1
|
Ruan C, Zhang J, Liao Y, Hang Y, Dong Y, Shi H, Wang X. CXCR4 expression in immunohistochemistry of gastrointestinal neuroendocrine neoplasms: a meta-analysis. J Immunoassay Immunochem 2025; 46:209-217. [PMID: 40125935 DOI: 10.1080/15321819.2025.2482642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
OBJECTIVE C-X-C chemokine receptor type 4 (CXCR4) is significantly associated with the development of various malignant tumors. This meta-analysis aims to investigate the expression of CXCR4 in the immunohistochemistry of gastrointestinal neuroendocrine neoplasms (GI-NENs). METHODS A comprehensive literature search regarding gastrointestinal neuroendocrine neoplasms and CXCR4 was conducted using PubMed,Web of Science, and the Cochrane Library, with a cut off date of June 30, 2024.Two researchers independently screened the literature according to inclusion and exclusion criteria and assessed study quality using the Newcastle-OttawaScale. Meta-analysis was performed using Stata version 17.0. The pooled positive rate was employed to evaluate the expression of CXCR4 in the immunohistochemistry of GI-NENs. RESULTS A total of eight studies involving 501 patients were included in this research. The immunohistochemical analysis revealed positive CXCR4 expression in 174 patients. The meta-analysis calculated and summarized the combined positive rate (R: 0.41; 95% CI = 0.21-0.60, p = 0.00), indicating that the differences were statistically significant. CONCLUSION CXCR4 is highly expressed in the immunohistochemistry of GI-NENs, which may provide some evidence for the therapeutic application of CXCR4 antagonists in treating neuroendocrine neoplasms.
Collapse
Affiliation(s)
- Changlong Ruan
- Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Jiajia Zhang
- Nursing Department, Yunxi County People's Hospital, Shiyan, Hubei, China
| | - Yingying Liao
- Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yujie Hang
- Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yuan Dong
- Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Hanfeng Shi
- Department of Gastroenterology, Danjiangkou Municipal First Hospital, Shiyan, Hubei, China
| | - Xiaoya Wang
- Department of Cardiology,Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
2
|
Sanchis-Pascual D, Del Olmo-García MI, Prado-Wohlwend S, Zac-Romero C, Segura Huerta Á, Hernández-Gil J, Martí-Bonmatí L, Merino-Torres JF. CXCR4: From Signaling to Clinical Applications in Neuroendocrine Neoplasms. Cancers (Basel) 2024; 16:1799. [PMID: 38791878 PMCID: PMC11120359 DOI: 10.3390/cancers16101799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
There are several well-described molecular mechanisms that influence cell growth and are related to the development of cancer. Chemokines constitute a fundamental element that is not only involved in local growth but also affects angiogenesis, tumor spread, and metastatic disease. Among them, the C-X-C motif chemokine ligand 12 (CXCL12) and its specific receptor the chemokine C-X-C motif receptor 4 (CXCR4) have been widely studied. The overexpression in cell membranes of CXCR4 has been shown to be associated with the development of different kinds of histological malignancies, such as adenocarcinomas, epidermoid carcinomas, mesenchymal tumors, or neuroendocrine neoplasms (NENs). The molecular synapsis between CXCL12 and CXCR4 leads to the interaction of G proteins and the activation of different intracellular signaling pathways in both gastroenteropancreatic (GEP) and bronchopulmonary (BP) NENs, conferring greater capacity for locoregional aggressiveness, the epithelial-mesenchymal transition (EMT), and the appearance of metastases. Therefore, it has been hypothesized as to how to design tools that target this receptor. The aim of this review is to focus on current knowledge of the relationship between CXCR4 and NENs, with a special emphasis on diagnostic and therapeutic molecular targets.
Collapse
Affiliation(s)
- David Sanchis-Pascual
- Endocrinology and Nutrition Department, University and Politecnic Hospital La Fe (Valencia), 46026 Valencia, Spain; (M.I.D.O.-G.); (J.F.M.-T.)
| | - María Isabel Del Olmo-García
- Endocrinology and Nutrition Department, University and Politecnic Hospital La Fe (Valencia), 46026 Valencia, Spain; (M.I.D.O.-G.); (J.F.M.-T.)
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Stefan Prado-Wohlwend
- Nuclear Medicine Department, University and Politecnic Hospital La Fe (Valencia), 46026 Valencia, Spain;
| | - Carlos Zac-Romero
- Patholoy Department, University and Politecnic Hospital La Fe (Valencia), 46026 Valencia, Spain;
| | - Ángel Segura Huerta
- Medical Oncology Department, University and Politecnic Hospital La Fe (Valencia), 46026 Valencia, Spain;
| | - Javier Hernández-Gil
- Instituto de Tecnología Química, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain;
| | - Luis Martí-Bonmatí
- Medical Imaging Department, Biomedical Imaging Research Group, Health Research Institute, University and Politecnic Hospital La Fe, 46026 Valencia, Spain;
| | - Juan Francisco Merino-Torres
- Endocrinology and Nutrition Department, University and Politecnic Hospital La Fe (Valencia), 46026 Valencia, Spain; (M.I.D.O.-G.); (J.F.M.-T.)
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, 46026 Valencia, Spain
- Department of Medicine, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
3
|
Pang C, Li Y, Shi M, Fan Z, Gao X, Meng Y, Liu S, Gao C, Su P, Wang X, Zhan H. Expression and clinical value of CXCR4 in high grade gastroenteropancreatic neuroendocrine neoplasms. Front Endocrinol (Lausanne) 2024; 15:1281622. [PMID: 38524630 PMCID: PMC10960360 DOI: 10.3389/fendo.2024.1281622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/23/2024] [Indexed: 03/26/2024] Open
Abstract
Background CXC chemokine receptor 4 (CXCR4) is associated with the progression and metastasis of numerous malignant tumors. However, its relationship with Gastroenteropancreatic Neuroendocrine Neoplasms Grade 3 (GEP-NENs G3) is unclear. The aim of this study was to characterize the expression of CXCR4 in GEP-NENS and to explore the clinical and prognostic value of CXCR4. Methods This study retrospectively collected clinical and pathological data from patients with GEP-NENs who receiving surgery in Qilu Hospital of Shandong University from January 2013 to April 2021, and obtained the overall survival of the patients based on follow-up. Immunohistochemistry (IHC) was performed on pathological paraffin sections to observe CXCR4 staining. Groups were made according to pathological findings. Kaplan-Meier (K-M) curve was used to evaluate prognosis. SPSS 26.0 was used for statistical analysis. Results 100 GEP-NENs G3 patients were enrolled in this study. There was a significant difference in primary sites (P=0.002), Ki-67 index (P<0.001), and Carcinoembryonic Antigen (CEA) elevation (P=0.008) between neuroendocrine tumor (NET) G3 and neuroendocrine carcinoma (NEC). CXCR4 was highly expressed only in tumors, low or no expressed in adjacent tissues (P<0.001). The expression level of CXCR4 in NEC was significantly higher than that in NET G3 (P=0.038). The K-M curves showed that there was no significant difference in overall survival between patients with high CXCR4 expression and patients with low CXCR4 expression, either in GEP-NEN G3 or NEC (P=0.920, P=0.842. respectively). Conclusion Differential expression of CXCR4 was found between tumor and adjacent tissues and between NET G3 and NEC. Our results demonstrated that CXCR4 can be served as a new IHC diagnostic indicator in the diagnosis and differential diagnosis of GEP-NENs G3. Further studies with multi-center, large sample size and longer follow-up are needed to confirm the correlation between CXCR4 expression level and prognosis.
Collapse
Affiliation(s)
- Chaoyu Pang
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yongzheng Li
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ming Shi
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zhiyao Fan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xin Gao
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yufan Meng
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shujie Liu
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Changhao Gao
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Peng Su
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiao Wang
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Hanxiang Zhan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
4
|
Mechanisms of Resistance in Gastroenteropancreatic Neuroendocrine Tumors. Cancers (Basel) 2022; 14:cancers14246114. [PMID: 36551599 PMCID: PMC9776394 DOI: 10.3390/cancers14246114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Gastroenteropancreatic neuroendocrine tumors (GEP-NETs), although curable when localized, frequently metastasize and require management with systemic therapies, including somatostatin analogues, peptide receptor radiotherapy, small-molecule targeted therapies, and chemotherapy. Although effective for disease control, these therapies eventually fail as a result of primary or secondary resistance. For small-molecule targeted therapies, the feedback activation of the targeted signaling pathways and activation of alternative pathways are prominent mechanisms, whereas the acquisition of additional genetic alterations only rarely occurs. For somatostatin receptor (SSTR)-targeted therapy, the heterogeneity of tumor SSTR expression and dedifferentiation with a downregulated expression of SSTR likely predominate. Hypoxia in the tumor microenvironment and stromal constituents contribute to resistance to all modalities. Current studies on mechanisms underlying therapeutic resistance and options for management in human GEP-NETs are scant; however, preclinical and early-phase human studies have suggested that combination therapy targeting multiple pathways or novel tyrosine kinase inhibitors with broader kinase inhibition may be promising.
Collapse
|
5
|
Weich A, Werner RA, Buck AK, Hartrampf PE, Serfling SE, Scheurlen M, Wester HJ, Meining A, Kircher S, Higuchi T, Pomper MG, Rowe SP, Lapa C, Kircher M. CXCR4-Directed PET/CT in Patients with Newly Diagnosed Neuroendocrine Carcinomas. Diagnostics (Basel) 2021; 11:diagnostics11040605. [PMID: 33805264 PMCID: PMC8067200 DOI: 10.3390/diagnostics11040605] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 01/29/2023] Open
Abstract
We aimed to elucidate the diagnostic potential of the C-X-C motif chemokine receptor 4 (CXCR4)-directed positron emission tomography (PET) tracer 68Ga-Pentixafor in patients with poorly differentiated neuroendocrine carcinomas (NEC), relative to the established reference standard 18F-FDG PET/computed tomography (CT). In our database, we retrospectively identified 11 treatment-naïve patients with histologically proven NEC, who underwent 18F-FDG and CXCR4-directed PET/CT for staging and therapy planning. The images were analyzed on a per-patient and per-lesion basis and compared to immunohistochemical staining (IHC) of CXCR4 from PET-guided biopsies. 68Ga-Pentixafor visualized tumor lesions in 10/11 subjects, while18F-FDG revealed sites of disease in all 11 patients. Although weak to moderate CXCR4 expression could be corroborated by IHC in 10/11 cases, 18F-FDG PET/CT detected significantly more tumor lesions (102 vs. 42; total lesions, n = 107; p < 0.001). Semi-quantitative analysis revealed markedly higher 18F-FDG uptake as compared to 68Ga-Pentixafor (maximum and mean standardized uptake values (SUV) and tumor-to-background ratios (TBR) of cancerous lesions, SUVmax: 12.8 ± 9.8 vs. 5.2 ± 3.7; SUVmean: 7.4 ± 5.4 vs. 3.1 ± 3.2, p < 0.001; and, TBR 7.2 ± 7.9 vs. 3.4 ± 3.0, p < 0.001). Non-invasive imaging of CXCR4 expression in NEC is inferior to the reference standard 18F-FDG PET/CT.
Collapse
Affiliation(s)
- Alexander Weich
- Department of Internal Medicine I, Gastroenterology, University Hospital Würzburg, 97080 Würzburg, Germany; (A.W.); (M.S.); (A.M.)
- European Neuroendocrine Tumor Society (ENETS) Center of Excellence, NET Zentrum, University Hospital Würzburg, 97080 Würzburg, Germany; (R.A.W.); (A.K.B.); (C.L.)
| | - Rudolf A. Werner
- European Neuroendocrine Tumor Society (ENETS) Center of Excellence, NET Zentrum, University Hospital Würzburg, 97080 Würzburg, Germany; (R.A.W.); (A.K.B.); (C.L.)
- Department of Nuclear Medicine, University Hospital Würzburg, 97080 Würzburg, Germany; (P.E.H.); (S.E.S.); (T.H.)
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (M.G.P.); (S.P.R.)
| | - Andreas K. Buck
- European Neuroendocrine Tumor Society (ENETS) Center of Excellence, NET Zentrum, University Hospital Würzburg, 97080 Würzburg, Germany; (R.A.W.); (A.K.B.); (C.L.)
- Department of Nuclear Medicine, University Hospital Würzburg, 97080 Würzburg, Germany; (P.E.H.); (S.E.S.); (T.H.)
| | - Philipp E. Hartrampf
- Department of Nuclear Medicine, University Hospital Würzburg, 97080 Würzburg, Germany; (P.E.H.); (S.E.S.); (T.H.)
| | - Sebastian E. Serfling
- Department of Nuclear Medicine, University Hospital Würzburg, 97080 Würzburg, Germany; (P.E.H.); (S.E.S.); (T.H.)
| | - Michael Scheurlen
- Department of Internal Medicine I, Gastroenterology, University Hospital Würzburg, 97080 Würzburg, Germany; (A.W.); (M.S.); (A.M.)
- European Neuroendocrine Tumor Society (ENETS) Center of Excellence, NET Zentrum, University Hospital Würzburg, 97080 Würzburg, Germany; (R.A.W.); (A.K.B.); (C.L.)
| | - Hans-Jürgen Wester
- Pharmaceutical Radiochemistry, Technische Universität München, 80333 München, Germany;
| | - Alexander Meining
- Department of Internal Medicine I, Gastroenterology, University Hospital Würzburg, 97080 Würzburg, Germany; (A.W.); (M.S.); (A.M.)
- European Neuroendocrine Tumor Society (ENETS) Center of Excellence, NET Zentrum, University Hospital Würzburg, 97080 Würzburg, Germany; (R.A.W.); (A.K.B.); (C.L.)
| | - Stefan Kircher
- Institute of Pathology, University of Würzburg, 97080 Würzburg, Germany;
| | - Takahiro Higuchi
- Department of Nuclear Medicine, University Hospital Würzburg, 97080 Würzburg, Germany; (P.E.H.); (S.E.S.); (T.H.)
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
- Comprehensive Heart Failure Center, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Martin G. Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (M.G.P.); (S.P.R.)
| | - Steven P. Rowe
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (M.G.P.); (S.P.R.)
| | - Constantin Lapa
- European Neuroendocrine Tumor Society (ENETS) Center of Excellence, NET Zentrum, University Hospital Würzburg, 97080 Würzburg, Germany; (R.A.W.); (A.K.B.); (C.L.)
- Department of Nuclear Medicine, University Hospital Würzburg, 97080 Würzburg, Germany; (P.E.H.); (S.E.S.); (T.H.)
- Nuclear Medicine, Medical Faculty, University of Augsburg, 86156 Augsburg, Germany
| | - Malte Kircher
- European Neuroendocrine Tumor Society (ENETS) Center of Excellence, NET Zentrum, University Hospital Würzburg, 97080 Würzburg, Germany; (R.A.W.); (A.K.B.); (C.L.)
- Department of Nuclear Medicine, University Hospital Würzburg, 97080 Würzburg, Germany; (P.E.H.); (S.E.S.); (T.H.)
- Nuclear Medicine, Medical Faculty, University of Augsburg, 86156 Augsburg, Germany
- Correspondence:
| |
Collapse
|
6
|
Popa O, Tăban SM, Dema ALC, Plopeanu AD, Barna RA, Cornianu M, Dema S. Immunohistochemical expression of chemokine receptor in neuroendocrine neoplasms (CXCR4) of the gastrointestinal tract: a retrospective study of 71 cases. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2021; 62:151-157. [PMID: 34609417 PMCID: PMC8597374 DOI: 10.47162/rjme.62.1.14] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022]
Abstract
AIM C-X-C motif chemokine receptor 4 (CXCR4) is expressed in many tumor entities, including gastrointestinal neuroendocrine neoplasms (GI-NENs). However, the role of CXCR4 expression in GI-NENs has been less studied. Our objective was to investigate the expression of CXCR4 in a series of GI-NENs with various clinical and pathological features. METHODS The immunohistochemical (IHC) expression of CXCR4 (clone UMB2) was examined in 71 GI-NENs and a semiquantitative immunoreactivity score (IRS) was calculated taking into consideration the intensity of the IHC reaction and the percentage of the tumor cells which showed positive expression. Results were compared with several clinical and pathological prognostic factors. RESULTS High CXCR4 expression was noted in 31 (43.7%) cases. Low IRS values were more frequent in NENs from the small intestine (66.7%) and stomach (60%). Also, all appendix tumors had IRS value of zero. High CXCR4 expression was noticed in 52.5% of liver metastases, compared to 40.4% primary tumors. A significant relationship was observed between the CXCR4 expression and the tumor grade (p=0.0216), and high IRS value was correlated with clinical stages III and IV (p=0.0142) and lympho-vascular invasion (p=0.0129). 74.1% of G1 neuroendocrine tumors (NETs) had a low IRS, G3 NETs showed minor differences between low (42.9%) and high (57.1%) expression and 66.7% of neuroendocrine carcinomas (NECs) presented high expression of CXCR4. CONCLUSIONS The present study highlighted that high CXCR4 expression is associated with high grade and advanced stage GI-NENs, as well as with metastatic cases. In these cases, high CXCR4 expression could serve as an important target for CXCR4 antagonists.
Collapse
Affiliation(s)
- Oana Popa
- Anapatmol Research Center, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania;
| | | | | | | | | | | | | |
Collapse
|
7
|
Jin J, Zhao Q. Emerging role of mTOR in tumor immune contexture: Impact on chemokine-related immune cells migration. Theranostics 2020; 10:6231-6244. [PMID: 32483450 PMCID: PMC7255024 DOI: 10.7150/thno.45219] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/17/2020] [Indexed: 12/27/2022] Open
Abstract
During the last few decades, cell-based anti-tumor immunotherapy emerged and it has provided us with a large amount of knowledge. Upon chemokines recognition, immune cells undergo rapid trafficking and activation in disease milieu, with immune cells chemotaxis being accompanied by activation of diverse intercellular signal transduction pathways. The outcome of chemokines-mediated immune cells chemotaxis interacts with the cue of mammalian target of rapamycin (mTOR) in the tumor microenvironment (TME). Indeed, the mTOR cascade in immune cells involves migration and infiltration. In this review, we summarize the available mTOR-related chemokines, as well as the characterized upstream regulators and downstream targets in immune cells chemotaxis and assign potential underlying mechanisms in each evaluated chemokine. Specifically, we focus on the involvement of mTOR in chemokine-mediated immune related cells in the balance between tumor immunity and malignancy.
Collapse
Affiliation(s)
- Jing Jin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qijie Zhao
- Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, 646000, Sichuan, PR China
- Department of Pathophysiology, College of Basic Medical Science, Southwest Medical University, Luzhou, 646000, Sichuan, PR China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, PR China
| |
Collapse
|
8
|
Yazdani Z, Mousavi Z, Moradabadi A, Hassanshahi G. Significance of CXCL12/CXCR4 Ligand/Receptor Axis in Various Aspects of Acute Myeloid Leukemia. Cancer Manag Res 2020; 12:2155-2165. [PMID: 32273755 PMCID: PMC7102884 DOI: 10.2147/cmar.s234883] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 03/03/2020] [Indexed: 12/11/2022] Open
Abstract
Acute myeloid leukemia (AML) is defined as an aggressive disorder which is described by accumulation of immature malignant cells into the bone marrow. Chemokine-receptor axes are defined as factors involved in AML pathogenesis and prognosis. The chemokine receptor CXCR4 along with its ligand, CXCL12 fit in important players that are actively involved in the cross-talk between leukemia cells and bone marrow microenvironment. Therefore, according to the above introductory comments, in this review article, we have focused on delineating some parts played by CXCL12/CXCR4 axis in various aspects of AML malignancy. Targeting both leukemic and stromal cell interaction is nowadays accepted as a wide and attractive strategy for improving the outcome of treatment in AML in a non-cell autonomous manner. This strategy might be employed in a wide variety of AML patients regardless of their causative mutations. In addition to several potential targets involved in the disruption of malignant leukemic cells from their specific protective niches, compounds which interfere with CXCL12/CXCR4 axis have also been explored in multiple early-phase established clinical trials. Moreover, extensive research programs are exploring novel leading mechanisms for leukemia-stromal interactions that appear to find out novel therapeutic targets within the near future.
Collapse
Affiliation(s)
- Zinat Yazdani
- Department of Hematology and Blood Banking, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Mousavi
- Department of Hematology and Medical Laboratory Sciences, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Alireza Moradabadi
- Department of Hematology and Blood Banking, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamhossein Hassanshahi
- Department of Hematology and Blood Banking, Kerman University of Medical Sciences, Kerman, Iran.,Molecular Medicine Research Center, Institute of Basic Medical Sciences Research, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
9
|
Wang Y, Zhao L, Han X, Wang Y, Mi J, Wang C, Sun D, Fu Y, Zhao X, Guo H, Wang Q. Saikosaponin A Inhibits Triple-Negative Breast Cancer Growth and Metastasis Through Downregulation of CXCR4. Front Oncol 2020; 9:1487. [PMID: 32047724 PMCID: PMC6997291 DOI: 10.3389/fonc.2019.01487] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/11/2019] [Indexed: 12/21/2022] Open
Abstract
Purpose: Due to a lack of recognized molecular targets for therapy, patients with triple-negative breast cancer (TNBC), unlike other subtypes of breast cancers, generally have not benefited from the advances made with targeted agents. The CXCR4/SDF-1 axis is involved in tumor growth and metastasis of TNBC. Therefore, down-regulation of the expression of CXCR4 in cancer cells is a potential therapeutic strategy for inhibiting primary tumor growth and metastasis of TNBC. In order to identify bioactive compounds that inhibit the expression of CXCR4 in traditional Chinese medicines, we investigated the capacity of saikosaponin A (SSA), one of the active ingredients isolated from Radix bupleuri, to affect CXCR4 expression and function in TNBC cells. Methods: Analyses of cell growth, migration, invasion, and protein expression were performed. Knockdowns by small interfering RNA (siRNA) and non-invasive bioluminescence were also used. Results: SSA reduced proliferation and colony formation of SUM149 and MDA-MB-231 cells. SSA inhibited migration and invasion of TNBC cells. For mice, SSA inhibited primary tumor growth and reduced lung metastasis of highly metastatic, triple-negative 4T1-luc cells. SSA inhibited CXCR4 expression but did not regulate CXCR7 expression in vitro and in vivo. The inhibitory effects on the migration and invasion of TNBC cells were reversed by down-regulation of CXCR4 expression. In addition, SSA inactivated the Akt/mTOR signaling pathway and inhibited MMP-9 and MMP-2 expression. Conclusions: The results show that SSA exerts an anti-TNBC effect through the inhibition of CXCR4 expression and thus has the potential to be a candidate therapeutic agent for TNBC patients.
Collapse
Affiliation(s)
- Ying Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liang Zhao
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Shanghai, China
| | - Xianghui Han
- Institute of Chinese Traditional Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yahui Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinxia Mi
- Science and Technology Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
| | - Yunfei Fu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaodong Zhao
- Department of Pathology, National Shanghai Center for New Drug Safety Evaluation and Research, Shanghai, China
| | - Haidong Guo
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiangli Wang
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Altieri B, Di Dato C, Martini C, Sciammarella C, Di Sarno A, Colao A, Faggiano A. Bone Metastases in Neuroendocrine Neoplasms: From Pathogenesis to Clinical Management. Cancers (Basel) 2019; 11:cancers11091332. [PMID: 31500357 PMCID: PMC6770134 DOI: 10.3390/cancers11091332] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/28/2019] [Accepted: 09/05/2019] [Indexed: 12/20/2022] Open
Abstract
Bone represents a common site of metastases for several solid tumors. However, the ability of neuroendocrine neoplasms (NENs) to localize to bone has always been considered a rare and late event. Thanks to the improvement of therapeutic options, which results in longer survival, and of imaging techniques, particularly after the introduction of positron emission tomography (PET) with gallium peptides, the diagnosis of bone metastases (BMs) in NENs is increasing. The onset of BMs can be associated with severe skeletal complications that impair the patient’s quality of life. Moreover, BMs negatively affect the prognosis of NEN patients, bringing out the lack of curative treatment options for advanced NENs. The current knowledge on BMs in gastro-entero-pancreatic (GEP) and bronchopulmonary (BP) NENs is still scant and is derived from a few retrospective studies and case reports. This review aims to perform a critical analysis of the evidence regarding the role of BMs in GEP- and BP-NENs, focusing on the molecular mechanisms underlining the development of BMs, as well as clinical presentation, diagnosis, and treatment of BMs, in an attempt to provide suggestions that can be used in clinical practice.
Collapse
Affiliation(s)
- Barbara Altieri
- Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy.
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, 97080 Wuerzburg, Germany.
| | - Carla Di Dato
- Department of Clinical Medicine, Bufalini Hospital, 47521 Cesena, Italy.
| | - Chiara Martini
- Clinica Medica 3, Department of Medicine, DIMED, University of Padova, 35128 Padova, Italy.
| | - Concetta Sciammarella
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37126 Verona, Italy.
| | | | - Annamaria Colao
- Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy.
| | - Antongiulio Faggiano
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| |
Collapse
|
11
|
Different somatostatin and CXCR4 chemokine receptor expression in gastroenteropancreatic neuroendocrine neoplasms depending on their origin. Sci Rep 2019; 9:4339. [PMID: 30867449 PMCID: PMC6416272 DOI: 10.1038/s41598-019-39607-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/28/2019] [Indexed: 12/12/2022] Open
Abstract
Somatostatin receptors (SST), especially SST2A, are known for their overexpression in well-differentiated gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN). The chemokine receptor CXCR4, in contrast, is considered to be present mainly in highly proliferative and advanced tumors. However, comprehensive data are still lacking on potential differences in SST or CXCR4 expression pattern in GEP-NEN in dependence on the place of origin. Overall, 412 samples from 165 GEP-NEN patients, comprising both primary tumors (PT) and metastases (MTS), originating from different parts of the gastrointestinal tract or the pancreas were evaluated for SST and CXCR4 expression by means of immunohistochemistry using monoclonal antibodies. SST2A was present in 85% of PT with a high intensity of expression, followed by SST5 (23%), CXCR4 (21%), SST3 (10%), SST1 (9%), and SST4 (4%). PT displayed higher SST2A and chromogranin A (CgA) expression levels than MTS. In both PT and MTS lower SST2A and CgA expression levels were found in tumors originating from the appendix or colon, compared to tumors from other origins. Tumors derived from appendix or colon were associated with significantly worse patient outcomes. Positive correlations were noted between SST2A and CgA as well as between CXCR4 and Ki-67 expression levels. SST2A and CgA negativity of the tumors was significantly associated with poor patient outcomes. All in all, SST2A was the most prominent receptor expressed in the GEP-NEN samples investigated. However, expression levels varied considerably depending on the location of the primary tumor.
Collapse
|
12
|
Rizzo FM, Vesely C, Childs A, Marafioti T, Khan MS, Mandair D, Cives M, Ensell L, Lowe H, Akarca AU, Luong T, Caplin M, Toumpanakis C, Krell D, Thirlwell C, Silvestris F, Hartley JA, Meyer T. Circulating tumour cells and their association with bone metastases in patients with neuroendocrine tumours. Br J Cancer 2019; 120:294-300. [PMID: 30636773 PMCID: PMC6353867 DOI: 10.1038/s41416-018-0367-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/26/2018] [Accepted: 12/04/2018] [Indexed: 02/03/2023] Open
Abstract
Background Bone metastases are associated with a worse outcome in patients with neuroendocrine tumours (NETs). Tumour overexpression of C-X-C chemokine receptor 4 (CXCR4) appears predictive of skeletal involvement. We investigated the role of circulating tumour cells (CTCs) and CXCR4 expression on CTCs as potential predictors of skeleton invasion. Methods Blood from patients with metastatic bronchial, midgut or pancreatic NET (pNET) was analysed by CellSearch. CXCR4 immunohistochemistry was performed on matched formalin-fixed paraffin-embedded (FFPE) samples. Results Two hundred and fifty-four patients were recruited with 121 midgut and 119 pNETs, of which 51 and 36% had detectable CTCs, respectively. Bone metastases were reported in 30% of midgut and 23% of pNET patients and were significantly associated with CTC presence (p = 0.003 and p < 0.0001). In a subgroup of 40 patients, 85% patients with CTCs had CTCs positive for CXCR4 expression. The proportion of CXCR4-positive CTCs in patients with bone metastases was 56% compared to 35% in those without (p = 0.18) it. Staining for CXCR4 on matched FFPE tissue showed a trend towards a correlation with CXCR4 expression on CTCs (p = 0.08). Conclusions CTC presence is associated with bone metastases in NETs. CXCR4 may be involved in CTC osteotropism and present a therapeutic target to reduce skeletal morbidity.
Collapse
Affiliation(s)
- Francesca M Rizzo
- Department of Oncology, UCL Cancer Institute, University College London, London, UK
| | - Clare Vesely
- Department of Oncology, UCL Cancer Institute, University College London, London, UK
| | - Alexa Childs
- Department of Oncology, UCL Cancer Institute, University College London, London, UK
| | - Teresa Marafioti
- Department of Pathology, UCL Cancer Institute, University College London, London, UK
| | - Mohid S Khan
- Wales Neuroendocrine Tumour Service, Department of Gastroenterology, University Hospital of Wales, Cardiff, UK
| | - Dalvinder Mandair
- Neuroendocrine Tumour Unit, Department of Gastroenterology, ENETS Centre of Excellence, Royal Free London NHS Foundation Trust, London, UK
| | - Mauro Cives
- Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro", Bari, Italy
| | - Leah Ensell
- Department of Oncology, UCL Cancer Institute, University College London, London, UK
| | - Helen Lowe
- Department of Oncology, UCL Cancer Institute, University College London, London, UK
| | - Ayse U Akarca
- Department of Pathology, UCL Cancer Institute, University College London, London, UK
| | - TuVinh Luong
- Department of Histopathology, Royal Free London NHS Foundation Trust, London, UK
| | - Martyn Caplin
- Neuroendocrine Tumour Unit, Department of Gastroenterology, ENETS Centre of Excellence, Royal Free London NHS Foundation Trust, London, UK
| | - Christos Toumpanakis
- Neuroendocrine Tumour Unit, Department of Gastroenterology, ENETS Centre of Excellence, Royal Free London NHS Foundation Trust, London, UK
| | - Daniel Krell
- Neuroendocrine Tumour Unit, Department of Oncology, ENETS Centre of Excellence, Royal Free London NHS Foundation Trust, London, UK
| | - Christina Thirlwell
- Department of Oncology, UCL Cancer Institute, University College London, London, UK.,Neuroendocrine Tumour Unit, Department of Oncology, ENETS Centre of Excellence, Royal Free London NHS Foundation Trust, London, UK
| | - Franco Silvestris
- Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro", Bari, Italy
| | - John A Hartley
- Department of Oncology, UCL Cancer Institute, University College London, London, UK
| | - Tim Meyer
- Department of Oncology, UCL Cancer Institute, University College London, London, UK. .,Neuroendocrine Tumour Unit, Department of Oncology, ENETS Centre of Excellence, Royal Free London NHS Foundation Trust, London, UK.
| |
Collapse
|
13
|
Fricker SP, Sprott K, Spyra M, Uhlig P, Lange N, David K, Wang Y. Characterization and Validation of Antibodies for Immunohistochemical Staining of the Chemokine CXCL12. J Histochem Cytochem 2018; 67:257-266. [PMID: 30562126 DOI: 10.1369/0022155418818788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chemokines and their receptors have been implicated in cancer biology. The CXCL12/CXCR4 axis is essential for the homing and retention of hematopoietic stem cells in bone marrow niches, and has a significant role in neonatal development. It is also implicated in multiple facets of cancer biology including metastasis, angiogenesis/neo-vasculogenesis, and immune cell trafficking at the tumor microenvironment (TME). Immunohistochemistry (IHC) is an ideal method for investigating involvement of CXCL12 in the TME. Three antibodies were evaluated here for their suitability to stain CXCL12. Both D8G6H and K15C gave apparent specific staining in both lymphoid and tumor tissue, but with converse staining patterns. D8G6H stained cells in the parafollicular zone whereas K15C showed staining of lymphoid cells in the interfollicular zone of tonsil tissue. Using a cell line with high CXCL12 expression, TOV21G, as a positive control, it was found that D8G6H gave strong staining of TOV21G cells whereas no staining was observed with K15C indicating that D8G6H specifically stains CXCL12. Significant staining of CXCL12 in the ovarian TME using tissue microarray was observed using D8G6H. These data demonstrate the importance of antibody characterization for IHC applications, and provide further evidence for the involvement of CXCL12 in ovarian cancer biology.
Collapse
Affiliation(s)
| | - Kam Sprott
- X4 Pharmaceuticals, Cambridge, Massachusetts
| | | | | | | | | | - Yan Wang
- X4 Pharmaceuticals, Cambridge, Massachusetts
| |
Collapse
|
14
|
Impact of Nutritional Status on Gastroenteropancreatic Neuroendocrine Tumors (GEP-NET) Aggressiveness. Nutrients 2018; 10:nu10121854. [PMID: 30513732 PMCID: PMC6316835 DOI: 10.3390/nu10121854] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/14/2018] [Accepted: 11/22/2018] [Indexed: 02/07/2023] Open
Abstract
Neuroendocrine tumors (NETs) are rare neoplasms mostly originating from the gastroenteropancreatic tract (GEP-NETs). Data regarding nutritional status in GEP-NET patients are limited. The aim of the study was to investigate the nutritional status and adherence to the Mediterranean Diet (MD) in GEP-NET patients and to correlate them with tumor aggressiveness. A cross-sectional case-control observational study was conducted enrolling 83 patients with well-differentiated G1/G2 GEP-NETs after resection, as well as 83 healthy subjects, age, sex and body mass index-matched. Nutritional status was assessed by evaluating with Bioelectrical Impedance analysis and its phase angle (PhA), adherence to the MD according to PREDIMED score, dietary assessment, anthropometric parameters, and clinico-pathological characteristics. GEP-NET patients consumed less frequently vegetables, fruits, wine, fish/seafood, nuts, and more frequently red/processed meats, butter, cream, margarine, and soda drinks than controls. Patients with more aggressive disease presented a lower adherence to MD according to PREDIMED categories in comparison to G1, localized and free/stable disease status. A smaller PhA value and a lower PREDIMED score were significantly correlated with G2 tumor, metastases, and progressive disease. To the best of our knowledge, this is the first study reporting an association between nutritional status and tumor aggressiveness in a selected group of GEP-NETs. Moreover, higher intakes of food of MD, may represent a potential tool for prevention of tumor aggressiveness. Thus, a skilled nutritionist should be an integral part of the multidisciplinary management of GEP-NET patients.
Collapse
|
15
|
Del Gobbo A, Fusco N, Barella M, Ercoli G, Sciarra A, Palleschi A, Pagni F, Marchiò C, Papotti M, Ferrero S. CXCL12 expression is a bona fide predictor of recurrence in lung neuroendocrine tumours; a multicentric study with emphasis on atypical carcinoids - a short report. Cell Oncol (Dordr) 2018; 41:687-691. [PMID: 30182340 DOI: 10.1007/s13402-018-0401-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2018] [Indexed: 01/24/2023] Open
Abstract
PURPOSE Neuroendocrine tumors of the lung (LNETs) encompass a heterogeneous group of lesions, including tumors with no or low metastatic potential, such as typical (TCs) and atypical (ACs) carcinoids, and highly aggressive neuroendocrine carcinomas. To date, only a few biomarkers with prognostic impact have been identified in LNETs. Previous experimental studies have suggested that the cytokine CXCL12 might have a role in stratifying the outcome of lung cancer as well as LNET patients. However, the reliability of immunohistochemical (IHC) tissue expression of CXCL12 in evaluating the prognosis of resected LNETs is currently not known. METHODS Here, we subjected a cohort of 112 resected LNETs specifically enriched for ACs to IHC for CXCL12 and Ki67 using routine procedures. The clinical value of CXCL12 was assessed by applying the Cox proportional-hazards model to overall and disease-free survival rates. RESULTS We found that CXCL12 was expressed in 8.3 to 38% of LNETs, depending on the different diagnostic categories. Upon survival analysis, when considering the whole cohort, we found that CXCL12-positive cases exhibited shorter disease-free survival rates compared to CXCL12-negative cases. Among ACs, tumors overexpressing CXCL12 showed significantly shorter disease-free survival rates. Finally, we found that the Ki67 index in ACs was higher in the CXCL12-positive cases. CONCLUSION CXCL12 immunohistochemistry may serve as a potentially useful tool to better stratify LNETs, and more specifically ACs, in clinical practice.
Collapse
Affiliation(s)
- Alessandro Del Gobbo
- Division of Pathology, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Nicola Fusco
- Division of Pathology, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy.,Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Milan, Italy
| | - Marco Barella
- Division of Pathology, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy.,School of Medicine, University of Milan, Milan, Italy
| | - Giulia Ercoli
- Division of Pathology, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Amedeo Sciarra
- Division of Pathology, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Alessandro Palleschi
- Department of Thoracic Surgery, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Fabio Pagni
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Caterina Marchiò
- Department of Medical Sciences, University of Turin, Pathology Unit, Città della Salute e della Scienza di Torino, Turin, Italy
| | - Mauro Papotti
- Department of Oncology, University of Turin, Pathology Unit, Città della Salute e della Scienza di Torino, Turin, Italy
| | - Stefano Ferrero
- Division of Pathology, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy. .,Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
16
|
Zhao Q, Zhang P, Qin G, Ren F, Zheng Y, Qiao Y, Sun T, Zhang Y. Role of CXCR7 as a Common Predictor for Prognosis in Solid Tumors: a Meta-Analysis. J Cancer 2018; 9:3138-3148. [PMID: 30210637 PMCID: PMC6134830 DOI: 10.7150/jca.25377] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/07/2018] [Indexed: 01/20/2023] Open
Abstract
Background: Accumulating evidence indicated that the CXC chemokine receptor (CXCR) 7 (CXCR7) was overexpressed in a variety of tumors. However, the value of the CXCR7 expression in predicting prognosis in solid tumors remains controversial. Therefore, we performed this meta-analysis to evaluate the correlation between CXCR7 expression and lymph node metastasis (LNM), tumor pathological grade and survival, including overall survival (OS), disease-free survival (DFS) and recurrence-free survival (RFS). Methods: Eligible studies were searched in PubMed, Web of Science, and PMC up to April 2018. A total of 27 studies were included in this meta-analysis. Odds ratio (OR), hazard ratio (HR) and 95 % confidence intervals (CI) were used as effect measures. Results: The meta-analysis showed that high expression of CXCR7 predicted a high risk of LNM (pooled OR = 2.22, 95%CI: 1.41-3.50), high tumor grade (pooled OR = 1.94, 95%CI: 1.20-3.13), poor OS (pooled HR = 1.66, 95%CI: 1.30-2.03), and poor DFS/RFS (pooled HR = 1.82, 95%CI: 1.21-2.43). Subgroup analysis showed that CXCR7 expression had a positive correlation with LNM in pan-adenocarcinoma subgroup (pooled OR = 3.73, 95%CI: 2.21-6.30), while no correlation was found in pan-squamous cancer subgroup (pooled OR = 1.29, 95%CI: 0.56-2.96). Subgroup analysis of tumor grade revealed that high expression of CXCR7 predicted high tumor grade both in pan-squamous cancer and pan-adenocarcinoma (pooled OR = 3.58, 95%CI: 1.39-9.22, pooled OR = 2.25, 95%CI: 1.20-4.20). As in OS group, we divided the data based on analysis method and it turned out that overexpressed CXCR7 predicted worse OS both in multivariate analysis (pooled HR =1.57, 95%CI: 1.12-2.01) and univariate analysis subgroup (pooled HR =1.86, 95%CI: 1.23-2.49). Conclusions: Our meta-analysis revealed that high expression of CXCR7 predicted unfavorable prognosis and may serve as potential targets of cancer therapy.
Collapse
Affiliation(s)
- Qitai Zhao
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Penghua Zhang
- Imaging Department, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Guohui Qin
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Feifei Ren
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
- School of Life Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yujia Zheng
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yamin Qiao
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Ting Sun
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yi Zhang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
- School of Life Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
17
|
Lee E, Wang J, Jung Y, Cackowski FC, Taichman RS. Reduction of two histone marks, H3k9me3 and H3k27me3 by epidrug induces neuroendocrine differentiation in prostate cancer. J Cell Biochem 2018; 119:3697-3705. [PMID: 29236331 DOI: 10.1002/jcb.26586] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 12/06/2017] [Indexed: 12/21/2022]
Abstract
Neuroendocrine prostate cancer (NE PCa) is an aggressive malignancy, often presenting with advanced metastasis. We previously reported that reduction of histone marks regulated by DNMT1 following epidrug (5-Azacitidine, 5-Aza) treatment controls induction of epithelial to mesenchymal (EMT) and a cancer stem cell (CSC) phenotype, which facilitates tumorigenesis in PCa cells. Here, we use the epidrug 5-Aza as a model for how histone marks may regulate the reprogramming of prostate adenocarcinoma into NE phenotypic cells. First, we observed that 5-Aza treatment of PCa cells in vitro induces a neuron-like phenotype. In addition, significant increases in the expression of the NE markers N-Myc downstream regulated gene 1 (NDRG1), enolase-2 (ENO2), and synaptophysin were observed. Critically, a high density of NE cells with synaptophysin expression was found in tumors generated by 5-Aza pretreatment of PCa cells. Importantly, induction of NE differentiation of PCa cells was associated with an enhancement of NDRG1 expression by reduction of two histone marks, H3K9me3 and H3K27me3. Further, more NDRG1 expression was detected in the subset of PCa cells with reduced expression of H3K9me3 or H3K27me3 in the tumors generated by 5-Aza pretreated PCa cells and critically, these biological differences are also observed in small cell carcinoma in advanced stage of human primary PCa tumors. Our results suggest that reduction of histone marks regulated by the epidrug 5-Aza may control induction of a NE phenotype, which facilitates PCa progression. These studies suggest a strong rationale for developing therapeutics, which target epigenetic regulation.
Collapse
Affiliation(s)
- Eunsohl Lee
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor,, Michigan
| | - Jingcheng Wang
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor,, Michigan
| | - Younghun Jung
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor,, Michigan
| | - Frank C Cackowski
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor,, Michigan.,Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Russell S Taichman
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor,, Michigan
| |
Collapse
|
18
|
Genetic variation of CXCR4 and risk of coronary artery disease: epidemiological study and functional validation of CRISPR/Cas9 system. Oncotarget 2017; 9:14077-14083. [PMID: 29581828 PMCID: PMC5865654 DOI: 10.18632/oncotarget.23491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/05/2017] [Indexed: 11/29/2022] Open
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of death worldwide, while coronary artery disease (CAD) account for a large part of CVDs. Vascular CXCR4 could limit atherosclerosis by maintaining arterial integrity. Here, we conducted a population-based, case-control study to evaluate the associations of common genetic variation within the CXCR4 gene (rs2228014, rs117600832, rs2471859, and rs2322864) with CAD risk in a Chinese population. We found that CXCR4 rs2228014 was significantly associated with 1.29-fold increased risk of CAD (A vs G: OR = 1.29; 95% CI = 1.07–1.55; P = 0.007). The subjects with genotype AA (OR = 1.98; 95% CI = 1.03–3.81; P = 0.041) and AG (OR = 1.27; 95% CI = 1.02–1.58; P = 0.030) have higher risk of CAD, compared with those with genotype GG. Furthermore, both in the CAD patients with diabetes and those without diabetes, rs2228014 was significantly associated with increased risk of CAD (P < 0.05). Additionally, we also validated the significant association for rs2322864 (C vs T: OR = 1.20; 95% CI = 1.00–1.44; P = 0.046). Knockout of CXCR4 gene could significantly impair the capacity of cholesterol efflux (P < 0.01). These findings strongly suggest that CXCR4 polymorphisms might contribute to CAD susceptibility, and the exact biological mechanism awaits further research.
Collapse
|
19
|
CXCR4 blockade with AMD3100 enhances Taxol chemotherapy to limit ovarian cancer cell growth. Anticancer Drugs 2017; 28:935-942. [PMID: 28817386 DOI: 10.1097/cad.0000000000000518] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The standard of care for ovarian cancer includes initial treatment with chemotherapy. Despite initial efficacy, over 70% of patients develop recurrence; thus, there is a need to identify novel approaches that can improve therapeutic outcomes. We evaluated AMD3100 (Plerixafor), an FDA-approved CXCR4 inhibitor, as a potential adjunctive therapy for low-dose Taxol (Paclitaxel) by assessing the impact on in-vitro ovarian cancer cell proliferation. Proliferation was a measure for both human TOV-112D and murine ID8 ovarian cancer cells incubated with AMD3100 and Taxol, either individually or in combination. Impact of treatment was first determined for the simultaneous administration of AMD3100 and Taxol. We next assessed a sequential application of AMD3100 pretreatment, followed by AMD3100, Taxol, or a combination to test for sensitization to Taxol. In addition, we measured the impact of AMD3100 and Taxol, individually and in combination, on colony formation, an in-vitro model assay of tumor growth. Expression data, as measured by flow cytometry, show that both ID8 and TOV-112D cells are positive for CXCR4, CXCR7, and CXCL12. Combination treatment with AMD3100 (≤10 μmol/l) sensitized both ID8 and TOV-112D cells to low concentrations of Taxol (≤5 nmol/l), limiting cell proliferation and colony formation in vitro. Pretreatment with AMD3100 significantly increased the sensitivity of human ovarian cancer to low-dose Taxol or the combination of AMD3100 and Taxol, although this effect was not evident in murine cells. Importantly, for both human and murine cells, incubation with a combination of AMD3100 and Taxol had the largest impact on limiting cell proliferation. AMD3100 in combination with low-dose Taxol offers improved efficacy and the potential of reduced toxicity for the treatment of ovarian cancer.
Collapse
|
20
|
Targeting CXCR7 improves the efficacy of breast cancer patients with tamoxifen therapy. Biochem Pharmacol 2017; 147:128-140. [PMID: 29175422 DOI: 10.1016/j.bcp.2017.11.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 01/09/2023]
Abstract
Chemokine (C-X-C motif) receptor 7 (CXCR7) has been established to be involved in breast cancer (BCa) progression. However, the role of CXCR7 in different subtype of BCa still remains unclear. Here we note that CXCR7 expression is significantly amplified in Luminal type BCa tissues as compared with Her2 and TNBC types through data-mining in TCGA datasets, and its protein level positively correlates with ERα expression by staining of human BCa tissue. Interestingly, alteration of CXCR7 expression in Luminal type BCa cells is able to modulate the expression of ERα through ubiquitination at post-translational level. Additionally, overexpression of CXCR7 in these cells greatly induces 4-OHT insensitivity in vitro and is associated with earlier recurrence in patients with tamoxifen therapy. Notably, silencing ERα expression potentially rescues the sensitivity of the above cells to 4-OHT, suggesting that elevated level of ERα is responsible for CXCR7-induced 4-OHT insensitivity in Luminal type BCa. Finally, mechanistic analyses show that the reduced BRCA1 (ubiquitin E3 ligase) and elevated OTUB1 (deubiquitinase) expression, which are regulated by CXCR7/ERK1/2 signaling pathway, are responsible for stabilizing ERα protein. In conclusion, our results suggest that targeting CXCR7 may serve as a potential therapeutic strategy for improving the efficacy of BCa patients with tamoxifen therapy.
Collapse
|
21
|
Kaemmerer D, Sänger J, Arsenic R, D’Haese JG, Neumann J, Schmitt-Graeff A, Wirtz RM, Schulz S, Lupp A. Evaluation of somatostatin, CXCR4 chemokine and endothelin A receptor expression in a large set of paragangliomas. Oncotarget 2017; 8:89958-89969. [PMID: 29163802 PMCID: PMC5685723 DOI: 10.18632/oncotarget.21194] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/17/2017] [Indexed: 12/11/2022] Open
Abstract
Paragangliomas are predominantly benign tumors, but in some cases invasive growth and also metastasis are observed. Given the limited number of nonsurgical treatment options, novel target structures for diagnostics and therapy of this tumor entity are urgently needed. In the present study, expression of all five somatostatin receptor (SST) subtypes, chemokine receptor CXCR4 and endothelin receptor type A (ETA) was assessed by means of immunohistochemistry in a total of 66 paraffin-embedded paraganglioma samples from 55 patients. The stainings were rated by means of the Immunoreactive Score and correlated to clinical data and to succinate dehydrogenase subunit B (SDHB) expression. SST2A was by far the most prominent receptor in the paragangliomas investigated. It was present in 89% of the tumors at a high intensity, followed by SST5, SST3, SST1 and SST4, which were detected in 47%, 35%, 35% and 13% of the samples, respectively. SDHB positive tumors exhibited significantly higher SST2A and SST3 expression as compared to SDHB negative cases. There was no correlation between SST and Ki-67 expression or grading of the tumors and no difference in SST expression between primary tumors and metastases. Cell surface expression of CXCR4 and ETA was detected only in few samples. On tumor capillaries, however, exceptionally strong staining for these two receptors was noticed in the vast majority of the tumors. In conclusion, paragangliomas are well suited for SST2A-based diagnostics and treatment modalities. An indirect targeting of these highly vascularized tumors via CXCR4 or ETA may also represent a promising future strategy.
Collapse
Affiliation(s)
- Daniel Kaemmerer
- Department of General and Visceral Surgery, Zentralklinik Bad Berka, Bad Berka, Germany
| | - Jörg Sänger
- Laboratory of Pathology and Cytology Bad Berka, Bad Berka, Germany
| | - Ruza Arsenic
- Institute of Pathology, Charité University Hospital Berlin, Berlin, Germany
| | - Jan G. D’Haese
- Department of General, Visceral, Transplantation, Vascular and Thoracic Surgery, Hospital of the University of Munich, Munich, Germany
| | - Jens Neumann
- Department of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | | | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany
| |
Collapse
|
22
|
Cives M, Quaresmini D, Rizzo FM, Felici C, D'Oronzo S, Simone V, Silvestris F. Osteotropism of neuroendocrine tumors: role of the CXCL12/ CXCR4 pathway in promoting EMT in vitro. Oncotarget 2017; 8:22534-22549. [PMID: 28186979 PMCID: PMC5410243 DOI: 10.18632/oncotarget.15122] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/24/2017] [Indexed: 12/28/2022] Open
Abstract
Neuroendocrine tumors (NETs) metastasize to the skeleton in approximately 20% of patients. We have previously shown that the epithelial-mesenchymal transition (EMT) regulates the NET osteotropism and that CXCR4 overexpression predicts bone spreading. Here, we unravel the molecular mechanisms linking the activation of the CXCL12/CXCR4 axis to the bone colonization of NETs using cell lines representative of pancreatic (BON1, CM, QGP1), intestinal (CNDT 2.5), and bronchial origin (H727). By combining flow cytometry and ELISA, BON1, CM and QGP1 cells were defined as CXCR4high/CXCL12low, while H727 and CNDT 2.5 were CXCR4low/CXCL12high. CXCL12 was inert on cell proliferation, but significantly increased the in vitro osteotropism of CXCR4high/CXCL12low cells, as assessed by transwell assays with or without Matrigel membranes. In these cells, CXCL12 induced in vitro a marked EMT-like transcriptional shift with acquirement of a mesenchymal shape. The nuclei of CXCR4high/CXCL12low NET cells were typically enriched in non-phosphorylated CXCR4, particularly upon agonist stimulation. Silencing of CXCR4 via siRNA prevented the CXCL12-induced EMT in CXCR4high/CXCL12low NET cell lines resulting in the abrogation of both migration and transcriptional mesenchymal patterns. Our data suggest that CXCL12 conveys EMT-promoting signals in NET cells through CXCR4, which in turn regulates transcriptional, morphologic and functional modifications resulting in enhanced in vitro osteotropism of NET cells. Unique functions of CXCR4 may be segregated in relation to its subcellular localization and may acquire potential relevance in future in vivo studies.
Collapse
Affiliation(s)
- Mauro Cives
- Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro", Bari, Italy
| | - Davide Quaresmini
- Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro", Bari, Italy
| | - Francesca Maria Rizzo
- Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro", Bari, Italy
| | - Claudia Felici
- Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro", Bari, Italy
| | - Stella D'Oronzo
- Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro", Bari, Italy
| | - Valeria Simone
- Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro", Bari, Italy
| | - Franco Silvestris
- Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro", Bari, Italy
| |
Collapse
|
23
|
Targeting the CXCR4/CXCL12 axis in treating epithelial ovarian cancer. Gene Ther 2017; 24:621-629. [PMID: 28753202 DOI: 10.1038/gt.2017.69] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 07/06/2017] [Accepted: 07/21/2017] [Indexed: 02/07/2023]
Abstract
Ovarian carcinoma is the most crucial and difficult target for available therapeutic treatments among gynecological malignancies, and great efforts are required to find an effective solution. Molecular studies showed that the chemokine stromal cell-derived factor-1 (also known as CXCL12) and its receptor, CXCR4, are key determinants of tumor initiation, progression and metastasis in ovarian carcinomas. Hence, it is generally believed that blocking the CXCR4/CXCL12 pathway could serve as a potential therapy for patients with ovarian cancer. Herein, we investigated the role of the CXCR4/CXCL12 axis in regulating ovarian cancer progression. Using flow cytometry, a real-time PCR and western blot analyses, we showed that the chemokine receptor CXCR4 protein and mRNA were overexpressed in human epithelial ovarian cancer cell lines, and these were closely correlated with poor outcomes. Moreover, silencing CXCR4 by small hairpin RNA in HTB75 cells reduced cell proliferation, migration and invasion and significantly reduced RhoA and Rac-1/Cdc42 expressions, whereas overexpression of CXCR4 in SKOV3 cells significantly increased cell migration and markedly increased RhoA, Rac-1/Cdc42 levels. Silencing CXCR4 also led to decreased in vitro cytotoxicity of AMD3100, a specific antagonist of CXCR4, which exerts its effect upon CXCR4 expression. Remarkably, knockdown of CXCR4 in HTB75 cells led to a significantly decreased capability to form tumors in vivo, and the Ki67 proliferation index of xenograft tumors showed a dramatic reduction. Our results revealed that the CXCR4/CXCL12 pathway represents a promising therapeutic target for epithelial ovarian carcinoma.
Collapse
|
24
|
Lin C, Yan H, Yang J, Li L, Tang M, Zhao X, Nie C, Luo N, Wei Y, Yuan Z. Combination of DESI2 and IP10 gene therapy significantly improves therapeutic efficacy against murine carcinoma. Oncotarget 2017; 8:56281-56295. [PMID: 28915590 PMCID: PMC5593561 DOI: 10.18632/oncotarget.17623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/20/2017] [Indexed: 02/05/2023] Open
Abstract
DESI2 (also known as PNAS-4) is a novel pro-apoptotic gene activated during the early response to DNA damage. We previously reported that overexpression of DESI2 induces S phase arrest and apoptosis by activating checkpoint kinases. The present study was designed to test whether combination of DESI2 and IP10 could improve the therapy efficacy in vitro and in vivo. The recombinant plasmid co-expressing DESI2 and IP10 was encapsulated with DOTAP/Cholesterol nanoparticle. Immunocompetent mice bearing CT26 colon carcinoma and LL2 lung cancer were treated with the complex. We found that, in vitro, the combination of DESI2 and IP10 more efficiently inhibited proliferation of CT26, LL2, SKOV3 and A549 cancer cells via apoptosis. In vivo, the combined gene therapy more significantly inhibited tumor growth and efficiently prolonged the survival of tumor bearing mice. Mechanistically, the augmented antitumor activity in vivo was associated with induction of apoptosis and inhibition of angiogenesis. The anti-angiogenesis was further mimicked by inhibiting proliferation of immortalized HUVEC cells in vitro. Meanwhile, the infiltration of lymphocytes also contributed to the enhanced antitumor effects. Depletion of CD8+ T lymphocytes significantly abrogated the antitumor activity, whereas depletion of CD4+ T cells or NK cells showed partial abrogation. Our data suggest that the combined gene therapy of DESI2 and IP10 can significantly enhance the antitumor activity as apoptosis inducer, angiogenesis inhibitor and immune response initiator. The present study may provide a novel and effective method for treating cancer.
Collapse
Affiliation(s)
- Chao Lin
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan University, Chengdu, 610041, China
| | - HuaYing Yan
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan University, Chengdu, 610041, China
- Department of Functional Imaging, Sichuan Provincial Women's and Children's Hospital, Chengdu, 610031, China
| | - Jun Yang
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan University, Chengdu, 610041, China
| | - Lei Li
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan University, Chengdu, 610041, China
| | - Mei Tang
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan University, Chengdu, 610041, China
| | - Xinyu Zhao
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan University, Chengdu, 610041, China
| | - Chunlai Nie
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan University, Chengdu, 610041, China
| | - Na Luo
- Nankai University School of Medicine, Collaborative Innovation Center of Biotherapy, Tianjin, 300071, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan University, Chengdu, 610041, China
| | - Zhu Yuan
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan University, Chengdu, 610041, China
| |
Collapse
|