|
Zhang M, Du X. Noncoding RNAs in gastric cancer: Research progress and prospects. World J Gastroenterol 2016; 22:6610-6618. [PMID: 27547004 PMCID: PMC4970485 DOI: 10.3748/wjg.v22.i29.6610] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/26/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
Noncoding RNAs (ncRNAs) have attracted much attention in cancer research field. They are involved in cellular development, proliferation, differentiation and apoptosis. The dysregulation of ncRNAs has been reported in tumor initiation, progression, invasion and metastasis in various cancers, including gastric cancer (GC). In the past few years, an accumulating body of evidence has deepened our understanding of ncRNAs, and several emerging ncRNAs have been identified, such as PIWI-interacting RNAs (piRNAs) and circular RNAs (circRNAs). The competing endogenous RNA (ceRNA) networks include mRNAs, microRNAs, long ncRNAs (lncRNAs) and circRNAs, which play critical roles in the tumorigenesis of GC. This review summarizes the recent hotspots of ncRNAs involved in GC pathobiology and their potential applications in GC. Finally, we briefly discuss the advances in the ceRNA network in GC.
Collapse
|
33
|
Curcumin inhibits cell growth and induces cell apoptosis through upregulation of miR-33b in gastric cancer. Tumour Biol 2016; 37:13177-13184. [DOI: 10.1007/s13277-016-5221-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/14/2016] [Indexed: 12/11/2022] Open
|