1
|
Nihira NT, Wu W, Hosoi M, Togashi Y, Sunada S, Miyoshi Y, Miki Y, Ohta T. Nuclear PD-L1 triggers tumour-associated inflammation upon DNA damage. EMBO Rep 2025; 26:635-655. [PMID: 39747659 PMCID: PMC11811057 DOI: 10.1038/s44319-024-00354-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 01/04/2025] Open
Abstract
Immune checkpoint inhibitors against PD-1/PD-L1 are highly effective in immunologically hot tumours such as triple-negative breast cancer, wherein constitutive DNA damage promotes inflammation, while inducing PD-L1 expression to avoid attack by cytotoxic T cells. However, whether and how PD-L1 regulates the DNA damage response and inflammation remains unclear. Here, we show that nuclear PD-L1 activates the ATR-Chk1 pathway and induces proinflammatory chemocytokines upon genotoxic stress. PD-L1 interacts with ATR and is essential for Chk1 activation and chromatin binding. cGAS-STING and NF-κB activation in the late phase of the DNA damage response is inhibited by PD-L1 deletion or by inhibitors of ATR and Chk1. Consequently, the induction of proinflammatory chemocytokines at this stage is inhibited by deletion of PD-L1, but restored by the ATR activator Garcinone C. Inhibition of nuclear localisation by PD-L1 mutations or the HDAC2 inhibitor Santacruzamate A inhibits chemocytokine induction. Conversely, the p300 inhibitor C646, which accelerates PD-L1 nuclear localisation, promotes chemocytokine induction. These findings suggest that nuclear PD-L1 strengthens the properties of hot tumours and contributes to shaping the tumour microenvironment.
Collapse
Affiliation(s)
- Naoe T Nihira
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, 216-8511, Japan
| | - Wenwen Wu
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, 216-8511, Japan
| | - Mitsue Hosoi
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, 216-8511, Japan
| | - Yukiko Togashi
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, 216-8511, Japan
| | - Shigeaki Sunada
- Juntendo Advanced Research Institute for Health Science, Juntendo University, Tokyo, 113-8421, Japan
| | - Yasuo Miyoshi
- Department of Surgery, Division of Breast and Endocrine Surgery, School of Medicine, Hyogo Medical University, Nishinomiya City, Hyogo, Japan
| | - Yoshio Miki
- Research and Development Center for Precision Medicine, University of Tsukuba, Ibaraki, 305-8550, Japan
| | - Tomohiko Ohta
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, 216-8511, Japan.
| |
Collapse
|
2
|
Bonica J, Clarke C, Obeid LM, Luberto C, Hannun YA. Upregulation of sphingosine kinase 1 in response to doxorubicin generates an angiogenic response via stabilization of Snail. FASEB J 2023; 37:e22787. [PMID: 36723905 PMCID: PMC9979566 DOI: 10.1096/fj.202201066r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/27/2022] [Accepted: 01/10/2023] [Indexed: 02/02/2023]
Abstract
Sphingosine kinase 1 (SK1) converts the pro-death lipid sphingosine to the pro-survival sphingosine-1-phosphate (S1P) and is upregulated in several cancers. DNA damaging agents, such as the chemotherapeutic doxorubicin (Dox), have been shown to degrade SK1 protein in cancer cells, a process dependent on wild-type p53. As mutations in p53 are very common across several types of cancer, we evaluated the effects of Dox on SK1 in p53 mutant cancer cells. In the p53 mutant breast cancer cell line MDA-MB-231, we show that Dox treatment significantly increases SK1 protein and S1P. Using MDA-MB-231 cells with CRISPR-mediated knockout of SK1 or the selective SK1 inhibitor PF-543, we implicated SK1 in both Dox-induced migration and in a newly uncovered proangiogenic program induced by Dox. Mechanistically, inhibition of SK1 suppressed the induction of the cytokine BMP4 and of the EMT transcription factor Snail in response to Dox. Interestingly, induction of BMP4 by SK1 increased Snail levels following Dox treatment by stabilizing Snail protein. Furthermore, we found that SK1 was required for Dox-induced p38 MAP kinase phosphorylation and that active p38 MAPK in turn upregulated BMP4 and Snail, positioning p38 downstream of SK1 and upstream of BMP4/Snail. Modulating production of S1P by inhibition of de novo sphingolipid synthesis or knockdown of the S1P-degrading enzyme S1P lyase identified S1P as the sphingolipid activator of p38 in this model. This work establishes a novel angiogenic pathway in response to a commonly utilized chemotherapeutic and highlights the potential of SK1 as a secondary drug target for patients with p53 mutant cancer.
Collapse
Affiliation(s)
- Joseph Bonica
- Department of Pharmacology, Stony Brook University, Stony Brook, NY 11794
- Cancer Center, Stony Brook University, Stony Brook, NY 11794
| | | | - Lina M. Obeid
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794
- Cancer Center, Stony Brook University, Stony Brook, NY 11794
- Northport Veterans Affairs Medical Center, Northport, NY, USA
| | - Chiara Luberto
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794
- Cancer Center, Stony Brook University, Stony Brook, NY 11794
| | - Yusuf A. Hannun
- Department of Pharmacology, Stony Brook University, Stony Brook, NY 11794
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794
- Cancer Center, Stony Brook University, Stony Brook, NY 11794
- Northport Veterans Affairs Medical Center, Northport, NY, USA
- Departments of Biochemistry and Pathology, Stony Brook University, Stony Brook, NY 11794
| |
Collapse
|
3
|
Wu WH, Bonnet S, Shimauchi T, Toro V, Grobs Y, Romanet C, Bourgeois A, Vitry G, Omura J, Tremblay E, Nadeau V, Orcholski M, Breuils-Bonnet S, Martineau S, Ferraro P, Potus F, Paulin R, Provencher S, Boucherat O. Potential for inhibition of checkpoint kinases 1/2 in pulmonary fibrosis and secondary pulmonary hypertension. Thorax 2021; 77:247-258. [PMID: 34226205 DOI: 10.1136/thoraxjnl-2021-217377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/21/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterised by exuberant tissue remodelling and associated with high unmet medical needs. Outcomes are even worse when IPF results in secondary pulmonary hypertension (PH). Importantly, exaggerated resistance to cell death, excessive proliferation and enhanced synthetic capacity are key endophenotypes of both fibroblasts and pulmonary artery smooth muscle cells, suggesting shared molecular pathways. Under persistent injury, sustained activation of the DNA damage response (DDR) is integral to the preservation of cells survival and their capacity to proliferate. Checkpoint kinases 1 and 2 (CHK1/2) are key components of the DDR. The objective of this study was to assess the role of CHK1/2 in the development and progression of IPF and IPF+PH. METHODS AND RESULTS Increased expression of DNA damage markers and CHK1/2 were observed in lungs, remodelled pulmonary arteries and isolated fibroblasts from IPF patients and animal models. Blockade of CHK1/2 expression or activity-induced DNA damage overload and reverted the apoptosis-resistant and fibroproliferative phenotype of disease cells. Moreover, inhibition of CHK1/2 was sufficient to interfere with transforming growth factor beta 1-mediated fibroblast activation. Importantly, pharmacological inhibition of CHK1/2 using LY2606368 attenuated fibrosis and pulmonary vascular remodelling leading to improvement in respiratory mechanics and haemodynamic parameters in two animal models mimicking IPF and IPF+PH. CONCLUSION This study identifies CHK1/2 as key regulators of lung fibrosis and provides a proof of principle for CHK1/2 inhibition as a potential novel therapeutic option for IPF and IPF+PH.
Collapse
Affiliation(s)
- Wen-Hui Wu
- Department of Cardio-Pulmonary Circulation, Tongji University School of Medicine, Shanghai, Shanghai, China
| | - Sébastien Bonnet
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| | - Tsukasa Shimauchi
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| | - Victoria Toro
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| | - Yann Grobs
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| | - Charlotte Romanet
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| | - Alice Bourgeois
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| | - Geraldine Vitry
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| | - Junichi Omura
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| | - Eve Tremblay
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| | - Valerie Nadeau
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| | - Mark Orcholski
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| | - Sandra Breuils-Bonnet
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| | - Sandra Martineau
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| | - Pasquale Ferraro
- Department of Surgery, University of Montreal, Montreal, Quebec, Canada
| | - Francois Potus
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| | - Roxane Paulin
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| | - Steeve Provencher
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| | - Olivier Boucherat
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| |
Collapse
|
4
|
A lysosome independent role for TFEB in activating DNA repair and inhibiting apoptosis in breast cancer cells. Biochem J 2020; 477:137-160. [PMID: 31820786 DOI: 10.1042/bcj20190596] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/25/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022]
Abstract
Transcription factor EB (TFEB) is a master regulator of lysosomal biogenesis and autophagy with critical roles in several cancers. Lysosomal autophagy promotes cancer survival through the degradation of toxic molecules and the maintenance of adequate nutrient supply. Doxorubicin (DOX) is the standard of care treatment for triple-negative breast cancer (TNBC); however, chemoresistance at lower doses and toxicity at higher doses limit its usefulness. By targeting pathways of survival, DOX can become an effective antitumor agent. In this study, we examined the role of TFEB in TNBC and its relationship with autophagy and DNA damage induced by DOX. In TNBC cells, TFEB was hypo-phosphorylated and localized to the nucleus upon DOX treatment. TFEB knockdown decreased the viability of TNBC cells while increasing caspase-3 dependent apoptosis. Additionally, inhibition of the TFEB-phosphatase calcineurin sensitized cells to DOX-induced apoptosis in a TFEB dependent fashion. Regulation of apoptosis by TFEB was not a consequence of altered lysosomal function, as TFEB continued to protect against apoptosis in the presence of lysosomal inhibitors. RNA-Seq analysis of MDA-MB-231 cells with TFEB silencing identified a down-regulation in cell cycle and homologous recombination genes while interferon-γ and death receptor signaling genes were up-regulated. In consequence, TFEB knockdown disrupted DNA repair following DOX, as evidenced by persistent γH2A.X detection. Together, these findings describe in TNBC a novel lysosomal independent function for TFEB in responding to DNA damage.
Collapse
|
5
|
Yoon TW, Kim YI, Cho H, Brand DD, Rosloniec EF, Myers LK, Postlethwaite AE, Hasty KA, Stuart JM, Yi AK. Ameliorating effects of Gö6976, a pharmacological agent that inhibits protein kinase D, on collagen-induced arthritis. PLoS One 2019; 14:e0226145. [PMID: 31809526 PMCID: PMC6897462 DOI: 10.1371/journal.pone.0226145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022] Open
Abstract
Toll-like receptor (TLR) signaling can contribute to the pathogenesis of arthritis. Disruption of TLR signaling at early stages of arthritis might thereby provide an opportunity to halt the disease progression and ameliorate outcomes. We previously found that Gö6976 inhibits TLR-mediated cytokine production in human and mouse macrophages by inhibiting TLR-dependent activation of protein kinase D1 (PKD1), and that PKD1 is essential for proinflammatory responses mediated by MyD88-dependent TLRs. In this study, we investigated whether PKD1 contributes to TLR-mediated proinflammatory responses in human synovial cells, and whether Gö6976 treatment can suppress the development and progression of type II collagen (CII)-induced arthritis (CIA) in mouse. We found that TLR/IL-1R ligands induced activation of PKD1 in human fibroblast-like synoviocytes (HFLS). TLR/IL-1R-induced expression of cytokines/chemokines was substantially inhibited in Gö6976-treated HFLS and PKD1-knockdown HFLS. In addition, serum levels of anti-CII IgG antibodies, and the incidence and severity of arthritis after CII immunization were significantly reduced in mice treated daily with Gö6976. Synergistic effects of T-cell receptor and TLR, as well as TLR alone, on spleen cell proliferation and cytokine production were significantly inhibited in the presence of Gö6976. Our results suggest a possibility that ameliorating effects of Gö6976 on CIA may be due to its ability to inhibit TLR/IL-1R-activated PKD1, which might play an important role in proinflammatory responses in arthritis, and that PKD1 could be a therapeutic target for inflammatory arthritis.
Collapse
Affiliation(s)
- Tae Won Yoon
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Young-In Kim
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Hongsik Cho
- Department of Orthopedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - David D. Brand
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Veterans Affairs Medical Center-Memphis, Memphis, Tennessee, United States of America
| | - Edward F. Rosloniec
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Veterans Affairs Medical Center-Memphis, Memphis, Tennessee, United States of America
| | - Linda K. Myers
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Arnold E. Postlethwaite
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Veterans Affairs Medical Center-Memphis, Memphis, Tennessee, United States of America
| | - Karen A. Hasty
- Department of Orthopedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Veterans Affairs Medical Center-Memphis, Memphis, Tennessee, United States of America
| | - John M. Stuart
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Veterans Affairs Medical Center-Memphis, Memphis, Tennessee, United States of America
| | - Ae-Kyung Yi
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
6
|
Mad1 destabilizes p53 by preventing PML from sequestering MDM2. Nat Commun 2019; 10:1540. [PMID: 30948704 PMCID: PMC6449396 DOI: 10.1038/s41467-019-09471-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 03/12/2019] [Indexed: 02/06/2023] Open
Abstract
Mitotic arrest deficient 1 (Mad1) plays a well-characterized role in the mitotic checkpoint. However, interphase roles of Mad1 that do not impact mitotic checkpoint function remain largely uncharacterized. Here we show that upregulation of Mad1, which is common in human breast cancer, prevents stress-induced stabilization of the tumor suppressor p53 in multiple cell types. Upregulated Mad1 localizes to ProMyelocytic Leukemia (PML) nuclear bodies in breast cancer and cultured cells. The C-terminus of Mad1 directly interacts with PML, and this interaction is enhanced by sumoylation. PML stabilizes p53 by sequestering MDM2, an E3 ubiquitin ligase that targets p53 for degradation, to the nucleolus. Upregulated Mad1 displaces MDM2 from PML, freeing it to ubiquitinate p53. Upregulation of Mad1 accelerates growth of orthotopic mammary tumors, which show decreased levels of p53 and its downstream effector p21. These results demonstrate an unexpected interphase role for Mad1 in tumor promotion via p53 destabilization.
Collapse
|
7
|
Snider JM, Trayssac M, Clarke CJ, Schwartz N, Snider AJ, Obeid LM, Luberto C, Hannun YA. Multiple actions of doxorubicin on the sphingolipid network revealed by flux analysis. J Lipid Res 2019; 60:819-831. [PMID: 30573560 PMCID: PMC6446699 DOI: 10.1194/jlr.m089714] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/18/2018] [Indexed: 12/16/2022] Open
Abstract
Sphingolipids (SLs) have been implicated in numerous important cellular biologies; however, their study has been hindered by the complexities of SL metabolism. Furthermore, enzymes of SL metabolism represent a dynamic and interconnected network in which one metabolite can be transformed into other bioactive SLs through further metabolism, resulting in diverse cellular responses. Here we explore the effects of both lethal and sublethal doses of doxorubicin (Dox) in MCF-7 cells. The two concentrations of Dox resulted in the regulation of SLs, including accumulations in sphingosine, sphingosine-1-phosphate, dihydroceramide, and ceramide, as well as reduced levels of hexosylceramide. To further define the effects of Dox on SLs, metabolic flux experiments utilizing a d17 dihydrosphingosine probe were conducted. Results indicated the regulation of ceramidases and sphingomyelin synthase components specifically in response to the cytostatic dose. The results also unexpectedly demonstrated dose-dependent inhibition of dihydroceramide desaturase and glucosylceramide synthase in response to Dox. Taken together, this study uncovers novel targets in the SL network for the action of Dox, and the results reveal the significant complexity of SL response to even a single agent. This approach helps to define the role of specific SL enzymes, their metabolic products, and the resulting biologies in response to chemotherapeutics and other stimuli.
Collapse
Affiliation(s)
- Justin M Snider
- Molecular and Cellular Biology and Biochemistry and Structural Biology Graduate Program, Stony Brook University, Stony Brook, NY; Departments of Medicine, Stony Brook University, Stony Brook, NY; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY
| | - Magali Trayssac
- Departments of Medicine, Stony Brook University, Stony Brook, NY; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY
| | - Christopher J Clarke
- Departments of Medicine, Stony Brook University, Stony Brook, NY; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY
| | - Nicholas Schwartz
- Departments of Medicine, Stony Brook University, Stony Brook, NY; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY
| | - Ashley J Snider
- Departments of Medicine, Stony Brook University, Stony Brook, NY; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY; Northport Veterans Affairs Medical Center, Northport, NY
| | - Lina M Obeid
- Departments of Medicine, Stony Brook University, Stony Brook, NY; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY; Northport Veterans Affairs Medical Center, Northport, NY
| | - Chiara Luberto
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY; Departments of Physiology and Biophysics, Stony Brook University, Stony Brook, NY.
| | - Yusuf A Hannun
- Departments of Medicine, Stony Brook University, Stony Brook, NY; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY; Departments of Biochemistry, Stony Brook University, Stony Brook, NY; Departments of Pharmacology, Stony Brook University, Stony Brook, NY; Departments of Pathology, Stony Brook University, Stony Brook, NY.
| |
Collapse
|
8
|
Zhang B, Cui B, Du J, Shen X, Wang K, Chen J, Xiao L, Sun C, Li Y. ATR activated by EB virus facilitates chemotherapy resistance to cisplatin or 5-fluorouracil in human nasopharyngeal carcinoma. Cancer Manag Res 2019; 11:573-585. [PMID: 30666155 PMCID: PMC6331066 DOI: 10.2147/cmar.s187099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Purpose Epstein-Barr virus (EBV) infection is closely associated with nasopharyngeal carcinoma (NPC) and increases the chemotherapy resistance of tumor cells. Although the mechanism by which EBV manipulates ataxia telangiectasia mutation (ATM)-mediated DNA damage response in NPC has been extensively studied, the relationship between ATR (ATM and Rad-3 related) and EBV infection is largely unexplored, and also the role of ATR in chemotherapy resistance in EBV-positive NPC has not been specifically reported. Materials and methods Levels of γ-H2AX, latent membrane protein 1 (LMP1), and EBV-encoded RNA in clinical NPC and nasopharyngeal inflammation (NPI) specimens were examined using immunohistochemistry and in situ hybridization. The effects of EBV infection, chemotherapy drugs cisplatin (CDDP) and 5-fluorouracil (5-FU) treatment, and ATR silencing were assessed in NPC cells in vitro using immunofluorescence, Western blot, and flow cytometry. Results A notable increase of γ-H2AX expression was examined in the EBV-positive NPC clinical specimens. Additionally, we observed that the phosphorylation of ATR/checkpoint kinase 1 (CHK1) pathway protein was gradually activated along with the duration of EBV exposure in NPC cell lines, which was obviously inhibited after ATR depletion. Moreover, EBV infection promoted the resistance of NPC cells to CDDP and 5-FU, whereas the chemosensitivity of cells was significantly enhanced following ATR knockdown. Furthermore, ATR depletion caused both S-phase cell arrest and apoptosis, enhanced p53 phosphorylation, and impaired the formation of Rad51. Conclusion Our data suggest that EBV activation of ATR-mediated DNA damage response might result in chemotherapy resistance to CDDP and 5-FU in NPC. Accordingly, ATR knockdown may serve as an effective treatment strategy for chemotherapy-resistant, EBV-positive NPC.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China, ;
| | - Bomiao Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China, ;
| | - Jintao Du
- Department of Otorhinolaryngology-Head and Neck Surgery, West China Hospital, Chengdu 610041, Sichuan, China
| | - Xin Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China, ;
| | - Kun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China, ;
| | - Jiao Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China, ;
| | - Liying Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China, ;
| | - Chongkui Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China, ;
| | - Yan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China, ;
| |
Collapse
|
9
|
Zhao X, Guo X, Xing L, Yue W, Yin H, He M, Wang J, Yang J, Chen J. HBV infection potentiates resistance to S-phase arrest-inducing chemotherapeutics by inhibiting CHK2 pathway in diffuse large B-cell lymphoma. Cell Death Dis 2018; 9:61. [PMID: 29352124 PMCID: PMC5833392 DOI: 10.1038/s41419-017-0097-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/23/2017] [Accepted: 10/23/2017] [Indexed: 12/15/2022]
Abstract
A considerable number of diffuse large B-cell lymphoma (DLBCL) patients are infected with hepatitis B virus (HBV), which is correlated with their poor outcomes. However, the role of HBV infection in DLBCL treatment failure remains poorly understood. Here, our data demonstrated that HBV infection was closely associated with poorer clinical prognosis independent of its hepatic dysfunction in germinal center B-cell type (GCB type) DLBCL patients. Interestingly, we found that DLBCL cells expressing hepatitis B virus X protein (HBX) did not exhibit enhanced cell growth but did show reduced sensitivity to methotrexate (MTX) and cytarabine (Ara-C), which induced S-phase arrest. Mechanism studies showed that HBX specifically inhibited the phosphorylation of checkpoint kinase 2 (CHK2, a key DNA damage response protein). CHK2 depletion similarly conferred resistance to the S-phase arrest-inducing chemotherapeutics, consistent with HBX overexpression in DLBCL cells. Moreover, overexpression of wild-type CHK2 rather than its unphosphorylated mutant (T68A) significantly restored the reduced chemosensitivity in HBX-expressing cells, suggesting that HBV infection conferred resistance to chemotherapeutics that induced S-phase arrest by specifically inhibiting the activation of CHK2 response signaling in DLBCL.
Collapse
Affiliation(s)
- Xinying Zhao
- Department of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Department of Hematology, Jingzhou Central Hospital, Jingzhou Clinical Medical College, Yangtze University, Jingzhou, China
| | - Xudong Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, Shanghai, China.,Institute of Regenerative Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Libo Xing
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Wenqin Yue
- Department of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Haisen Yin
- Department of Hematology, Jingzhou Central Hospital, Jingzhou Clinical Medical College, Yangtze University, Jingzhou, China
| | - Miaoxia He
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jianmin Wang
- Department of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jianmin Yang
- Department of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jie Chen
- Department of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
10
|
Lin X, Wei F, Major P, Al-Nedawi K, Al Saleh HA, Tang D. Microvesicles Contribute to the Bystander Effect of DNA Damage. Int J Mol Sci 2017; 18:ijms18040788. [PMID: 28387728 PMCID: PMC5412372 DOI: 10.3390/ijms18040788] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/27/2017] [Accepted: 04/05/2017] [Indexed: 01/25/2023] Open
Abstract
Genotoxic treatments elicit DNA damage response (DDR) not only in cells that are directly exposed but also in cells that are not in the field of treatment (bystander cells), a phenomenon that is commonly referred to as the bystander effect (BE). However, mechanisms underlying the BE remain elusive. We report here that etoposide and ultraviolet (UV) exposure stimulate the production of microvesicles (MVs) in DU145 prostate cancer cells. MVs isolated from UV-treated DU145 and A431 epidermoid carcinoma cells as well as etoposide-treated DU145 cells induced phosphorylation of ataxia-telangiectasia mutated (ATM) at serine 1981 (indicative of ATM activation) and phosphorylation of histone H2AX at serine 139 (γH2AX) in naïve DU145 cells. Importantly, neutralization of MVs derived from UV-treated cells with annexin V significantly reduced the MV-associated BE activities. Etoposide and UV are known to induce DDR primarily through the ATM and ATM- and Rad3-related (ATR) pathways, respectively. In this regard, MV is likely a common source for the DNA damage-induced bystander effect. However, pre-treatment of DU145 naïve cells with an ATM (KU55933) inhibitor does not affect the BE elicited by MVs isolated from etoposide-treated cells, indicating that the BE is induced upstream of ATM actions. Taken together, we provide evidence supporting that MVs are a source of the DNA damage-induced bystander effect.
Collapse
Affiliation(s)
- Xiaozeng Lin
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, ON L8N 4A6, Canada.
- Father Sean O'Sullivan Research Institute, Hamilton, ON L8N 4A6, Canada.
- The Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, ON L8N 4A6, Canada.
| | - Fengxiang Wei
- The Genetics Laboratory, Longgang District Maternity and Child Healthcare Hospital, Longgang District, Shenzhen 518116, Guangdong, China.
| | - Pierre Major
- Department of Oncology, McMaster University, Hamilton, ON L8V 5C2, Canada.
| | - Khalid Al-Nedawi
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, ON L8N 4A6, Canada.
- Father Sean O'Sullivan Research Institute, Hamilton, ON L8N 4A6, Canada.
- The Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, ON L8N 4A6, Canada.
| | - Hassan A Al Saleh
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, ON L8N 4A6, Canada.
- Father Sean O'Sullivan Research Institute, Hamilton, ON L8N 4A6, Canada.
- The Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, ON L8N 4A6, Canada.
| | - Damu Tang
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, ON L8N 4A6, Canada.
- Father Sean O'Sullivan Research Institute, Hamilton, ON L8N 4A6, Canada.
- The Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, ON L8N 4A6, Canada.
| |
Collapse
|
11
|
Miles M, Kitevska-Ilioski T, Hawkins C. Old and Novel Functions of Caspase-2. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 332:155-212. [DOI: 10.1016/bs.ircmb.2016.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|