1
|
Masi I, Ottavi F, Caprara V, Rio DD, Kunkl M, Spadaro F, Licursi V, Tuosto L, Bagnato A, Rosano' L. The extracellular matrix protein type I collagen and fibronectin are regulated by β-arrestin-1/endothelin axis in human ovarian fibroblasts. J Exp Clin Cancer Res 2025; 44:64. [PMID: 39985042 PMCID: PMC11844176 DOI: 10.1186/s13046-025-03327-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/12/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND The invasive and metastatic spread of serous ovarian cancer (SOC) results from the cooperative interactions between cancer and stroma, which include extracellular matrix (ECM) and cellular components, including cancer-associated fibroblasts (CAFs). Soluble factors secreted by cancer and stromal cells contribute to stroma remodeling through the secretion of ECM proteins, providing a favorable environment for cancer cell dissemination. The peptide endothelin-1 (ET-1), through two G protein-coupled receptors (GPCR), endothelin receptor type A (ETAR) and B (ETBR), acts on both cancer and stromal cells, engaging the protein β-arrestin1 (β-arr1), to bolster SOC progression. However, its role in the regulation of the ECM proteins by ovarian fibroblasts is not understood. This study delves into the role of ET-1 as a regulator of type I collagen (Col1) and fibronectin (FN). METHODS We used human primary ovarian fibroblasts (HOFs) and CAFs. The expression of Col1 (COL1A1) and FN (FN1) were detected by western blotting (WB), quantitative real time-polymerase chain reaction (qRT-PCR), immunofluorescence (IF), and confocal laser scanning microscopy (CLSM) in cells and tumor tissue sections from mice xenografts, while the transcription of COL1A1 was detected by luciferase reporter gene assay. The nuclear function of β-arr1 was evaluated by silencing and rescue expression with wild-type (WT) and nuclear mutant plasmid constructs, RNA seq and differential gene expression and gene sets enrichment analyses. The prognostic role of COL1A1, FN1, EDN1 (ET-1) and ARRB1 (β-arr1) gene expression was evaluated using the Kaplan-Meier plotter database and clinical ovarian cancer tissue samples. RESULTS We demonstrated that ET-1 boosts Col1 and FN expression in HOFs, akin to ovarian CAF levels. Both receptors are implicated, evident from inhibitory effects after ETAR or ETBR antagonist treatments and notably with bosentan, a dual antagonist, in vitro and in vivo. At the molecular level, ET-1 triggers the activation of COL1A1 promoter activity and its enhanced expression via β-arr1 nuclear function. Transcriptome analysis of β-arr1-silenced HOFs confirms the nuclear role of β-arr1 in collagen and ECM remodeling-related protein transcriptional regulation. Accordingly, a high level of EDN1/ARRB1 expression in combination with either COL1A1 or FN1 is associated with the poor prognosis of SOC patients. CONCLUSIONS These findings hint at ET-1 involvement in ECM remodeling and early SOC stages by modulating the expression of Col1 and FN. Targeting ET-1 signaling with ETAR/ETBR antagonists might interfere with the ability of CAFs to produce key ECM proteins in this tumor.
Collapse
Affiliation(s)
- Ilenia Masi
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), Rome, Italy
| | - Flavia Ottavi
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), Rome, Italy
| | - Valentina Caprara
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Danila Del Rio
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), Rome, Italy
| | - Martina Kunkl
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University, Rome, Italy
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Francesca Spadaro
- Confocal Microscopy Unit, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Valerio Licursi
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), Rome, Italy
| | - Loretta Tuosto
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University, Rome, Italy
| | - Anna Bagnato
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Rosano'
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), Rome, Italy.
| |
Collapse
|
2
|
Shen Z, Yu N, Zhang Y, Jia M, Sun Y, Li Y, Zhao L. The potential roles of HIF-1α in epithelial-mesenchymal transition and ferroptosis in tumor cells. Cell Signal 2024; 122:111345. [PMID: 39134249 DOI: 10.1016/j.cellsig.2024.111345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
In tumors, the rapid proliferation of cells and the imperfect blood supply system lead to hypoxia, which can regulate the adaptation of tumor cells to the hypoxic environment through hypoxia-inducible factor-1α (HIF-1α) and promote tumor development in multiple ways. Recent studies have found that epithelial-mesenchymal transition (EMT) and ferroptosis play important roles in the progression of tumor cells. The activation of HIF-1α is considered a key factor in inducing EMT in tumor cells. When HIF-1α is activated, it can regulate EMT-related genes, causing tumor cells to gradually lose their epithelial characteristics and acquire more invasive mesenchymal traits. The occurrence of EMT allows tumor cells to better adapt to changes in the surrounding tissue, enhancing their migratory and invasive capabilities, thus promoting tumor progression. At the same time, HIF-1α also plays a crucial regulatory role in ferroptosis in tumor cells. In a hypoxic environment, HIF-1α may affect processes such as iron metabolism and oxidative stress responses, inducing ferroptosis in tumor cells. This article briefly reviews the dual role of HIF-1α in EMT and ferroptosis in tumor cells, helping to gain a deeper understanding of the regulatory pathways of HIF-1α in the development of tumor cells, providing a new perspective for understanding the pathogenesis of tumors. The regulation of HIF-1α may become an important strategy for future tumor therapy.
Collapse
Affiliation(s)
- Zhongjun Shen
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Na Yu
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Yanfeng Zhang
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Mingbo Jia
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Ying Sun
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Yao Li
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Liyan Zhao
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China.
| |
Collapse
|
3
|
Tocci P, Roman C, Sestito R, Di Castro V, Sacconi A, Molineris I, Paolini F, Carosi M, Tonon G, Blandino G, Bagnato A. Targeting tumor-stroma communication by blocking endothelin-1 receptors sensitizes high-grade serous ovarian cancer to PARP inhibition. Cell Death Dis 2023; 14:5. [PMID: 36604418 PMCID: PMC9816119 DOI: 10.1038/s41419-022-05538-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/07/2023]
Abstract
PARP inhibitors (PARPi) have changed the treatment paradigm of high-grade serous ovarian cancer (HG-SOC). However, the impact of this class of inhibitors in HG-SOC patients with a high rate of TP53 mutations is limited, highlighting the need to develop combinatorial therapeutic strategies to improve responses to PARPi. Here, we unveil how the endothelin-1/ET-1 receptor (ET-1/ET-1R) axis, which is overexpressed in human HG-SOC and associated with poor prognosis, instructs HG-SOC/tumor microenvironment (TME) communication via key pro-malignant factors and restricts the DNA damage response induced by the PARPi olaparib. Mechanistically, the ET-1 axis promotes the p53/YAP/hypoxia inducible factor-1α (HIF-1α) transcription hub connecting HG-SOC cells, endothelial cells and activated fibroblasts, hence fueling persistent DNA damage signal escape. The ET-1R antagonist macitentan, which dismantles the ET-1R-mediated p53/YAP/HIF-1α network, interferes with HG-SOC/stroma interactions that blunt PARPi efficacy. Pharmacological ET-1R inhibition by macitentan in orthotopic HG-SOC patient-derived xenografts synergizes with olaparib to suppress metastatic progression, enhancing PARPi survival benefit. These findings reveal ET-1R as a mechanistic determinant in the regulation of HG-SOC/TME crosstalk and DNA damage response, indicating the use of macitentan in combinatorial treatments with PARPi as a promising and emerging therapy.
Collapse
Affiliation(s)
- Piera Tocci
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy.
| | - Celia Roman
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| | - Rosanna Sestito
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| | - Valeriana Di Castro
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Sacconi
- Translational Oncology Research Unit, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Ivan Molineris
- Department of Life Science and System Biology, University of Turin, Turin, Italy
| | - Francesca Paolini
- Tumor Immunology and Immunotherapy Unit, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Mariantonia Carosi
- Pathology Unit, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Giovanni Tonon
- Center for Omics Sciences (COSR) and Functional Genomics of Cancer Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, 20132, Milan, Italy
| | - Giovanni Blandino
- Translational Oncology Research Unit, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Anna Bagnato
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
4
|
Aamna B, Kumar Dan A, Sahu R, Behera SK, Parida S. Deciphering the signaling mechanisms of β-arrestin1 and β-arrestin2 in regulation of cancer cell cycle and metastasis. J Cell Physiol 2022; 237:3717-3733. [PMID: 35908197 DOI: 10.1002/jcp.30847] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/22/2022] [Accepted: 07/18/2022] [Indexed: 11/05/2022]
Abstract
β-Arrestins are ubiquitously expressed intracellular proteins with many functions which interact directly and indirectly with a wide number of cellular partners and mediate downstream signaling. Originally, β-arrestins were identified for their contribution to GPCR desensitization to agonist-mediated activation, followed by receptor endocytosis and ubiquitylation. However, current investigations have now recognized that in addition to GPCR arresting (hence the name arrestin). β-Arrestins are adaptor proteins that control the recruitment, activation, and scaffolding of numerous cytoplasmic signaling complexes and assist in G-protein receptor signaling, thus bringing them into close proximity. They have participated in various cellular processes such as cell proliferation, migration, apoptosis, and transcription via canonical and noncanonical pathways. Despite their significant recognition in several physiological processes, these activities are also involved in the onset and progression of various cancers. This review delivers a concise overview of the role of β-arrestins with a primary emphasis on the signaling processes which underlie the mechanism of β-arrestins in the onset of cancer. Understanding these processes has important implications for understanding the therapeutic intervention and treatment of cancer in the future.
Collapse
Affiliation(s)
- Bari Aamna
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed to be University), Bhubaneswar, Odisha, India
| | - Aritra Kumar Dan
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed to be University), Bhubaneswar, Odisha, India
| | - Raghaba Sahu
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Santosh Kumar Behera
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Sagarika Parida
- Department of Botany, Centurion University of Technology and Management, Odisha, India
| |
Collapse
|
5
|
Che F, Xu Q, Li Q, Huang ZX, Yang CW, Wang LY, Wei Y, Shi YJ, Song B. Radiomics signature: A potential biomarker for β-arrestin1 phosphorylation prediction in hepatocellular carcinoma. World J Gastroenterol 2022; 28:1479-1493. [PMID: 35582676 PMCID: PMC9048469 DOI: 10.3748/wjg.v28.i14.1479] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/22/2022] [Accepted: 03/06/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The phosphorylation status of β-arrestin1 influences its function as a signal strongly related to sorafenib resistance. This retrospective study aimed to develop and validate radiomics-based models for predicting β-arrestin1 phosphorylation in hepatocellular carcinoma (HCC) using whole-lesion radiomics and visual imaging features on preoperative contrast-enhanced computed tomography (CT) images. AIM To develop and validate radiomics-based models for predicting β-arrestin1 phosphorylation in HCC using radiomics with contrast-enhanced CT. METHODS Ninety-nine HCC patients (training cohort: n = 69; validation cohort: n = 30) receiving systemic sorafenib treatment after surgery were enrolled in this retrospective study. Three-dimensional whole-lesion regions of interest were manually delineated along the tumor margins on portal venous CT images. Radiomics features were generated and selected to build a radiomics score using logistic regression analysis. Imaging features were evaluated by two radiologists independently. All these features were combined to establish clinico-radiological (CR) and clinico-radiological-radiomics (CRR) models by using multivariable logistic regression analysis. The diagnostic performance and clinical usefulness of the models were measured by receiver operating characteristic and decision curves, and the area under the curve (AUC) was determined. Their association with prognosis was evaluated using the Kaplan-Meier method. RESULTS Four radiomics features were selected to construct the radiomics score. In the multivariate analysis, alanine aminotransferase level, tumor size and tumor margin on portal venous phase images were found to be significant independent factors for predicting β-arrestin1 phosphorylation-positive HCC and were included in the CR model. The CRR model integrating the radiomics score with clinico-radiological risk factors showed better discriminative performance (AUC = 0.898, 95%CI, 0.820 to 0.977) than the CR model (AUC = 0.794, 95%CI, 0.686 to 0.901; P = 0.011), with increased clinical usefulness confirmed in both the training and validation cohorts using decision curve analysis. The risk of β-arrestin1 phosphorylation predicted by the CRR model was significantly associated with overall survival in the training and validation cohorts (log-rank test, P < 0.05). CONCLUSION The radiomics signature is a reliable tool for evaluating β-arrestin1 phosphorylation which has prognostic significance for HCC patients, providing the potential to better identify patients who would benefit from sorafenib treatment.
Collapse
Affiliation(s)
- Feng Che
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Qing Xu
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Qian Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Zi-Xing Huang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Cai-Wei Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Li Ye Wang
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd, Shanghai 200232, China
| | - Yi Wei
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yu-Jun Shi
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
6
|
Yang Y, Wang H, Zhao H, Miao X, Guo Y, Zhuo L, Xu Y. A GSK3-SRF Axis Mediates Angiotensin II Induced Endothelin Transcription in Vascular Endothelial Cells. Front Cell Dev Biol 2021; 9:698254. [PMID: 34381779 PMCID: PMC8350349 DOI: 10.3389/fcell.2021.698254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022] Open
Abstract
Endothelin, encoded by ET1, is a vasoactive substance primarily synthesized in vascular endothelial cells (VECs). Elevation of endothelin levels, due to transcriptional hyperactivation, has been observed in a host of cardiovascular diseases. We have previously shown that serum response factor (SRF) is a regulator of ET1 transcription in VECs. Here we report that angiotensin II (Ang II) induced ET1 transcription paralleled activation of glycogen synthase kinase 3 (GSK3) in cultured VECs. GSK3 knockdown or pharmaceutical inhibition attenuated Ang II induced endothelin expression. Of interest, the effect of GSK3 on endothelin transcription relied on the conserved SRF motif within the ET1 promoter. Further analysis revealed that GSK3 interacted with and phosphorylated SRF at serine 224. Phosphorylation of SRF by GSK3 did not influence its recruitment to the ET1 promoter. Instead, GSK3-mediated SRF phosphorylation potentiated its interaction with MRTF-A, a key co-factor for SRF, which helped recruit the chromatin remodeling protein BRG1 to the ET1 promoter resulting in augmented histone H3 acetylation/H3K4 trimethylation. Consistently, over-expression of a constitutively active GSK enhanced Ang II-induced ET1 transcription and knockdown of either MRTF-A or BRG1 abrogated the enhancement of ET1 transcription. In conclusion, our data highlight a previously unrecognized mechanism that contributes to the transcriptional regulation of endothelin. Targeting this GSK3-SRF axis may yield novel approaches in the intervention of cardiovascular diseases.
Collapse
Affiliation(s)
- Yuyu Yang
- Jiangsu Key Laboratory for Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Huidi Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Hongwei Zhao
- Jiangsu Key Laboratory for Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiulian Miao
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China.,College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Yan Guo
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China.,College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Lili Zhuo
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
YAP and endothelin-1 signaling: an emerging alliance in cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:27. [PMID: 33422090 PMCID: PMC7797087 DOI: 10.1186/s13046-021-01827-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/03/2021] [Indexed: 12/14/2022]
Abstract
The rational making the G protein-coupled receptors (GPCR) the centerpiece of targeted therapies is fueled by the awareness that GPCR-initiated signaling acts as pivotal driver of the early stages of progression in a broad landscape of human malignancies. The endothelin-1 (ET-1) receptors (ET-1R), known as ETA receptor (ETAR) and ETB receptor (ETBR) that belong to the GPCR superfamily, affect both cancer initiation and progression in a variety of cancer types. By the cross-talking with multiple signaling pathways mainly through the scaffold protein β-arrestin1 (β-arr1), ET-1R axis cooperates with an array of molecular determinants, including transcription factors and co-factors, strongly affecting tumor cell fate and behavior. In this scenario, recent findings shed light on the interplay between ET-1 and the Hippo pathway. In ETAR highly expressing tumors ET-1 axis induces the de-phosphorylation and nuclear accumulation of the Hippo pathway downstream effectors, the paralogous transcriptional cofactors Yes-associated protein (YAP) and Transcriptional coactivator with PDZ-binding motif (TAZ). Recent evidence have discovered that ET-1R/β-arr1 axis instigates a transcriptional interplay involving YAP and mutant p53 proteins, which share a common gene signature and cooperate in a oncogenic signaling network. Mechanistically, YAP and mutp53 are enrolled in nuclear complexes that turn on a highly selective YAP/mutp53-dependent transcriptional response. Notably, ET-1R blockade by the FDA approved dual ET-1 receptor antagonist macitentan interferes with ET-1R/YAP/mutp53 signaling interplay, through the simultaneous suppression of YAP and mutp53 functions, hampering metastasis and therapy resistance. Based on these evidences, we aim to review the recent findings linking the GPCR signaling, as for ET-1R, to YAP/TAZ signaling, underlining the clinical relevance of the blockade of such signaling network in the tumor and microenvironmental contexts. In particular, we debate the clinical implications regarding the use of dual ET-1R antagonists to blunt gain of function activity of mutant p53 proteins and thereby considering them as a potential therapeutic option for mutant p53 cancers. The identification of ET-1R/β-arr1-intertwined and bi-directional signaling pathways as targetable vulnerabilities, may open new therapeutic approaches able to disable the ET-1R-orchestrated YAP/mutp53 signaling network in both tumor and stromal cells and concurrently sensitizes to high-efficacy combined therapeutics.
Collapse
|
8
|
Russignan A, Dal Collo G, Bagnato A, Tamassia N, Bugatti M, Belleri M, Lorenzi L, Borsi E, Bazzoni R, Gottardi M, Terragna C, Vermi W, Giacomini A, Presta M, Cassatella MA, Krampera M, Tecchio C. Targeting the Endothelin-1 Receptors Curtails Tumor Growth and Angiogenesis in Multiple Myeloma. Front Oncol 2021; 10:600025. [PMID: 33489901 PMCID: PMC7820698 DOI: 10.3389/fonc.2020.600025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022] Open
Abstract
The endothelin-1 (ET-1) receptors were recently found to mediate pro-survival functions in multiple myeloma (MM) cells in response to autocrine ET-1. This study investigated the effectiveness of macitentan, a dual ET-1 receptor antagonist, in MM treatment, and the mechanisms underlying its activities. Macitentan affected significantly MM cell (RPMI-8226, U266, KMS-12-PE) survival and pro-angiogenic cytokine release by down-modulating ET-1-activated MAPK/ERK and HIF-1α pathways, respectively. HIF-1α silencing abrogated the ET-1 mediated induction of genes encoding for pro-angiogenic cytokines such as VEGF-A, IL-8, Adrenomedullin, and ET-1 itself. Upon exposure to macitentan, MM cells cultured in the presence of the hypoxia-mimetic agent CoCl2, exogenous ET-1, or CoCl2 plus ET-1, down-regulated HIF-1α and the transcription and release of downstream pro-angiogenic cytokines. Consistently, macitentan limited significantly the basal pro-angiogenic activity of RPMI-8226 cells in chorioallantoic membrane assay. In xenograft mouse models, established by injecting NOG mice either via intra-caudal vein with U266 or subcutaneously with RPMI-8226 cells, macitentan reduced effectively the number of MM cells infiltrating bone marrow, and the size and microvascular density of subcutaneous MM tumors. ET-1 receptors targeting by macitentan represents an effective anti-proliferative and anti-angiogenic therapeutic approach in preclinical settings of MM.
Collapse
Affiliation(s)
- Anna Russignan
- Section of Hematology and Bone-Marrow Transplant Unit, Department of Medicine, University of Verona, Verona, Italy
| | - Giada Dal Collo
- Section of Hematology and Bone-Marrow Transplant Unit, Department of Medicine, University of Verona, Verona, Italy
| | - Anna Bagnato
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Nicola Tamassia
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Mattia Bugatti
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Mirella Belleri
- Experimental Oncology and Immunology Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luisa Lorenzi
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Enrica Borsi
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), "L. and A. Seràgnoli", Bologna University, Bologna, Italy
| | - Riccardo Bazzoni
- Section of Hematology and Bone-Marrow Transplant Unit, Department of Medicine, University of Verona, Verona, Italy
| | | | - Carolina Terragna
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), "L. and A. Seràgnoli", Bologna University, Bologna, Italy
| | - William Vermi
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Arianna Giacomini
- Experimental Oncology and Immunology Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marco Presta
- Experimental Oncology and Immunology Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Mauro Krampera
- Section of Hematology and Bone-Marrow Transplant Unit, Department of Medicine, University of Verona, Verona, Italy
| | - Cristina Tecchio
- Section of Hematology and Bone-Marrow Transplant Unit, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
9
|
Gad AA, Balenga N. The Emerging Role of Adhesion GPCRs in Cancer. ACS Pharmacol Transl Sci 2020; 3:29-42. [PMID: 32259086 DOI: 10.1021/acsptsci.9b00093] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Indexed: 02/08/2023]
Abstract
Aberrant expression, function, and mutation of G protein-coupled receptors (GPCRs) and their signaling partners, G proteins, have been well documented in many forms of cancer. These cell surface receptors and their endogenous ligands are implicated in all aspects of cancer including proliferation, angiogenesis, invasion, and metastasis. Adhesion GPCRs (aGPCRs) form the second largest family of GPCRs, most of which are orphan receptors with unknown physiological functions. This is mainly due to our limited insight into their structure, natural ligands, signaling pathways, and tissue expression profiles. Nevertheless, recent studies show that aGPCRs play important roles in cell adhesion to the extracellular matrix and cell-cell communication, processes that are dysregulated in cancer. Emerging evidence suggests that aGPCRs are implicated in migration, proliferation, and survival of tumor cells. We here review the role of aGPCRs in the five most common types of cancer (lung, breast, colorectal, prostate, and gastric) and emphasize the importance of further translational studies in this field.
Collapse
Affiliation(s)
- Abanoub A Gad
- Graduate Program in Life Sciences, University of Maryland, Baltimore, Maryland 20201, United States.,Division of General & Oncologic Surgery, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 20201, United States
| | - Nariman Balenga
- Division of General & Oncologic Surgery, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 20201, United States.,Molecular and Structural Biology program at University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland 20201, United States
| |
Collapse
|
10
|
Furuya K, Kumasawa K, Nakamura H, Kimura T. Endothelin-1 profiles in advanced maternal age complicated with hypertensive disorders of pregnancy. Biochem Biophys Res Commun 2019; 516:941-944. [PMID: 31272714 DOI: 10.1016/j.bbrc.2019.06.147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 06/27/2019] [Indexed: 11/27/2022]
Abstract
Recently, advanced maternal age (AMA) has been increasing due to late marriage and assisted reproductive technology. AMA is high-risk pregnancy associated with the life-threatening diseases such as hypertensive disorders of pregnancy (HDP). Recently we have reported novel AMA model mice using aged spontaneous pregnant mice, and found that the phenotypes of AMA model mice reflect the same characteristics as human AMA. We have also demonstrated that atypical angiogenic factors profiles including soluble VEGF-R1 (sFlt-1) and placental growth factor in both AMA pregnant women and AMA model mice. VEGF-endothelin-1 system have been also known as one of HDP-associated factors, however, there has been few reports on the relation between VEGF-endothelin-1 system and AMA. In this study, we investigated the profiles of VEGF-endothelin-1 system using our model mice's samples. As a result, VEGF and endothelin-1 levels were not significantly different between AMA and young individuals. Our results indicated that the mechanisms of hypertension in AMA may differ from those in young individuals from the point of VEGF-endothelin-1 system.
Collapse
Affiliation(s)
- Kiichiro Furuya
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Keiichi Kumasawa
- Obstetrics and Gynecology, University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, 1138655, Japan.
| | - Hitomi Nakamura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 5650871, Japan
| |
Collapse
|
11
|
Chellini L, Caprara V, Spadaro F, Sestito R, Bagnato A, Rosanò L. Regulation of extracellular matrix degradation and metastatic spread by IQGAP1 through endothelin-1 receptor signalling in ovarian cancer. Matrix Biol 2019; 81:17-33. [PMID: 30367951 DOI: 10.1016/j.matbio.2018.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 12/25/2022]
Abstract
The invasive phenotype of serous ovarian cancer (SOC) cells is linked to the formation of actin-based protrusions, invadopodia, operating extracellular matrix (ECM) degradation and metastatic spread. Growth factor receptors might cause engagement of integrin-related proteins, like the polarity protein IQ-domain GTPase-activating protein 1 (IQGAP1), to F-actin core needed for invadopodia functions. Here, we investigated whether IQGAP1 forms a signalosome with endothelin-1 (ET-1)/β-arrestin1 (β-arr1) network, as signal-integrating module for adhesion components, cytoskeletal remodelling and ECM degradation. In SOC cells, ET-1 receptor (ET-1R) activation, besides altering IQGAP1 expression and localization, coordinates the binding of IQGAP1 with β-arr1, representing a "hotspot" for ET-1R-induced invasive signalling. We demonstrated that the molecular interaction of IQGAP1 with β-arr1 affects relocalization of focal adhesion components, as vinculin, and cytoskeleton dynamics, through the regulation of invadopodia-related pathways. In particular, ET-1R deactivates Rac1 thereby promoting RhoA/C activation for the correct functions of invasive structures. Silencing of either IQGAP1 or β-arr1, or blocking ET-1R activation with a dual antagonist macitentan, prevents matrix metalloproteinase (MMP) activity, invadopodial function, transendothelial migration and cell invasion. In vivo, targeting ET-1R/β-arr1 signalling controls the process of SOC metastasis, associated with reduced levels of IQGAP1, as well as other invadopodia effectors, such as vinculin, phospho-cortactin and membrane type 1-MMP. High expression of ETAR/β-arr1/IQGAP1 positively correlates with poor prognosis, validating the clinical implication of this signature in early prognosis of SOC. These data establish the ET-1R-driven β-arr1/IQGAP1 interaction as a prerequisite for the dynamic integration of pathways in fostering invadopodia and metastatic process in human SOC.
Collapse
Affiliation(s)
- Lidia Chellini
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Valentina Caprara
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Francesca Spadaro
- Confocal Microscopy Unit, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Rosanna Sestito
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Anna Bagnato
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Rosanò
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
12
|
Tocci P, Cianfrocca R, Di Castro V, Rosanò L, Sacconi A, Donzelli S, Bonfiglio S, Bucci G, Vizza E, Ferrandina G, Scambia G, Tonon G, Blandino G, Bagnato A. β-arrestin1/YAP/mutant p53 complexes orchestrate the endothelin A receptor signaling in high-grade serous ovarian cancer. Nat Commun 2019; 10:3196. [PMID: 31324767 PMCID: PMC6642155 DOI: 10.1038/s41467-019-11045-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 06/19/2019] [Indexed: 12/19/2022] Open
Abstract
The limited clinical response observed in high-grade serous ovarian cancer (HG-SOC) with high frequency of TP53 mutations (mutp53) might be related to mutp53-driven oncogenic pathway network. Here we show that β-arrestin1 (β-arr1), interacts with YAP, triggering its cytoplasmic-nuclear shuttling. This interaction allows β-arr1 to recruit mutp53 to the YAP-TEAD transcriptional complex upon activation of endothelin-1 receptors (ET-1R) in patient-derived HG-SOC cells and in cell lines bearing mutp53. In parallel, β-arr1 mediates the ET-1R-induced Trio/RhoA-dependent YAP nuclear accumulation. In the nucleus, ET-1 through β-arr1 orchestrates the tethering of YAP and mutp53 to YAP/mutp53 target gene promoters, including EDN1 that ensures persistent signals. Treatment of patient-derived xenografts reveals synergistic antitumoral and antimetastatic effects of the dual ET-1R antagonist macitentan in combination with cisplatinum, shutting-down the β-arr1-mediated YAP/mutp53 transcriptional programme. Furthermore, ETAR/β-arr1/YAP gene signature correlates with a worst prognosis in HG-SOC. These findings support effective combinatorial treatment for repurposing the ET-1R antagonists in HG-SOC.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Antineoplastic Agents
- Cell Line, Tumor
- Cell Survival/drug effects
- Cystadenocarcinoma, Serous/drug therapy
- Cystadenocarcinoma, Serous/genetics
- Cystadenocarcinoma, Serous/metabolism
- Disease Models, Animal
- Endothelin-1/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Guanine Nucleotide Exchange Factors/metabolism
- Humans
- Mice, Nude
- Mutation
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Protein Serine-Threonine Kinases/metabolism
- Pyrimidines/pharmacology
- Receptor, Endothelin A/drug effects
- Receptor, Endothelin A/metabolism
- Signal Transduction
- Sulfonamides/pharmacology
- Transcription Factors/metabolism
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Xenograft Model Antitumor Assays
- YAP-Signaling Proteins
- beta-Arrestin 1/drug effects
- beta-Arrestin 1/metabolism
- rho GTP-Binding Proteins/metabolism
- rhoA GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Piera Tocci
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Roberta Cianfrocca
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Valeriana Di Castro
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Laura Rosanò
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Andrea Sacconi
- Oncogenomic and Epigenetic Unit, IRCCS, Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Sara Donzelli
- Oncogenomic and Epigenetic Unit, IRCCS, Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Silvia Bonfiglio
- Center for Translational Genomics and Bioinformatics, IRCCS, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Gabriele Bucci
- Center for Translational Genomics and Bioinformatics, IRCCS, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Enrico Vizza
- Gynecologic Oncology, IRCCS, Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Gabriella Ferrandina
- Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Catholic University of Rome, 00168, Rome, Italy
| | - Giovanni Scambia
- Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Catholic University of Rome, 00168, Rome, Italy
| | - Giovanni Tonon
- Center for Translational Genomics and Bioinformatics, IRCCS, San Raffaele Scientific Institute, 20132, Milan, Italy
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, IRCCS, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS, Regina Elena National Cancer Institute, 00144, Rome, Italy.
| | - Anna Bagnato
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, 00144, Rome, Italy.
| |
Collapse
|
13
|
Bagnato A, Rosanò L. New Routes in GPCR/β-Arrestin-Driven Signaling in Cancer Progression and Metastasis. Front Pharmacol 2019; 10:114. [PMID: 30837880 PMCID: PMC6390811 DOI: 10.3389/fphar.2019.00114] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/29/2019] [Indexed: 12/25/2022] Open
Abstract
Tumor cells acquire invasive and metastatic behavior by sensing changes in the localization and activation of signaling pathways, which in turn determine changes in actin cytoskeleton. The core-scaffold machinery associated to β-arrestin (β-arr) is a key mechanism of G-protein coupled receptors (GPCR) to achieve spatiotemporal specificity of different signaling complexes driving cancer progression. Within different cellular contexts, the scaffold proteins β-arr1 or β-arr2 may now be considered organizers of protein interaction networks involved in tumor development and metastatic dissemination. Studies have uncovered the importance of the β-arr engagement with a growing number of receptors, signaling molecules, cytoskeleton regulators, epigenetic modifiers, and transcription factors in GPCR-driven tumor promoting pathways. In many of these molecular complexes, β-arrs might provide a physical link to active dynamic cytoskeleton, permitting cancer cells to adapt and modify the tumor microenvironment to promote the metastatic spread. Given the complexity and the multidirectional β-arr-driven signaling in cancer cells, therapeutic targeting of specific GPCR/β-arr molecular mechanisms is an important avenue to explore when considering future new therapeutic options. The focus of this review is to integrate the most recent developments and exciting findings of how highly connected components of β-arr-guided molecular connections to other pathways allow precise control over multiple signaling pathways in tumor progression, revealing ways of therapeutically targeting the convergent signals in patients.
Collapse
Affiliation(s)
- Anna Bagnato
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Rosanò
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
14
|
New insights into the regulation of the actin cytoskeleton dynamics by GPCR/β-arrestin in cancer invasion and metastasis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 346:129-155. [DOI: 10.1016/bs.ircmb.2019.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Tocci P, Rosanò L, Bagnato A. Targeting Endothelin-1 Receptor/β-Arrestin-1 Axis in Ovarian Cancer: From Basic Research to a Therapeutic Approach. Front Endocrinol (Lausanne) 2019; 10:609. [PMID: 31551935 PMCID: PMC6737583 DOI: 10.3389/fendo.2019.00609] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/21/2019] [Indexed: 12/20/2022] Open
Abstract
Recent studies imply a key role of endothelin-1 receptor (ET-1R), belonging to the largest family of G protein-coupled receptors (GPCR), in the regulation of a plethora of processes involved in tumorigenesis and metastatic progression. β-arrestin-1 (β-arr1) system has been recognized as a critical hub controlling GPCR signaling network, directing the GPCR's biological outcomes. In ovarian cancer, ET-1R/β-arr1 axis enables cancer cells to engage several integrated signaling, and represents an actionable target for developing novel therapeutic approaches. Preclinical research studies demonstrate that ET-1R blockade by the approved dual ETAR/ETBR antagonist macitentan counteracts β-arr1-mediated signaling network, and hampers the dialogue among cancer cells and the tumor microenvironment, interfering with metastatic progression and drug response. In light of major developments in the ET-1R signaling paradigm, this review article discusses the emerging evidence of the dual ET-1R antagonist treatment in cancer, and outlines our challenge in preclinical studies warranting the repurposing of ET-1R antagonists for the design of more effective clinical trials based on combinatorial therapies to overcome, or prevent, the onset of drug resistance.
Collapse
Affiliation(s)
- Piera Tocci
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Rosanò
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
- Institute of Molecular Biology and Pathology, CNR, Rome, Italy
| | - Anna Bagnato
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
- *Correspondence: Anna Bagnato
| |
Collapse
|
16
|
Laporte SA, Scott MGH. β-Arrestins: Multitask Scaffolds Orchestrating the Where and When in Cell Signalling. Methods Mol Biol 2019; 1957:9-55. [PMID: 30919345 DOI: 10.1007/978-1-4939-9158-7_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The β-arrestins (β-arrs) were initially appreciated for the roles they play in the desensitization and endocytosis of G protein-coupled receptors (GPCRs). They are now also known to act as multifunctional adaptor proteins binding many non-receptor protein partners to control multiple signalling pathways. β-arrs therefore act as key regulatory hubs at the crossroads of external cell inputs and functional outputs in cellular processes ranging from gene transcription to cell growth, survival, cytoskeletal regulation, polarity, and migration. An increasing number of studies have also highlighted the scaffolding roles β-arrs play in vivo in both physiological and pathological conditions, which opens up therapeutic avenues to explore. In this introductory review chapter, we discuss the functional roles that β-arrs exert to control GPCR function, their dynamic scaffolding roles and how this impacts signal transduction events, compartmentalization of β-arrs, how β-arrs are regulated themselves, and how the combination of these events culminates in cellular regulation.
Collapse
Affiliation(s)
- Stéphane A Laporte
- Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montreal, QC, Canada. .,Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada. .,Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada. .,RI-MUHC/Glen Site, Montréal, QC, Canada.
| | - Mark G H Scott
- Institut Cochin, INSERM U1016, Paris, France. .,CNRS, UMR 8104, Paris, France. .,Univ. Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
17
|
Araos J, Sleeman JP, Garvalov BK. The role of hypoxic signalling in metastasis: towards translating knowledge of basic biology into novel anti-tumour strategies. Clin Exp Metastasis 2018; 35:563-599. [DOI: 10.1007/s10585-018-9930-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/13/2018] [Indexed: 02/06/2023]
|
18
|
Zhang K, Kong X, Feng G, Xiang W, Chen L, Yang F, Cao C, Ding Y, Chen H, Chu M, Wang P, Zhang B. Investigation of hypoxia networks in ovarian cancer via bioinformatics analysis. J Ovarian Res 2018; 11:16. [PMID: 29482638 PMCID: PMC5828062 DOI: 10.1186/s13048-018-0388-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 02/06/2018] [Indexed: 12/17/2022] Open
Abstract
Background Ovarian cancer is a leading cause of the death from gynecologic malignancies. Hypoxia is closely related to the malignant growth of cells. However, the molecular mechanism of hypoxia-regulated ovarian cancer cells remains unclear. Thus, this study was conducted to identify the key genes and pathways implicated in the regulation of hypoxia by bioinformatics analysis. Methods Using the datasets of GSE53012 downloaded from the Gene Expression Omnibus (GEO), the differentially expressed genes (DEGs) were screened by comparing the RNA expression from cycling hypoxia group, chronic hypoxia group, and control group. Subsequently, cluster analysis was performed followed by the construction of the protein-protein interaction (PPI) network of the overlapping DEGs between the cycling hypoxia and chronic hypoxia using ClusterONE. In addition, gene ontology (GO) functional and pathway enrichment analyses of the DEGs in the most remarkable module were performed using Database for Annotation, Visualization and Integrated Discovery (DAVID) software. Ultimately, the signaling pathways associated with hypoxia were verified by RT-PCR, WB, and MTT assays. Results A total of 931 overlapping DEGs were identified. Nine hub genes and seven node genes were screened by analyzing the PPI and pathway integration networks, including ESR1, MMP2, ErbB2, MYC, VIM, CYBB, EDN1, SERPINE1, and PDK. Additionally, 11 key pathways closely associated with hypoxia were identified, including focal adhesion, ErbB signaling, and proteoglycans in cancer, among which the ErbB signaling pathway was verified by RT-PCR, WB, and MTT assays. Furthermore, functional enrichment analysis revealed that these genes were mainly involved in the proliferation of ovarian cancer cells, such as regulation of cell proliferation, cell adhesion, positive regulation of cell migration, focal adhesion, and extracellular matrix binding. Conclusion The results show that hypoxia can promote the proliferation of ovarian cancer cells by affecting the invasion and adhesion functions through the dysregulation of ErbB signaling, which may be governed by the HIF-1α-TGFA-EGFR-ErbB2-MYC axis. These findings will contribute to the identification of new targets for the diagnosis and treatment of ovarian cancer. Electronic supplementary material The online version of this article (10.1186/s13048-018-0388-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ke Zhang
- Bioengineering Institute of Chongqing University, Chongqing, China
| | - Xiangjun Kong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Guangde Feng
- Sichuan TQLS Animal Husbandry Science and Technology Co., Ltd, Mianyang, China
| | - Wei Xiang
- Bioengineering Institute of Chongqing University, Chongqing, China
| | - Long Chen
- Bioengineering Institute of Chongqing University, Chongqing, China
| | - Fang Yang
- Bioengineering Institute of Chongqing University, Chongqing, China
| | - Chunyu Cao
- Bioengineering Institute of Chongqing University, Chongqing, China
| | - Yifei Ding
- Bioengineering Institute of Chongqing University, Chongqing, China
| | - Hang Chen
- Bioengineering Institute of Chongqing University, Chongqing, China
| | - Mingxing Chu
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pingqing Wang
- Bioengineering Institute of Chongqing University, Chongqing, China.
| | - Baoyun Zhang
- Bioengineering Institute of Chongqing University, Chongqing, China.
| |
Collapse
|
19
|
hMENA is a key regulator in endothelin-1/β-arrestin1-induced invadopodial function and metastatic process. Proc Natl Acad Sci U S A 2018; 115:3132-3137. [PMID: 29439204 PMCID: PMC5866561 DOI: 10.1073/pnas.1715998115] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Discovering new targets and novel determinants of metastatic spread is an unmet need in ovarian cancer, which is plagued by high rates of recurrence. Endothelin-1 receptors (ET-1R), belonging to the G-protein–coupled receptor family, represent important targets critically involved in malignant progression. Here we identify a mechanistic link between ET-1R and the actin regulatory protein hMENA/hMENAΔv6 through the specific interaction with the multifunctional protein β-arrestin1 (β-arr1), which initiates signaling cascades as part of the molecular complex crucial for invadopodial maturation and malignant dissemination. Targeting ET-1R by using macitentan, a Food and Drug Administration-approved antipulmonary arterial hypertension drug, can impair the β-arr1–mediated signaling network controlling ovarian cancer progression and therefore represents a therapeutic option for ovarian cancer patients. Aberrant activation of endothelin-1 receptors (ET-1R) elicits pleiotropic effects relevant for tumor progression. The network activated by this receptor might be finely, spatially, and temporarily orchestrated by β-arrestin1 (β-arr1)–driven interactome. Here, we identify hMENA, a member of the actin-regulatory protein ENA/VASP family, as an interacting partner of β-arr1, necessary for invadopodial function downstream of ET-1R in serous ovarian cancer (SOC) progression. ET-1R activation by ET-1 up-regulates expression of hMENA/hMENAΔv6 isoforms through β-arr1, restricted to mesenchymal-like invasive SOC cells. The interaction of β-arr1 with hMENA/hMENAΔv6 triggered by ET-1 leads to activation of RhoC and cortactin, recruitment of membrane type 1-matrix metalloprotease, and invadopodia maturation, thereby enhancing cell plasticity, transendothelial migration, and the resulting spread of invasive cells. The treatment with the ET-1R antagonist macitentan impairs the interaction of β-arr1 with hMENA and inhibits invadopodial maturation and tumor dissemination in SOC orthotopic xenografts. Finally, high ETAR/hMENA/β-arr1 gene expression signature is associated with a poor prognosis in SOC patients. These data define a pivotal function of hMENA/hMENAΔv6 for ET-1/β-arr1–induced invadopodial activity and ovarian cancer progression.
Collapse
|
20
|
Rosanò L, Cianfrocca R, Sestito R, Tocci P, Di Castro V, Bagnato A. Targeting endothelin-1 receptor/β-arrestin1 network for the treatment of ovarian cancer. Expert Opin Ther Targets 2017; 21:925-932. [DOI: 10.1080/14728222.2017.1361930] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Laura Rosanò
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Roberta Cianfrocca
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Rosanna Sestito
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Piera Tocci
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Valeriana Di Castro
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Anna Bagnato
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
21
|
Manresa MC, Taylor CT. Hypoxia Inducible Factor (HIF) Hydroxylases as Regulators of Intestinal Epithelial Barrier Function. Cell Mol Gastroenterol Hepatol 2017; 3:303-315. [PMID: 28462372 PMCID: PMC5404106 DOI: 10.1016/j.jcmgh.2017.02.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/09/2017] [Indexed: 12/12/2022]
Abstract
Human health is dependent on the ability of the body to extract nutrients, fluids, and oxygen from the external environment while at the same time maintaining a state of internal sterility. Therefore, the cell layers that cover the surface areas of the body such as the lung, skin, and gastrointestinal mucosa provide vital semipermeable barriers that allow the transport of essential nutrients, fluid, and waste products, while at the same time keeping the internal compartments free of microbial organisms. These epithelial surfaces are highly specialized and differ in their anatomic structure depending on their location to provide appropriate and effective site-specific barrier function. Given this important role, it is not surprising that significant disease often is associated with alterations in epithelial barrier function. Examples of such diseases include inflammatory bowel disease, chronic obstructive pulmonary disease, and atopic dermatitis. These chronic inflammatory disorders often are characterized by diminished tissue oxygen levels (hypoxia). Hypoxia triggers an adaptive transcriptional response governed by hypoxia-inducible factors (HIFs), which are repressed by a family of oxygen-sensing HIF hydroxylases. Here, we review recent evidence suggesting that pharmacologic hydroxylase inhibition may be of therapeutic benefit in inflammatory bowel disease through the promotion of intestinal epithelial barrier function through both HIF-dependent and HIF-independent mechanisms.
Collapse
Key Words
- CD, Crohn’s disease
- DMOG, dimethyloxalylglycine
- DSS, dextran sodium sulfate
- Epithelial Barrier
- FIH, factor inhibiting hypoxia-inducible factor
- HIF, hypoxia-inducible factor
- Hypoxia
- Hypoxia-Inducible Factor (HIF) Hydroxylases
- IBD, inflammatory bowel disease
- IL, interleukin
- Inflammatory Bowel Disease
- NF-κB, nuclear factor-κB
- PHD, hypoxia-inducible factor–prolyl hydroxylases
- TFF, trefoil factor
- TJ, tight junction
- TLR, Toll-like receptor
- TNF-α, tumor necrosis factor α
- UC, ulcerative colitis
- ZO, zonula occludens
Collapse
Affiliation(s)
- Mario C. Manresa
- Conway Institute of Biomolecular and Biomedical Research, Belfield, Dublin, Ireland
- Charles Institute of Dermatology, Belfield, Dublin, Ireland
| | - Cormac T. Taylor
- Conway Institute of Biomolecular and Biomedical Research, Belfield, Dublin, Ireland
- Charles Institute of Dermatology, Belfield, Dublin, Ireland
- Systems Biology Ireland, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
22
|
Uyanikoglu H, Turp AB, Hilali NG, Incebiyik A. Serum endothelin-1 and placental alkaline phosphatase levels in placenta percreta and normal pregnancies. J Matern Fetal Neonatal Med 2017; 31:777-782. [PMID: 28274166 DOI: 10.1080/14767058.2017.1297412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
PURPOSE To evaluate the circulatory levels of endothelin 1 (ET-1) and the placental alkaline phosphatase (ALP) in pregnant women with placenta percreta (PP) and a control group. METHODS This study was carried out in the Obstetrics and Gynecology and in the Biochemistry Departments of Harran University Medical School. Forty-four women who underwent cesarean section (CS) due to PP and 44 women who underwent CS for other obstetric reasons were included in this study. The PP diagnosis was made by a pathologic examination that showed an extreme trophoblastic invasion involving the uterine serosa.The levels of circulating ET-1 and placental ALP were measured by an enzyme-linked immunosorbent assay (ELISA). RESULTS Women with PP more frequently received antenatal steroids and blood transfusions and they delivered at an earlier gestational age compared to controls. In women with PP, preoperative circulating ET-1 and placental ALP levels were lower than in the controls (p < .05 for both). CONCLUSIONS The findings suggest that a decrease in ET-1 and placental ALP levels might play a role in the pathogenesis of PP.
Collapse
Affiliation(s)
- Hacer Uyanikoglu
- a Department of Obstetrics and Gynecology , Harran University Medical Faculty , Sanliurfa , Turkey
| | - Ahmet Berkiz Turp
- a Department of Obstetrics and Gynecology , Harran University Medical Faculty , Sanliurfa , Turkey
| | - Nese Gul Hilali
- a Department of Obstetrics and Gynecology , Harran University Medical Faculty , Sanliurfa , Turkey
| | - Adnan Incebiyik
- a Department of Obstetrics and Gynecology , Harran University Medical Faculty , Sanliurfa , Turkey
| |
Collapse
|
23
|
Xu Z, Zhai L, Yi T, Gao H, Fan F, Li Y, Wang Y, Li N, Xing X, Su N, Wu F, Chang L, Chen X, Dai E, Zhao C, Yang X, Cui C, Xu P. Hepatitis B virus X induces inflammation and cancer in mice liver through dysregulation of cytoskeletal remodeling and lipid metabolism. Oncotarget 2016; 7:70559-70574. [PMID: 27708241 PMCID: PMC5342574 DOI: 10.18632/oncotarget.12372] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 09/13/2016] [Indexed: 12/31/2022] Open
Abstract
Hepatitis B virus X protein (HBx) participates in the occurrence and development processes of hepatocellular carcinoma (HCC) as a multifunctional regulation factor. However, the underlying molecular mechanism remains obscure. Here, we describe the use of p21HBx/+ mouse and SILAM (Stable Isotope Labeling in Mammals) strategy to define the pathological mechanisms for the occurrence and development of HBx induced liver cancer. We systematically compared a series of proteome samples from regular mice, 12- and 24-month old p21HBx/+ mice representing the inflammation and HCC stages of liver disease respectively and their nontransgenic wild-type (WT) littermates. Totally we identified 22 and 97 differentially expressed proteins out of a total of 2473 quantified proteins. Bioinformatics analysis suggested that the lipid metabolism and CDC42-induced cytoskeleton remodeling pathways were strongly activated by the HBx transgene. Interestingly, the protein-protein interaction MS study revealed that HBx directly interacted with multiple proteins in these two pathways. The same effect of up-regulation of cytoskeleton and lipid metabolism related proteins, including CDC42, CFL1, PPARγ and ADFP, was also observed in the Huh-7 cells transfected with HBx. More importantly, CFL1 and ADFP were specifically accumulated in HBV-associated HCC (HBV-HCC) patient samples, and their expression levels were positively correlated with the severity of HBV-related liver disease. These results provide evidence that HBx induces the dysregulation of cytoskeleton remodeling and lipid metabolism and leads to the occurrence and development of liver cancer. The CFL1 and ADFP might be served as potential biomarkers for prognosis and diagnosis of HBV-HCC.
Collapse
Affiliation(s)
- Zhongwei Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, China
| | - Linghui Zhai
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China
| | - Tailong Yi
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China
- Anhui Medical University, Hefei, 230032, China
| | - Huiying Gao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China
| | - Fengxu Fan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China
- Anhui Medical University, Hefei, 230032, China
| | - Yanchang Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China
| | - Youliang Wang
- Beijing Institute of Bioengineering, Beijing, 100071, P. R. China
| | - Ning Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China
| | - Xiaohua Xing
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China
| | - Na Su
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China
| | - Feilin Wu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China
| | - Lei Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China
| | - Xiuli Chen
- The Fifth Hospital of Shijiazhuang City, Shijiazhuang, 050021, China
| | - Erhei Dai
- The Fifth Hospital of Shijiazhuang City, Shijiazhuang, 050021, China
| | - Chao Zhao
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, and Research Center on Aging and Medicine, Fudan University, Shanghai, 200032, China
| | - Xiao Yang
- Beijing Institute of Bioengineering, Beijing, 100071, P. R. China
| | - Chunping Cui
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430072, P. R. China
- Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
24
|
Rosanò L, Bagnato A. β-arrestin1 at the cross-road of endothelin-1 signaling in cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:121. [PMID: 27473335 PMCID: PMC4966762 DOI: 10.1186/s13046-016-0401-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 07/24/2016] [Indexed: 12/15/2022]
Abstract
The advent of targeted therapeutics in human cancer has begun to find novel druggable targets and, in this context, the endothelin-1 receptor (ET-1R), namely ETA receptor (ETAR) and ETB receptor, among the GPCR family represents a class of highly druggable molecules in cancer. ET-1R are aberrantly expressed in human malignancies, potentially representing prognostic factors. Their activation by ligand stimulation initiate signaling cascades activating different downstream effectors, allowing precise control over multiple signaling pathways. ET-1R regulates cell proliferation, survival, motility, cytoskeletal changes, angiogenesis, metastasis as well as drug resistance. The molecular events underlying these responses are the activation of transcriptional factors and coactivators, and downstream genes, acting as key players in tumor growth and progression. ET-1R represent crucial cancer targets that have been exploited for ET-1R therapeutics. Importantly, efforts to explore new information of ETAR in cancer have uncovered that their functions are crucially regulated by multifunctional scaffold protein β-arrestins (β-arrs) which orchestrate the multidimensionality of ETAR signaling into highly regulated and distinct signaling complexes, a property that is highly advantageous for tumor signaling. Moreover, the role of β-arr1 in ET-1 signaling in cancer highlights why the pleiotropic effects of ET-1 and its dynamic signaling are more complex than previously recognized. In order to improve therapeutic strategies that interfere with the widespread effects of ET-1R, it is important to consider antagonists able to turn the receptors “off” selectively controlling β-arr1-dependent signaling, highlighting the possibility that targeting ETAR/β-arr1 may display a large therapeutic window in cancer.
Collapse
Affiliation(s)
- Laura Rosanò
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144, Rome, Italy.
| | - Anna Bagnato
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144, Rome, Italy.
| |
Collapse
|