1
|
Ferreira JM, Gonçalves CS, Costa BM. Emerging roles and biomarker potential of WNT6 in human cancers. Cell Commun Signal 2024; 22:538. [PMID: 39529066 PMCID: PMC11552340 DOI: 10.1186/s12964-024-01892-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024] Open
Abstract
The WNT6 ligand is a well-known activator of the WNT signaling pathway, considered a vital player in several important physiologic processes during embryonic development and maintaining homeostasis throughout life, regulating the proliferation and differentiation of multiple stem/progenitor cell types. More recently, as it is the case for many key molecular regulators of embryonic development, dysregulation of WNT6 has been implicated in cancer development and progression in multiple studies. In this review, we overview the most significant recent findings regarding WNT6 in the context of human malignancies, exploring its influence on multiple dimensions of tumor pathophysiology and highlighting the putative underlying WNT6-associated molecular mechanisms. We also discuss the potential clinical implications of WNT6 as a prognostic and therapeutic biomarker. This critical review highlights the emerging relevance of WNT6 in multiple human cancers, and its potential as a clinically-useful biomarker, addressing key unanswered questions that could lead to new opportunities in patient diagnosis, stratification, and the development of rationally-designed precision therapies.
Collapse
Affiliation(s)
- Joana M Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Céline S Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bruno M Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
2
|
Dolatshahi M, Bahrami AR, Sheikh QI, Ghanbari M, Matin MM. Gastric cancer and mesenchymal stem cell-derived exosomes: from pro-tumorigenic effects to anti-cancer vehicles. Arch Pharm Res 2024; 47:1-19. [PMID: 38151649 DOI: 10.1007/s12272-023-01477-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
Gastric cancer (GC) is one of the most prevalent malignancies in the world, with a high mortality rate in both women and men. Conventional treatments, like chemotherapy, radiotherapy and surgery, are facing some drawbacks like acquired drug resistance and various side effects, leading to cancer recurrence and increased morbidity; thus, development of novel approaches in targeted therapy would be very beneficial. Exosomes, extracellular vesicles with a size distribution of sub-150 nm, interplay in physiological and pathophysiological cell-cell communications and can pave the way for targeted cancer therapy. Accumulating pieces of evidence have indicated that exosomes derived from mesenchymal stem cells (MSC-EXs) can act as a double-edged sword in some cancers. The purpose of this review is to assess the differences between stem cell therapy and exosome therapy. Moreover, our aim is to demonstrate how naïve MSCs transform into GC-MSCs in the tumor microenvironment. Additionally, the tumorigenic and anti-proliferation effects of MSC-EXs derived from different origins were investigated. Finally, we suggest potential modifications and combination options that involve utilizing MSC-EXs from the foreskin and umbilical cord as promising sources to enhance the efficacy of gastric cancer treatment. This approach is presented in contrast to bone marrow cells, which are more heterogeneous, age-related, and are also easily affected by the patient's circulation system.
Collapse
Affiliation(s)
- Maryam Dolatshahi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Qaiser Iftikhar Sheikh
- School of Biosciences, Western Bank, Firth Court, University of Sheffield, Sheffield, S10 2TN, England, UK
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
3
|
Hong SA, Lee S, Park J, Hong M, Yoon JS, Lee H, Lee JH, Kim S, Won HS, Kang K, Ko YH, Ahn YH. miR-199a and miR-199b facilitate diffuse gastric cancer progression by targeting Frizzled-6. Sci Rep 2023; 13:17480. [PMID: 37838767 PMCID: PMC10576747 DOI: 10.1038/s41598-023-44716-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023] Open
Abstract
Pathological markers that can monitor the progression of gastric cancer (GC) may facilitate the diagnosis and treatment of patients with diffuse GC (DGC). To identify microRNAs (miRNAs) that can differentiate between early and advanced DGC in the gastric mucosa, miRNA expression profiling was performed using the NanoString nCounter method in human DGC tumors. Ectopic expression of miR-199a and miR-199b (miR-199a/b) in SNU601 human GC cells accelerated the growth rate, viability, and motility of cancer cells and increased the tumor volume and weight in a mouse xenograft model. To study their clinicopathological roles in patients with GC, miR-199a/b levels were measured in human GC tumor samples using in situ hybridization. High miR-199a/b expression level was associated with enhanced lymphovascular invasion, advanced T stage, and lymph-node metastasis. Using the 3'-untranslated region (UTR) luciferase assay, Frizzled-6 (FZD6) was confirmed to be a direct target of miR-199a/b in GC cells. siRNA-mediated depletion of FZD6 enhanced the motility of SNU601 cells, and addback of FZD6 restored cancer cell motility stimulated by miR-199a/b. In conclusion, miR-199a/b promotes DGC progression by targeting FZD6, implying that miR-199a/b can be used as prognostic and diagnostic biomarkers for the disease.
Collapse
Affiliation(s)
- Soon Auck Hong
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul, 06974, Korea
| | - Sieun Lee
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804, Korea
| | - Jihye Park
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804, Korea
| | - Mineui Hong
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul, 06974, Korea
| | - Jung-Sook Yoon
- Uijeongbu St. Mary's Hospital Clinical Research Laboratory, The Catholic University of Korea, Uijeongbu, 11765, Korea
| | - Heejin Lee
- Department of Internal Medicine, Division of Oncology, College of Medicine, St. Mary's Hospital, The Catholic University of Korea, 1021 Tongil-Ro, Eunpyeong-Gu, Seoul, 03312, Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Ji Hyun Lee
- Department of Internal Medicine, Division of Oncology, College of Medicine, St. Mary's Hospital, The Catholic University of Korea, 1021 Tongil-Ro, Eunpyeong-Gu, Seoul, 03312, Korea
| | - Seoree Kim
- Department of Internal Medicine, Division of Oncology, College of Medicine, St. Mary's Hospital, The Catholic University of Korea, 1021 Tongil-Ro, Eunpyeong-Gu, Seoul, 03312, Korea
| | - Hye Sung Won
- Department of Internal Medicine, Division of Oncology, College of Medicine, St. Mary's Hospital, The Catholic University of Korea, 1021 Tongil-Ro, Eunpyeong-Gu, Seoul, 03312, Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Keunsoo Kang
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, 31116, Korea
| | - Yoon Ho Ko
- Department of Internal Medicine, Division of Oncology, College of Medicine, St. Mary's Hospital, The Catholic University of Korea, 1021 Tongil-Ro, Eunpyeong-Gu, Seoul, 03312, Korea.
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
| | - Young-Ho Ahn
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804, Korea.
| |
Collapse
|
4
|
Liang Z, Xu Y, Zhang Y, Zhang X, Song J, Qian H, Jin J. Anticancer applications of phytochemicals in gastric cancer: Effects and molecular mechanism. Front Pharmacol 2023; 13:1078090. [PMID: 36712679 PMCID: PMC9877357 DOI: 10.3389/fphar.2022.1078090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Gastric cancer (GC) is the fourth most common malignant cancer and is a life-threatening disease worldwide. Phytochemicals have been shown to be a rational, safe, non-toxic, and very promising approach to the prevention and treatment of cancer. It has been found that phytochemicals have protective effects against GC through inhibiting cell proliferation, inducing apoptosis and autophagy, suppressing cell invasion and migration, anti-angiogenesis, inhibit Helicobacter pylori infection, regulating the microenvironment. In recent years, the role of phytochemicals in the occurrence, development, drug resistance and prognosis of GC has attracted more and more attention. In order to better understand the relationship between phytochemicals and gastric cancer, we briefly summarize the roles and functions of phytochemicals in GC tumorigenesis, development and prognosis. This review will probably help guide the public to prevent the occurrence and development of GC through phytochemicals, and develop functional foods or drugs for the prevention and treatment of gastric cancer.
Collapse
Affiliation(s)
- Zhaofeng Liang
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Chang Zhou, China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yumeng Xu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yue Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xinyi Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jiajia Song
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Hui Qian
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Chang Zhou, China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jianhua Jin
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Chang Zhou, China
| |
Collapse
|
5
|
Roles and action mechanisms of WNT4 in cell differentiation and human diseases: a review. Cell Death Discov 2021; 7:287. [PMID: 34642299 PMCID: PMC8511224 DOI: 10.1038/s41420-021-00668-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/24/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023] Open
Abstract
WNT family member 4 (WNT4), which belongs to the conserved WNT protein family, plays an important role in the development and differentiation of many cell types during the embryonic development and adult homeostasis. Increasing evidence has shown that WNT4 is a special ligand that not only activates the β-catenin independent pathway but also acts on β-catenin signaling based on different cellular processes. This article is a summary of the current knowledge about the expression, regulation, and function of WNT4 ligands and their signal pathways in cell differentiation and human disease processes. WNT4 is a promoter in osteogenic differentiation in bone marrow stromal cells (BMSCs) by participating in bone homeostasis regulation in osteoporotic diseases. Non-canonical WNT4 signaling is necessary for metabolic maturation of pancreatic β-cell. WNT4 is also necessary for decidual cell differentiation and decidualization, which plays an important role in preeclampsia. WNT4 promotes neuronal differentiation of neural stem cell and dendritic cell (DC) into conventional type 1 DC (cDC1). Besides, WNT4 mediates myofibroblast differentiation in the skin, kidney, lung, and liver during scarring or fibrosis. On the negative side, WNT4 is highly expressed in cancer tissues, playing a pro-carcinogenic role in many cancer types. This review provides an overview of the progress in elucidating the role of WNT4 signaling pathway components in cell differentiation in adults, which may provide useful clues for the diagnosis, prevention, and therapy of human diseases.
Collapse
|
6
|
Shi H, Sun Y, Ruan H, Ji C, Zhang J, Wu P, Li L, Huang C, Jia Y, Zhang X, Xu W, Jiang J, Qian H. 3,3'-Diindolylmethane Promotes Gastric Cancer Progression via β-TrCP-Mediated NF-κB Activation in Gastric Cancer-Derived MSCs. Front Oncol 2021; 11:603533. [PMID: 33842314 PMCID: PMC8024625 DOI: 10.3389/fonc.2021.603533] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is a malignant tumor characterized by high morbidity and invasion. Surgery combined with chemo-radiotherapy is the most common treatment for gastric cancer, while multiple drug resistance always results in treatment failure. Once the anti-tumor drugs enter the tumor foci, tumor cells as well as those found in the microenvironment are affected. However, the effects of drugs on tumor microenvironment (TME) are easily overlooked. In this study, we investigated the effects of the anti-cancer drug 3,3’-diindolylmethane (DIM) on gastric cancer-derived mesenchymal stem cells (GC-MSCs) and their subsequent impact on cancer progression. Surprisingly, we found that the therapeutic concentration of DIM upregulated the expression level of tumor-related factors such as CCL-2, IL-6, and IL-8 in GC-MSCs. The conditioned medium of DIM-treated GC-MSCs promoted the proliferation, invasion, and migration of gastric cancer cells in vitro and tumor growth in vivo. Mechanistically, DIM enhanced the expression of β-TrCP, an E3 ubiquitin ligase leading to IκBα degradation and NF-κB activation in GC-MSCs. The β-TrCP knockdown partially eliminated positive results caused by DIM. Our results showed that the therapeutic dosage of DIM induced cell death in cancer cells, while enhancing MSC paracrine functions in the stroma to offset the original DIM effect on cancer cells. These findings provide a new mechanism of anti-cancer drug resistance and remind us to adjust the chemotherapeutic scheme by combining the anti-cancer drug with an appropriate signaling pathway inhibitor to block the side effects of drug on targeted TME cells.
Collapse
Affiliation(s)
- Hui Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China.,Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, China
| | - Yaoxiang Sun
- Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, China.,Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Hongru Ruan
- Department of Burn Orthopedics, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| | - Cheng Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jiahui Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Peipei Wu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Linli Li
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Chihan Huang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yuanwang Jia
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China.,Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, China
| | - Jiajia Jiang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China.,Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
7
|
Regulation of carcinogenesis and mediation through Wnt/β-catenin signaling by 3,3'-diindolylmethane in an enzalutamide-resistant prostate cancer cell line. Sci Rep 2021; 11:1239. [PMID: 33441906 PMCID: PMC7806813 DOI: 10.1038/s41598-020-80519-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 12/18/2020] [Indexed: 12/09/2022] Open
Abstract
Enzalutamide (ENZ) is an important drug used to treat castration-resistant prostate cancer (CRPC), which inhibits androgen receptor (AR) signaling. Previous study showed that 3,3′-diindolylmethane (DIM) is an AR antagonist that also inhibits Wnt signaling and epithelial-mesenchymal transition (EMT). To investigate whether combined treatment with ENZ and DIM can overcome ENZ resistance by regulating Wnt signaling to inhibit AR signaling and EMT in ENZ-resistant prostate cancer cells, 22Rv1 cells were cultured in normal medium and treated with ENZ, DIM, and DIM with ENZ. Exposure of ENZ-resistant cells to both DIM and ENZ significantly inhibited cell proliferation without cytotoxicity and invasion in comparison with the control. DIM significantly increased the E-cadherin expression and inhibited the expressions of Vimentin and Fibronectin, subsequently inhibiting EMT. Co-treatment with ENZ and DIM significantly increased the expressions of GSK3β and APC and decreased the β-catenin protein expression, causing inhibition of Wnt signaling and AR expression, it also significantly decreased the AR-v7 expression and down-regulated AR signaling. Via suppression of Wnt and AR signaling, co-treatment increased the E-cadherin and decreased the Vimentin and Fibronectin RNA and protein expressions, then inhibited EMT. Co-treatment with DIM and ENZ regulated Wnt signaling to reduce not only the AR expression, but also the AR-v7 expression, indicating suppression of EMT that inhibits cancer cell proliferation, invasion and migration to ameliorate ENZ resistance.
Collapse
|
8
|
Wang X, Zhao Y, Yu M, Xu Y. PTEN/Akt Signaling-Mediated Activation of the Mitochondrial Pathway Contributes to the 3,3'-Diindolylmethane-Mediated Antitumor Effect in Malignant Melanoma Cells. J Med Food 2020; 23:1248-1258. [PMID: 33237846 DOI: 10.1089/jmf.2020.4704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
3,3'-diindolylmethane (DIM) has an anticancer activity, but the role DIM plays on malignant melanoma cells and its specific mechanism is unclear. We studied the biological effects of DIM on malignant melanoma cells and the related mechanism and the results showed that DIM significantly suppressed cell proliferation and induced apoptosis in malignant melanoma cells. In addition, the expression levels of phosphatase and tensin homolog deleted on chromosome ten (PTEN), Bax, Bid, cleaved caspase-3, and cleaved caspase-9 were increased after DIM treatment. In A2058 PTENmut cells, DIM-mediated inhibition of proliferation and DIM-induced apoptosis were attenuated. Additionally, the overexpression and knockdown of PTEN could regulate such effects of DIM in malignant melanoma cells. Furthermore, DIM exerted growth-inhibiting and apoptosis-inducing effects in vivo. This study demonstrated that DIM has antitumor effect in human malignant melanoma cells through the mitochondrial apoptotic pathway activated by PTEN/Akt signaling.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Plastic Surgery and Renmin Hospital of Wuhan University, Wuhan, China
| | - Yueqiang Zhao
- Department of Plastic Surgery and Renmin Hospital of Wuhan University, Wuhan, China
| | - Mosheng Yu
- Department of Plastic Surgery and Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu Xu
- Department of Otolaryngology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Yang D, Li Q, Shang R, Yao L, Wu L, Zhang M, Zhang L, Xu M, Lu Z, Zhou J, Huang L, Huang X, Cheng D, Yang Y, Yu H. WNT4 secreted by tumor tissues promotes tumor progression in colorectal cancer by activation of the Wnt/β-catenin signalling pathway. J Exp Clin Cancer Res 2020; 39:251. [PMID: 33222684 PMCID: PMC7682076 DOI: 10.1186/s13046-020-01774-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/09/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Wingless and Int-related protein (Wnt) ligands are aberrantly expressed in patients with colorectal cancer (CRC). However, the aberrant level of Wnt ligands in serum have not been explored. Here, we aimed to identify the levels of WNT4 in serum and explored its oncogenic role in CRC. METHODS The Oncomine database was used to analyze the relationship between WNT4 and the prognosis of CRC. ELISA was performed to measure WNT4 levels in serum and conditioned medium from fresh CRC tissues and adjacent normal tissues. Western blot and immunohistochemistry were carried out to measure the expression of WNT4 in human CRC tissues and adjacent normal tissues. The migration and invasion of CRC cells were determined by trans-well assay, and the effects of WNT4 on CRC invasion and metastasis in vivo were verified by tumor xenograft in nude mice. Cancer-associated fibroblasts (CAFs) and angiogenesis in subcutaneous nodules were detected by immunofluorescence (IF). In addition, the suspended spheres formation and tube formation assay were performed to explore the effects of WNT4 on CAFs and angiogenesis respectively. RESULTS WNT4 was significantly upregulated in serum of CRC patients, and CRC tissues were identified as an important source of elevated WNT4 levels in CRC patients. Interestingly, elevated levels of WNT4 in serum were downregulated after tumor resection. Furthermore, we found that WNT4 contributed to epithelial-to-mesenchymal transition (EMT) and activated fibroblasts by activating the WNT4/β-catenin pathway in vitro and in vivo. Moreover, angiogenesis was induced via the WNT4/β-catenin/Ang2 pathway. Those effects could be reversed by ICG-001, a β-catenin/TCF inhibitor. CONCLUSION Our findings indicated that serum levels of WNT4 may be a potential biomarker for CRC. WNT4 secreted by colorectal cancer tissues promote the progression of CRC by inducing EMT, activate fibroblasts and promote angiogenesis through the canonical Wnt/β-catenin signalling pathway.
Collapse
Affiliation(s)
- Dongmei Yang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Jiefang Rd. 238, Wuhan, 430060, China
| | - Qing Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Jiefang Rd. 238, Wuhan, 430060, China
| | - Renduo Shang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Jiefang Rd. 238, Wuhan, 430060, China
| | - Liwen Yao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Jiefang Rd. 238, Wuhan, 430060, China
| | - Lianlian Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Jiefang Rd. 238, Wuhan, 430060, China
| | - Mengjiao Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Jiefang Rd. 238, Wuhan, 430060, China
| | - Lihui Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Jiefang Rd. 238, Wuhan, 430060, China
| | - Ming Xu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Jiefang Rd. 238, Wuhan, 430060, China
| | - Zihua Lu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Jiefang Rd. 238, Wuhan, 430060, China
| | - Jie Zhou
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Jiefang Rd. 238, Wuhan, 430060, China
| | - Li Huang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Jiefang Rd. 238, Wuhan, 430060, China
| | - Xiaodong Huang
- Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Du Cheng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Jiefang Rd. 238, Wuhan, 430060, China
| | - Yanning Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Rd. 238, Wuhan, Hubei, 430060, People's Republic of China.
| | - Honggang Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Jiefang Rd. 238, Wuhan, 430060, China.
| |
Collapse
|
10
|
Wang N, Yan H, Wu D, Zhao Z, Chen X, Long Q, Zhang C, Wang X, Deng W, Liu X. PRMT5/Wnt4 axis promotes lymph-node metastasis and proliferation of laryngeal carcinoma. Cell Death Dis 2020; 11:864. [PMID: 33060569 PMCID: PMC7566595 DOI: 10.1038/s41419-020-03064-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/24/2022]
Abstract
Metastasis is the main cause of laryngeal cancer-related death; its molecular mechanism remains unknown. Here we identify protein arginine methyltransferase 5 (PRMT5) as a new metastasis-promoting factor in laryngeal carcinoma, and explore its underlying mechanism of action in regulating laryngeal cancer progression. We illustrated that PRMT5 expression was positively correlated with tumor stages, lymphatic metastasis, and unfavorable outcome. Functional assays revealed that PRMT5 promoted laryngeal carcinoma cell proliferation, migration, and invasive capacity in vitro, as well as lymph-node metastasis in vivo. The ectopic expression of PRMT5 induced EMT with downregulation of E-cadherin and upregulation of N-cadherin, snail, and MMP9. Mechanistic results revealed that the metastatic effects could be attributed to PRMT5-mediated activation of Wnt signaling, and Wnt4 is an important driver of Wnt/β-catenin signaling pathway. Wnt4 silencing could reverse PRMT5-induced cell proliferation, migration, and invasion capacities. Furthermore, inhibition of the Wnt/β-catenin signaling pathway abolished the effect of PRMT5-induced proliferation, whereas activation of the pathway enhanced the effect of PRMT5 overexpression on cell proliferation. These results demonstrated that the oncogenic role of PRMT5 could be attributed to PRMT5/Wnt4 axis-mediated activation of the Wnt/β-catenin signaling pathway. PRMT5 may serve as a novel prognostic marker and a therapeutic target for lymphatic metastasis of laryngeal carcinoma.
Collapse
Affiliation(s)
- Nan Wang
- College of Life Science, Jiaying University, Meizhou, China
| | - Honghong Yan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Di Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Zheng Zhao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Xiaoqi Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Qian Long
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Changlin Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Xiaohao Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.
| | - Xuekui Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.
| |
Collapse
|
11
|
Koli P, Reena, Indurthi HK, Sharma DK. Anticancer Activity of 3,3′‐Diindolylmethane and the Molecular Mechanism Involved in Various Cancer Cell Lines. ChemistrySelect 2020. [DOI: 10.1002/slct.202003137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Papita Koli
- Department of Pharmaceutical Engg. and Tech. Indian Institute of Technology-Banaras Hindu University Varanasi, Uttar Pradesh India
| | - Reena
- Overseas Healthcare Pvt. Ltd. Phillaur, Punjab India
| | - Harish K. Indurthi
- Department of Pharmaceutical Engg. and Tech. Indian Institute of Technology-Banaras Hindu University Varanasi, Uttar Pradesh India
| | - Deepak K. Sharma
- Department of Pharmaceutical Engg. and Tech. Indian Institute of Technology-Banaras Hindu University Varanasi, Uttar Pradesh India
| |
Collapse
|
12
|
Pan Z, Tian Y, Niu G, Cao C. The Emerging Role of GC-MSCs in the Gastric Cancer Microenvironment: From Tumor to Tumor Immunity. Stem Cells Int 2019; 2019:8071842. [PMID: 31885627 PMCID: PMC6914970 DOI: 10.1155/2019/8071842] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/15/2019] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been declared to not only participate in wound repair but also affect tumor progression. Tumor-associated MSCs, directly existing in the tumor microenvironment, play a critical role in tumor initiation, progression, and development. And different tumor-derived MSCs have their own unique characteristics. In this review, we mainly describe and discuss recent advances in our understanding of the emerging role of gastric cancer-derived MSC-like cells (GC-MSCs) in regulating gastric cancer progression and development, as well as the bidirectional influence between GC-MSCs and immune cells of the tumor microenvironment. Moreover, we also discuss the potential biomarker and therapeutic role of GC-MSCs. It is anticipated that new and deep insights into the functionality of GC-MSCs and the underlying mechanisms will promote the novel and promising therapeutic strategies against gastric cancer.
Collapse
Affiliation(s)
- Zhaoji Pan
- Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu, China
| | - Yiqing Tian
- Xinyi People's Hospital, Xinyi, Xuzhou, Jiangsu, China
| | - Guoping Niu
- Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu, China
| | - Chengsong Cao
- Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu, China
| |
Collapse
|
13
|
Huang Z, Yang M, Li Y, Yang F, Feng Y. Exosomes Derived from Hypoxic Colorectal Cancer Cells Transfer Wnt4 to Normoxic Cells to Elicit a Prometastatic Phenotype. Int J Biol Sci 2018; 14:2094-2102. [PMID: 30585272 PMCID: PMC6299371 DOI: 10.7150/ijbs.28288] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/28/2018] [Indexed: 12/23/2022] Open
Abstract
Hypoxia is the most common characteristic of solid tumours driving cancer metastasis. Cancer cells release exosomes with various functions into the tumour microenvironment during cancer progression. However, the roles and associated mechanisms of hypoxic colorectal cancer (CRC) cell-derived exosomes remain poorly understood. Here, we found that exosomes secreted by hypoxic CRC cells promoted the migration and invasion abilities of normoxic CRC cells. Inhibition of exosome secretion by GW4869 reduced hypoxic exosome-mediated migration and invasion of normoxic CRC cells. Furthermore, we found that these hypoxic exosomes contained Wnt4 depending on HIF1α. Exosomal Wnt4 mediated hypoxic exosome-mediated migration and invasion of normoxic CRC cells. Moreover, exosomal Wnt4 enhanced β-catenin translocation to the nucleus in normoxic CRC cells. The activation of β-catenin signalling was important for the migration and invasion of normoxic CRC cells, which was eliminated by treatment with the β-catenin inhibitor ICG-001. Taken together, the results of our study indicate that hypoxia may stimulate tumour cells to release Wnt4-rich exosomes that are delivered to normoxic cells to enhance prometastatic behaviours, which might provide new targets for CRC treatment.
Collapse
Affiliation(s)
- Zhe Huang
- Department of 11th general surgery, Shengjing Hospital of China medical university, Shenyang, China
| | - Mingli Yang
- Department of 11th general surgery, Shengjing Hospital of China medical university, Shenyang, China
| | - Yunze Li
- Department of 11th general surgery, Shengjing Hospital of China medical university, Shenyang, China
| | - Fan Yang
- Department of 11th general surgery, Shengjing Hospital of China medical university, Shenyang, China
| | - Yong Feng
- Department of 11th general surgery, Shengjing Hospital of China medical university, Shenyang, China
| |
Collapse
|
14
|
Bie Q, Zhang B, Sun C, Ji X, Barnie PA, Qi C, Peng J, Zhang D, Zheng D, Su Z, Wang S, Xu H. IL-17B activated mesenchymal stem cells enhance proliferation and migration of gastric cancer cells. Oncotarget 2017; 8:18914-18923. [PMID: 28145881 PMCID: PMC5386657 DOI: 10.18632/oncotarget.14835] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/17/2017] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells are important cells in tumor microenvironment. We have previously demonstrated that IL-17B/IL-17RB signal promoted progression of gastric cancer. In this study, we further explored the effect of IL-17B on mesenchymal stem cells in tumor microenvironment and its impact on the tumor progression. The results showed that IL-17B induced the expression of stemness-related genes Nanog, Sox2, and Oct4 in mesenchymal stem cells and enhanced its tumor-promoting effect. The supernatant from cultured mesenchymal stem cells after treating with exogenous rIL-17B promoted the proliferation and migration of MGC-803, therefor suggesting that rIL-17B might promote mesenchymal stem cells to produce soluble factors. In addition, rIL-17B also activated the NF-κΒ, STAT3, β-catenin pathway in mesenchymal stem cells. Our data revealed a new mechanism that IL-17B enhanced the progression of gastric cancer by activating mesenchymal stem cells.
Collapse
Affiliation(s)
- Qingli Bie
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bin Zhang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Caixia Sun
- Department of Anesthesiology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaoyun Ji
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Prince Amoah Barnie
- Department of Biomedical and Forensic Sciences, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Chen Qi
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jingjing Peng
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Danyi Zhang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Dong Zheng
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhaoliang Su
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shengjun Wang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.,Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Huaxi Xu
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.,Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
15
|
Yang HF, Yu M, Jin HD, Yao JQ, Lu ZL, Yabasin IB, Yan Q, Wen QP. Fentanyl Promotes Breast Cancer Cell Stemness and Epithelial-Mesenchymal Transition by Upregulating α1, 6-Fucosylation via Wnt/β-Catenin Signaling Pathway. Front Physiol 2017; 8:510. [PMID: 28798691 PMCID: PMC5526971 DOI: 10.3389/fphys.2017.00510] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/04/2017] [Indexed: 01/14/2023] Open
Abstract
Cancer pain is a common and severe complication of human breast cancer, and relieving pain is fundamental strategy in the treatment. Fentanyl, as an opioid analgesic, is widely used in breast cancer patients. However, little is known about its effects on stemness and epithelial-mesenchymal transition (EMT) of breast cancer cells. Aberrant protein glycosylation is involved in cancer malignancy. The α1, 6-fucosylation is an important type of glycosylation, and the elevated α1, 6-fucosylation catalyzed by fucosyltransferase VIII (FUT8) is found in many tumors. However, whether 1, 6-fucosylation is involved in regulating stemness and EMT, and stimulated by fentanyl is not clear. In this study, we found that fentanyl induced stemness and EMT in MCF-7 and MDA-MB-231 breast cancer cells by analysis of sphere formation, expression of stemness markers (Sox2, Oct4) and EMT markers (N-cadherin, E-cadherin and Vimentin). Results also showed that fentanyl upregulated FUT8 gene and protein expression by qPCR, Western blot and immunofluorescent staining, as well as α1, 6-fucosylation level by Lectin blot and Lectin fluorescent staining. Furthermore, decreased or blocked α1, 6-fucosylation by FUT8 siRNA transfection or LCA Lectin blockage reduced stemness and EMT. Additionally, fentanyl activated the key molecules and target genes in Wnt/β-catenin signaling pathway. LGK-974 (an inhibitor of Wnt ligands) suppressed fentanyl-mediated upregulation of α1, 6-fucosylation, stemness and EMT. The results of tumor xenograft demonstrated that fentanyl enhanced tumor growth, α1, 6-fucosylation, stemness and EMT. Taken together, our study reveals that fentanyl upregulated FUT8 expression, which increased α1, 6-fucosylation level through activation of Wnt/β-catenin signaling pathway, thereby, induce stemness and EMT of breast cancer cells. This study suggest a potential side effect of fentanyl in the treatment of cancer, which may guide the safety of fentanyl in the clinical application.
Collapse
Affiliation(s)
- Hong-Fang Yang
- Department of Anesthesiology, First Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Ming Yu
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Department of Biochemistry and Molecular Biology, Dalian Medical UniversityDalian, China
| | - Hui-Dan Jin
- Department of Anesthesiology, First Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Jia-Qi Yao
- Department of Anesthesiology, Affiliated Xinhua Hospital of Dalian UniversityDalian, China
| | - Zhi-Li Lu
- Department of Anesthesiology, First Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Iddrisu B Yabasin
- Department of Anesthesiology, First Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Qiu Yan
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Department of Biochemistry and Molecular Biology, Dalian Medical UniversityDalian, China
| | - Qing-Ping Wen
- Department of Anesthesiology, First Affiliated Hospital of Dalian Medical UniversityDalian, China
| |
Collapse
|
16
|
Shi H, Xu X, Zhang B, Xu J, Pan Z, Gong A, Zhang X, Li R, Sun Y, Yan Y, Mao F, Qian H, Xu W. 3,3'-Diindolylmethane stimulates exosomal Wnt11 autocrine signaling in human umbilical cord mesenchymal stem cells to enhance wound healing. Theranostics 2017; 7:1674-1688. [PMID: 28529644 PMCID: PMC5436520 DOI: 10.7150/thno.18082] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/23/2017] [Indexed: 12/13/2022] Open
Abstract
Human umbilical cord-derived mesenchymal stem cells (hucMSCs) are suggested as a promising therapeutic tool in regenerative medicine, however, their efficacy requires improvement. Small molecules and drugs come up to be a convenient strategy in regulating stem cells fate and function. Here, we evaluated 3,3'-diindolylmethane (DIM), a natural small-molecule compound involved in the repairing effects of hucMSCs on a deep second-degree burn injury rat model. HucMSCs primed with 50 μM of DIM exhibited desirable repairing effects compared with untreated hucMSCs. DIM enhanced the stemness of hucMSCs, which was related to the activation of Wnt/β-catenin signaling. β-catenin inhibition impaired the healing effects of DIM-primed hucMSCs (DIM-hucMSCs) in vivo. Moreover, we demonstrated that DIM upregulated Wnt11 expression in hucMSC-derived exosomes. Wnt11 knockdown inhibited β-catenin activation and stemness induction in DIM-hucMSCs and abrogated their therapeutic effects in vivo. Thus, our findings indicate that DIM promotes the stemness of hucMSCs through increased exosomal Wnt11 autocrine signaling, which provides a novel strategy for improving the therapeutic effects of hucMSCs on wound healing.
Collapse
Affiliation(s)
- Hui Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiao Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Bin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiahao Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhaoji Pan
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Aihua Gong
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Rong Li
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yaoxiang Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yongmin Yan
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Fei Mao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
17
|
Fu Y, Li H, Hao X. The self-renewal signaling pathways utilized by gastric cancer stem cells. Tumour Biol 2017; 39:1010428317697577. [DOI: 10.1177/1010428317697577] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is a leading cause of cancer-related mortality worldwide. Cancer stem cells are the source of tumor recurrence and metastasis. Self-renewal is a marker of cancer stem cells and also the basis of long-lasting survival and tumor progression. Although the mechanism of gastric cancer stem cell self-renewal is not clear, there are several signaling pathways and environmental factors known to be involved. This mini review describes recent developments in the self-renewal signaling pathway of gastric cancer stem cell research. Advancements made in this field of research will likely support the development of novel therapeutic strategies for gastric cancer.
Collapse
Affiliation(s)
- Ying Fu
- Department of Gastrointestinal Cancer Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
| | - Hui Li
- Department of Gastrointestinal Cancer Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
| | - Xishan Hao
- Department of Gastrointestinal Cancer Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
| |
Collapse
|
18
|
Huang Z, Feng Y. Exosomes Derived From Hypoxic Colorectal Cancer Cells Promote Angiogenesis Through Wnt4-Induced β-Catenin Signaling in Endothelial Cells. Oncol Res 2016; 25:651-661. [PMID: 27712599 PMCID: PMC7841118 DOI: 10.3727/096504016x14752792816791] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cancer cell-derived exosomes have been actively released into the tumor microenvironment with pleiotropic roles in tumor growth and metastasis, including angiogenesis and immune modulation. However, the functions and underlying mechanisms of exosomes shed by colorectal cancer (CRC) cells under hypoxic conditions remain unknown. Here we found that exosomes derived from hypoxic CRC cells promoted the proliferation and migration of endothelial cells. Suppression of exosome secretion through RAB27a knockdown in CRC cells inhibited exosomal-induced proliferation and migration of endothelial cells. Furthermore, we discovered that these exosomes enriched with Wnt4 were dependent on HIF1α. Exosomal Wnt4 increased β-catenin nuclear translocation in endothelial cells. The induction of β-catenin signaling is critical for the proliferation and migration of endothelial cells, which could be abolished by the inhibitor ICG001. The in vivo animal study further revealed the tumor-promoting effects of CRC cell-derived exosomes with enhanced tumor growth and angiogenesis. Taken together, our study indicates that CRC cells promote angiogenesis through exosome-mediated Wnt/β-catenin signaling in endothelial cells under hypoxia, which might be a new mechanism in CRC development.
Collapse
|
19
|
Kim SM. Cellular and Molecular Mechanisms of 3,3'-Diindolylmethane in Gastrointestinal Cancer. Int J Mol Sci 2016; 17:ijms17071155. [PMID: 27447608 PMCID: PMC4964527 DOI: 10.3390/ijms17071155] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 12/18/2022] Open
Abstract
Studies in humans have shown that 3,3′-diindolylmethane (DIM), which is found in cruciferous vegetables, such as cabbage and broccoli, is effective in the attenuation of gastrointestinal cancers. This review presents the latest findings on the use, targets, and modes of action of DIM for the treatment of human gastrointestinal cancers. DIM acts upon several cellular and molecular processes in gastrointestinal cancer cells, including apoptosis, autophagy, invasion, cell cycle regulation, metastasis, angiogenesis, and endoplasmic reticulum (ER) stress. In addition, DIM increases the efficacy of other drugs or therapeutic chemicals when used in combinatorial treatment for gastrointestinal cancer. The studies to date offer strong evidence to support the use of DIM as an anticancer and therapeutic agent for gastrointestinal cancer. Therefore, this review provides a comprehensive understanding of the preventive and therapeutic properties of DIM in addition to its different perspective on the safety of DIM in clinical applications for the treatment of gastrointestinal cancers.
Collapse
Affiliation(s)
- Soo Mi Kim
- Department of Physiology, Chonbuk National University Medical School, Jeonju 561-180, Korea.
| |
Collapse
|