1
|
Giovanini G, Barros LRC, Gama LR, Tortelli TC, Ramos AF. A Stochastic Binary Model for the Regulation of Gene Expression to Investigate Responses to Gene Therapy. Cancers (Basel) 2022; 14:633. [PMID: 35158901 PMCID: PMC8833822 DOI: 10.3390/cancers14030633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/08/2021] [Accepted: 11/13/2021] [Indexed: 02/07/2023] Open
Abstract
In this manuscript, we use an exactly solvable stochastic binary model for the regulation of gene expression to analyze the dynamics of response to a treatment aiming to modulate the number of transcripts of a master regulatory switching gene. The challenge is to combine multiple processes with different time scales to control the treatment response by a switching gene in an unavoidable noisy environment. To establish biologically relevant timescales for the parameters of the model, we select the RKIP gene and two non-specific drugs already known for changing RKIP levels in cancer cells. We demonstrate the usefulness of our method simulating three treatment scenarios aiming to reestablish RKIP gene expression dynamics toward a pre-cancerous state: (1) to increase the promoter's ON state duration; (2) to increase the mRNAs' synthesis rate; and (3) to increase both rates. We show that the pre-treatment kinetic rates of ON and OFF promoter switching speeds and mRNA synthesis and degradation will affect the heterogeneity and time for treatment response. Hence, we present a strategy for reaching increased average mRNA levels with diminished heterogeneity while reducing drug dosage by simultaneously targeting multiple kinetic rates that effectively represent the chemical processes underlying the regulation of gene expression. The decrease in heterogeneity of treatment response by a target gene helps to lower the chances of emergence of resistance. Our approach may be useful for inferring kinetic constants related to the expression of antimetastatic genes or oncogenes and for the design of multi-drug therapeutic strategies targeting the processes underpinning the expression of master regulatory genes.
Collapse
Affiliation(s)
- Guilherme Giovanini
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av. Arlindo Béttio, 1000, São Paulo 03828-000, SP, Brazil;
| | - Luciana R. C. Barros
- Centro de Investigação Translacional em Oncologia, Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo, Instituto do Câncer do Estado de São Paulo, Av. Dr. Arnaldo, 251, São Paulo 01246-000, SP, Brazil; (L.R.C.B.); (L.R.G.); (T.C.T.J.)
| | - Leonardo R. Gama
- Centro de Investigação Translacional em Oncologia, Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo, Instituto do Câncer do Estado de São Paulo, Av. Dr. Arnaldo, 251, São Paulo 01246-000, SP, Brazil; (L.R.C.B.); (L.R.G.); (T.C.T.J.)
| | | | - Alexandre F. Ramos
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av. Arlindo Béttio, 1000, São Paulo 03828-000, SP, Brazil;
- Centro de Investigação Translacional em Oncologia, Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo, Instituto do Câncer do Estado de São Paulo, Av. Dr. Arnaldo, 251, São Paulo 01246-000, SP, Brazil; (L.R.C.B.); (L.R.G.); (T.C.T.J.)
| |
Collapse
|
2
|
RKIP Pleiotropic Activities in Cancer and Inflammatory Diseases: Role in Immunity. Cancers (Basel) 2021; 13:cancers13246247. [PMID: 34944867 PMCID: PMC8699197 DOI: 10.3390/cancers13246247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The human body consists of tissues and organs formed by cells. In each cell there is a switch that allows the cell to divide or not. In contrast, cancer cells have their switch on which allow them to divide and invade other sites leading to death. Over two decades ago, Doctor Kam Yeung, University of Toledo, Ohio, has identified a factor (RKIP) that is responsible for the on/off switch which functions normally in healthy tissues but is inactive or absent in cancers. Since this early discovery, many additional properties have been ascribed to RKIP including its role in inhibiting cancer metastasis and resistance to therapeutics and its role in modulating the normal immune response. This review describes all of the above functions of RKIP and suggesting therapeutics to induce RKIP in cancers to inhibit their growth and metastases as well as inhibit its activity to treat non-cancerous inflammatory diseases. Abstract Several gene products play pivotal roles in the induction of inflammation and the progression of cancer. The Raf kinase inhibitory protein (RKIP) is a cytosolic protein that exerts pleiotropic activities in such conditions, and thus regulates oncogenesis and immune-mediated diseases through its deregulation. Herein, we review the general properties of RKIP, including its: (i) molecular structure; (ii) involvement in various cell signaling pathways (i.e., inhibition of the Raf/MEK/ERK pathway; the NF-kB pathway; GRK-2 or the STAT-3 pathway; as well as regulation of the GSK3Beta signaling; and the spindle checkpoints); (iii) regulation of RKIP expression; (iv) expression’s effects on oncogenesis; (v) role in the regulation of the immune system to diseases (i.e., RKIP regulation of T cell functions; the secretion of cytokines and immune mediators, apoptosis, immune check point inhibitors and RKIP involvement in inflammatory diseases); and (vi) bioinformatic analysis between normal and malignant tissues, as well as across various immune-related cells. Overall, the regulation of RKIP in different cancers and inflammatory diseases suggest that it can be used as a potential therapeutic target in the treatment of these diseases.
Collapse
|
3
|
Wang R, Li S, Wen W, Zhang J. Multi-Omics Analysis of the Effects of Smoking on Human Tumors. Front Mol Biosci 2021; 8:704910. [PMID: 34796198 PMCID: PMC8592943 DOI: 10.3389/fmolb.2021.704910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Comprehensive studies on cancer patients with different smoking histories, including non-smokers, former smokers, and current smokers, remain elusive. Therefore, we conducted a multi-omics analysis to explore the effect of smoking history on cancer patients. Patients with smoking history were screened from The Cancer Genome Atlas database, and their multi-omics data and clinical information were downloaded. A total of 2,317 patients were included in this study, whereby current smokers presented the worst prognosis, followed by former smokers, while non-smokers showed the best prognosis. More importantly, smoking history was an independent prognosis factor. Patients with different smoking histories exhibited different immune content, and former smokers had the highest immune cells and tumor immune microenvironment. Smokers are under a higher incidence of genomic instability that can be reversed following smoking cessation in some changes. We also noted that smoking reduced the sensitivity of patients to chemotherapeutic drugs, whereas smoking cessation can reverse the situation. Competing endogenous RNA network revealed that mir-193b-3p, mir-301b, mir-205-5p, mir-132-3p, mir-212-3p, mir-1271-5p, and mir-137 may contribute significantly in tobacco-mediated tumor formation. We identified 11 methylation driver genes (including EIF5A2, GBP6, HGD, HS6ST1, ITGA5, NR2F2, PLS1, PPP1R18, PTHLH, SLC6A15, and YEATS2), and methylation modifications of some of these genes have not been reported to be associated with tumors. We constructed a 46-gene model that predicted overall survival with good predictive power. We next drew nomograms of each cancer type. Interestingly, calibration diagrams and concordance indexes are verified that the nomograms were highly accurate for the prognosis of patients. Meanwhile, we found that the 46-gene model has good applicability to the overall survival as well as to disease-specific survival and progression-free intervals. The results of this research provide new and valuable insights for the diagnosis, treatment, and follow-up of cancer patients with different smoking histories.
Collapse
Affiliation(s)
- Rui Wang
- Department of Hepatobiliary Surgery, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Shanshan Li
- Department of Nursing, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Wen Wen
- Department of Hepatobiliary Surgery, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Jianquan Zhang
- Department of Hepatobiliary Surgery, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| |
Collapse
|
4
|
Wang S, Ma H, Yan Y, Chen Y, Fu S, Wang J, Wang Y, Chen H, Liu J. cMET promotes metastasis and epithelial-mesenchymal transition in colorectal carcinoma by repressing RKIP. J Cell Physiol 2021; 236:3963-3978. [PMID: 33151569 DOI: 10.1002/jcp.30142] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 10/01/2020] [Accepted: 10/23/2020] [Indexed: 02/05/2023]
Abstract
Increasing evidence indicates that c-mesenchymal-epithelial transition factor (cMET) plays an important role in the malignant progression of colorectal cancer (CRC). However, the underlying mechanism is not fully understood. As a metastasis suppressor, raf kinase inhibitory protein (RKIP) loss has been reported in many cancer types. In this study, the expression levels of cMET and RKIP in CRC tissues and cell lines were determined, and their crosstalk and potential biological effects were explored in vitro and in vivo. Our results showed that cMET was inversely correlated with RKIP. Both cMET upregulation and RKIP downregulation indicated poor clinical outcomes. Moreover, the MAPK/ERK signaling pathway was implicated in the regulation of cMET and RKIP. Overexpression of cMET promoted tumor cell epithelial-mesenchymal transition, invasion, migration, and chemoresistance, whereas the effects could be efficiently inhibited by increased RKIP. Notably, small hairpin RNA-mediated cMET knockdown dramatically suppressed cell proliferation, although no RKIP-induced influence on cell growth was observed in CRC. Altogether, cMET overexpression may contribute to tumor progression by inhibiting the antioncogene RKIP, providing preclinical justification for targeting RKIP to treat cMET-induced metastasis of CRC.
Collapse
Affiliation(s)
- Siyun Wang
- Department of PET Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Haiqing Ma
- Department of Oncology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yan Yan
- Department of Oncology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Yu Chen
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Sirui Fu
- Department of Interventional Therapy, Zhuhai Interventional Medical Center, Zhuhai City People's Hospital/Zhuhai Hospital of Jinan University, Zhuhai, Guangdong, China
| | - Junjiang Wang
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Ying Wang
- Department of Oncology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jianhua Liu
- Department of Oncology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Feng Y, Le F, Tian P, Zhong Y, Zhan F, Huang G, Hu H, Chen T, Tan B. GTW inhibits the Epithelial to Mesenchymal Transition of Epithelial Ovarian Cancer via ILK/AKT/GSK3β/Slug Signalling Pathway. J Cancer 2021; 12:1386-1397. [PMID: 33531984 PMCID: PMC7847657 DOI: 10.7150/jca.52418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022] Open
Abstract
Background: Epithelial ovarian cancer (EOC) accounts for the most lethal of all gynaecological cancers which is attributed to metastasis, invasiveness and drug resistance. A crucial link has been found between epithelial-mesenchymal transition (EMT) and cancer metastasis and chemo-resistance. Previous studies have confirmed that one of the main components of tripterygium glycosides (GTW)-triptolide (TPL) has anticancer effects. Methods: The purpose of this study is to determine whether GTW could inhibit EMT in A2780/DPP cells in vitro and in vivo, and explore the underlying mechanism. Results: In vitro results showed that GTW inhibited cell proliferation, invasion and migration, and intensified the sensitivity of A2780/DDP cells to cisplatin (DDP). GTW, especially GTW+DDP, significantly inhibited the expression of N-cadherin, integrin-linked kinase (ILK), phospho-protein kinase B/AKT (PKB/p-AKT), phospho-glycogen synthase kinase (p-GSK3β) and Slug, while it increased E-cadherin levels by inhibiting EMT via the ILK/AKT/GSK3β/Slug signalling pathway. Animal results indicated that GTW, especially GTW+DDP, significantly reduced tumour burden, prolonged the life span of mice, and down-regulated the levels of tumour markers CA125 and HE4 by regulating EMT through the ILK/AKT/GSK3β/Slug signalling pathway. Conclusion: Our results highlighted the significance of EMT in EOC metastasis, invasiveness and resistance to DDP and investigated the potential role of GTW as an adjuvant therapeutic agent in chemo-resistant EOC.
Collapse
Affiliation(s)
- Ying Feng
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Fuyin Le
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Puyuan Tian
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Yanying Zhong
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Fuliang Zhan
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Genhua Huang
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Hui Hu
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Tingtao Chen
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Buzhen Tan
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| |
Collapse
|
6
|
Simon V, Laot L, Laas E, Rozette S, Guerin J, Balezeau T, Nicolas M, Pierga JY, Coussy F, Laé M, De Croze D, Grandal B, Abecassis J, Dumas E, Lerebours F, Reyal F, Hamy AS. No Impact of Smoking Status on Breast Cancer Tumor Infiltrating Lymphocytes, Response to Neoadjuvant Chemotherapy and Prognosis. Cancers (Basel) 2020; 12:cancers12102943. [PMID: 33053866 PMCID: PMC7601636 DOI: 10.3390/cancers12102943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/28/2020] [Accepted: 10/06/2020] [Indexed: 01/01/2023] Open
Abstract
Simple Summary Tobacco use is associated with an increase in breast cancer mortality. Pathologic complete response (pCR) rate to neoadjuvant chemotherapy is influenced by tumor-infiltrating lymphocyte (TIL) levels and is associated with a better long-term survival outcome. The aim of this study was to evaluate the impact of smoking status on TIL levels, response to neoadjuvant chemotherapy and prognosis for breast cancer patients. We retrospectively assessed pre- and post-neoadjuvant chemotherapy tumor infiltrating lymphocyte (TILs) levels and pathological complete response (pCR) rates in a cohort of 956 specimens of breast cancer (BC) patients treated with neoadjuvant chemotherapy, according to their smoking status. To our knowledge, this is the largest cohort of BC patients used to study this topic so far. We found no impact of smoking status on tumor infiltrating lymphocyte levels, response to neoadjuvant chemotherapy and prognosis in the whole population and within each BC subtype. Abstract Tobacco use is associated with an increase in breast cancer (BC) mortality. Pathologic complete response (pCR) rate to neoadjuvant chemotherapy (NAC) is influenced by tumor-infiltrating lymphocyte (TIL) levels and is associated with a better long-term survival outcome. The aim of our study is to evaluate the impact of smoking status on TIL levels, response to NAC and prognosis for BC patients. We retrospectively evaluated pre- and post-NAC stromal and intra tumoral TIL levels and pCR rates on a cohort of T1-T3NxM0 BC patients treated with NAC between 2002 and 2012 at Institut Curie. Smoking status (current, ever, never smokers) was collected in clinical records. We analyzed the association between smoking status, TIL levels, pCR rates and survival outcomes among the whole population, and according to BC subtype. Nine hundred and fifty-six BC patients with available smoking status information were included in our analysis (current smokers, n = 179 (18.7%); ever smokers, n = 154 (16.1%) and never smokers, n = 623 (65.2%)). Median pre-NAC TIL levels, pCR rates, or median post-NAC TIL levels were not significantly different according to smoking status, neither in the whole population, nor in any BC subtype group. With a median follow-up of 101.4 months, relapse-free survival (RFS) and overall survival (OS) were not significantly different by smoking status. We did not find any significant effect of tobacco use on pre- and post-NAC TILs nor response to NAC. Though our data seem reassuring, BC treatment should still be considered as a window of opportunity to offer BC patients accurate smoking cessation interventions.
Collapse
Affiliation(s)
- Vanille Simon
- Department of Surgical Oncology, Institut Curie, University Paris, 75005 Paris, France; (V.S.); (L.L.); (E.L.); (M.N.); (B.G.)
| | - Lucie Laot
- Department of Surgical Oncology, Institut Curie, University Paris, 75005 Paris, France; (V.S.); (L.L.); (E.L.); (M.N.); (B.G.)
| | - Enora Laas
- Department of Surgical Oncology, Institut Curie, University Paris, 75005 Paris, France; (V.S.); (L.L.); (E.L.); (M.N.); (B.G.)
| | - Sonia Rozette
- Department of Medical Oncology, Institut Curie, University Paris, 75005 Paris, France; (S.R.); (J.-Y.P.); (F.C.); (F.L.); (A.-S.H.)
| | - Julien Guerin
- Data Factory, Data Office, Institut Curie, 25 rue d’Ulm, 75005 Paris, France; (J.G.); (T.B.)
| | - Thomas Balezeau
- Data Factory, Data Office, Institut Curie, 25 rue d’Ulm, 75005 Paris, France; (J.G.); (T.B.)
| | - Marion Nicolas
- Department of Surgical Oncology, Institut Curie, University Paris, 75005 Paris, France; (V.S.); (L.L.); (E.L.); (M.N.); (B.G.)
| | - Jean-Yves Pierga
- Department of Medical Oncology, Institut Curie, University Paris, 75005 Paris, France; (S.R.); (J.-Y.P.); (F.C.); (F.L.); (A.-S.H.)
| | - Florence Coussy
- Department of Medical Oncology, Institut Curie, University Paris, 75005 Paris, France; (S.R.); (J.-Y.P.); (F.C.); (F.L.); (A.-S.H.)
| | - Marick Laé
- Department of Tumor Biology, Institut Curie, 75005 Paris, France; (M.L.); (D.D.C.)
| | - Diane De Croze
- Department of Tumor Biology, Institut Curie, 75005 Paris, France; (M.L.); (D.D.C.)
| | - Beatriz Grandal
- Department of Surgical Oncology, Institut Curie, University Paris, 75005 Paris, France; (V.S.); (L.L.); (E.L.); (M.N.); (B.G.)
- Residual Tumor & Response to Treatment Laboratory, RT2Lab, Translational Research Department, INSERM, U932 Immunity and Cancer, University Paris, 75005 Paris, France; (J.A.); (E.D.)
| | - Judith Abecassis
- Residual Tumor & Response to Treatment Laboratory, RT2Lab, Translational Research Department, INSERM, U932 Immunity and Cancer, University Paris, 75005 Paris, France; (J.A.); (E.D.)
| | - Elise Dumas
- Residual Tumor & Response to Treatment Laboratory, RT2Lab, Translational Research Department, INSERM, U932 Immunity and Cancer, University Paris, 75005 Paris, France; (J.A.); (E.D.)
| | - Florence Lerebours
- Department of Medical Oncology, Institut Curie, University Paris, 75005 Paris, France; (S.R.); (J.-Y.P.); (F.C.); (F.L.); (A.-S.H.)
| | - Fabien Reyal
- Department of Surgical Oncology, Institut Curie, University Paris, 75005 Paris, France; (V.S.); (L.L.); (E.L.); (M.N.); (B.G.)
- Residual Tumor & Response to Treatment Laboratory, RT2Lab, Translational Research Department, INSERM, U932 Immunity and Cancer, University Paris, 75005 Paris, France; (J.A.); (E.D.)
- Correspondence: ; Tel.: +33-144-324-087 or +33-615-271-980
| | - Anne-Sophie Hamy
- Department of Medical Oncology, Institut Curie, University Paris, 75005 Paris, France; (S.R.); (J.-Y.P.); (F.C.); (F.L.); (A.-S.H.)
- Residual Tumor & Response to Treatment Laboratory, RT2Lab, Translational Research Department, INSERM, U932 Immunity and Cancer, University Paris, 75005 Paris, France; (J.A.); (E.D.)
| |
Collapse
|
7
|
Bu H, Li Y, Jin C, Yu H, Wang X, Chen J, Wang Y, Ma Y, Zhang Y, Kong B. Overexpression of PRC1 indicates a poor prognosis in ovarian cancer. Int J Oncol 2020; 56:685-696. [PMID: 31922238 PMCID: PMC7010224 DOI: 10.3892/ijo.2020.4959] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022] Open
Abstract
Protein regulator of cytokinesis-1 (PRC1) is a microtubule-associated factor involved in cytokinesis. Recent studies have indicated that PRC1 overexpression is involved in tumorigenesis in multiple types of human cancer. However, the expression, biological functions and the prognostic significance of PRC1 in ovarian cancer have not yet been clarified. In this study, it was confirmed that the PRC1 mRNA and protein expression levels were upregulated in high-grade serous ovarian carcinoma (HGSOC) tissues, particularly in patients without breast cancer susceptibility gene (BRCA) pathogenic mutations. PRC1 overexpression contributed to drug resistance, tumor recurrence and a poor prognosis. The findings also indicated that PRC1 knockdown decreased the proliferation, metastasis and multidrug resistance of ovarian cancer cells in vitro. It was also demonstrated that forkhead box protein M1 (FOXM1) regulated the mRNA and protein expression of PRC1. Dual-luciferase reporter assay and rescue assay confirmed that PRC1 was a direct crucial downstream target of FOXM1. On the whole, the findings of this study confirmed that PRC1 was a major prognostic factor of HGSOC and a promising therapeutic biomarker for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Hualei Bu
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yingwei Li
- School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Chengjuan Jin
- Department of Obstetrics and Gynecology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201620, P.R. China
| | - Hongfeng Yu
- Department of Obstetrics and Gynecology, Zhenjiang First People's Hospital, Zhenjiang, Jiangsu 212000, P.R. China
| | - Xiangxiang Wang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jingying Chen
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yu Wang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yana Ma
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Youzhong Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
8
|
Cheng B, Rong A, Zhou Q, Li W. CLDN8 promotes colorectal cancer cell proliferation, migration, and invasion by activating MAPK/ERK signaling. Cancer Manag Res 2019; 11:3741-3751. [PMID: 31118793 PMCID: PMC6498432 DOI: 10.2147/cmar.s189558] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Claudin 8 (CLDN8), an integral membrane protein that constitutes tight junctions in cell membranes, was recently implicated in tumor progression. However, its roles in colorectal cancer (CRC) progression and metastasis remain unknown. Methods In this study, we examined the effect of CLDN8 on the progression of CRC, including cell proliferation, migration, and invasion, and determines its underlying molecular mechanism using in vitro CRC cell lines and in vivo mouse xenograft models. Results We found that CLDN8 expression in human CRC tissues was significantly higher than that in adjacent normal tissues. The knockdown of CLDN8 markedly suppressed the proliferation, migration, and invasion of SW480 and HT-29 CRC cells, whereas the overexpression of CLDN8 notably promoted tumor progression in SW480 and HT-29 CRC cells. Mechanistic studies revealed that CLDN8 upregulated p-ERK (p-PKB/AKT) and MMP9 in CRC cells. Notably, the MAPK/ERK inhibitor PD98095 dramatically attenuated the effects of CLDN8 on p-ERK and MMP9. Moreover, PD98095 remarkably blocked the tumor-promoting activity of CLDN8. The knockdown of CLDN8 also inhibited the in vivo tumor growth in a nude mouse xenograft model. Collectively, CLDN8 promoted CRC cell proliferation, migration, and invasion, at least in part, by activating the MAPK/ERK signaling pathway. Conclusion These findings suggest that CLDN8 exhibits an oncogenic effect in human CRC progression.
Collapse
Affiliation(s)
- Bo Cheng
- Department of Emergency Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Aimei Rong
- Department of Gastroenterology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Quanbo Zhou
- Department of Anus and Intestine Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Wenlu Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China,
| |
Collapse
|
9
|
Turano M, Costabile V, Cerasuolo A, Duraturo F, Liccardo R, Delrio P, Pace U, Rega D, Dodaro CA, Milone M, Izzo P, De Rosa M. Characterisation of mesenchymal colon tumour-derived cells in tumourspheres as a model for colorectal cancer progression. Int J Oncol 2018; 53:2379-2396. [PMID: 30272331 PMCID: PMC6203159 DOI: 10.3892/ijo.2018.4565] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/25/2018] [Indexed: 12/21/2022] Open
Abstract
Cellular plasticity, the ability of cells to switch from an epitheial phenotype to a mesenchymal one and vice versa, plays a crucial role in tumour progression and metastases development. In 20-25% of patients with colon cancer and in 18% of patients with rectal cancer, metastases are present at the time of the first diagnosis. They are the first cause of colorectal cancer (CRC)-related mortality, defining stage IV CRC, which is characterized by a relatively short overall survival. We previously isolated two primary colon adenocarcinoma cell cultures that had undergone epithelial-mesenchymal transition (EMT), one with a high microsatellite instability phenotype (T88) and one with a chromosomal instability phenotype (T93). The aim of this study was to establish a model with which to study EMT, stemness features and cell plasticity in cancer progression and to examine the effects of incubation with lithium chloride (LiCl), a specific glycogen synthase kinase 3 β (GSK-3β) inhibitor, on these cellular processes. Indeed, GSK3β is an important regulator of cell survival, which promotes tumourigenesis in colon cells by facilitating the crosstalk between colorectal cancer pathways. Thus, we further characterized our system of adherent primary mesenchymal colon cancer cells and their paired tumourspheres by examining the expression and localisation of a panel of markers, including E- and N‑cadherin, CD133, CD44v6, aldehyde dehydrogenase 1 (ALDH1) and leucine-rich repeat‑containing G-protein coupled receptor 5 (LGR5). We also characterised the molecular features of these tumourspheres and examined their response to LiCl. Furthermore, we explored the effects of LiCl on cell motility and plasticity. We demonstrated that LiCl reduced cell migration, stemness features and cell plasticity. We also observed the atypical nuclear localisation of membrane proteins, including N‑cadherin, CD133 and CD44v6 in mesenchymal tumour cells. Of note, CD133 and CD44v6 appeared to localise at the plasma membrane in cells with a more epithelial phenotype, suggesting that the cytoplasmic/nuclear localisation of these proteins could favour and characterize cell plasticity in colorectal cancer progression.
Collapse
Affiliation(s)
- Mimmo Turano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Valeria Costabile
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Andrea Cerasuolo
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale per lo studio e la cura dei tumori, 'Fondazione Giovanni Pascale' IRCCS, 80131 Naples, Italy
| | - Francesca Duraturo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Raffaella Liccardo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Paolo Delrio
- Colorectal Surgical Oncology - Abdominal Oncology Department, Istituto Nazionale per lo studio e la cura dei tumori, 'Fondazione Giovanni Pascale' IRCCS, 80131 Naples, Italy
| | - Ugo Pace
- Colorectal Surgical Oncology - Abdominal Oncology Department, Istituto Nazionale per lo studio e la cura dei tumori, 'Fondazione Giovanni Pascale' IRCCS, 80131 Naples, Italy
| | - Daniela Rega
- Colorectal Surgical Oncology - Abdominal Oncology Department, Istituto Nazionale per lo studio e la cura dei tumori, 'Fondazione Giovanni Pascale' IRCCS, 80131 Naples, Italy
| | - Concetta Anna Dodaro
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Marco Milone
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Paola Izzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Marina De Rosa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
10
|
Zaravinos A, Bonavida B, Chatzaki E, Baritaki S. RKIP: A Key Regulator in Tumor Metastasis Initiation and Resistance to Apoptosis: Therapeutic Targeting and Impact. Cancers (Basel) 2018; 10:287. [PMID: 30149591 PMCID: PMC6162400 DOI: 10.3390/cancers10090287] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/12/2018] [Accepted: 08/18/2018] [Indexed: 02/07/2023] Open
Abstract
RAF-kinase inhibitor protein (RKIP) is a well-established tumor suppressor that is frequently downregulated in a plethora of solid and hematological malignancies. RKIP exerts antimetastatic and pro-apoptotic properties in cancer cells, via modulation of signaling pathways and gene products involved in tumor survival and spread. Here we review the contribution of RKIP in the regulation of early metastatic steps such as epithelial⁻mesenchymal transition (EMT), migration, and invasion, as well as in tumor sensitivity to conventional therapeutics and immuno-mediated cytotoxicity. We further provide updated justification for targeting RKIP as a strategy to overcome tumor chemo/immuno-resistance and suppress metastasis, through the use of agents able to modulate RKIP expression in cancer cells.
Collapse
Affiliation(s)
- Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus.
- Centre for Risk and Decision Sciences (CERIDES), Nicosia 2404, Cyprus.
| | - Benjamin Bonavida
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis 68100, Greece.
| | - Stavroula Baritaki
- Division of Surgical Oncology, School of Medicine, University of Crete, Heraklion, Crete 71500, Greece.
| |
Collapse
|
11
|
Lei Z, Xiaomin Y, He H, Jian C, Xiaowu X. Nicotine downregulates microRNA‐200c to promote metastasis and the epithelial–mesenchymal transition in human colorectal cancer cells. J Cell Physiol 2018; 234:1369-1379. [PMID: 30076725 DOI: 10.1002/jcp.26933] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 06/12/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Zhou Lei
- Department of Gastrointestinal Surgery the 2nd Affiliated Hospital and Children’s Hospital of Wenzhou Medical University Wenzhou China
| | - Yang Xiaomin
- Department of Pathology Wenzhou People’s Hospital Wenzhou China
| | - Huang He
- Department of Gastrointestinal Surgery the 2nd Affiliated Hospital and Children’s Hospital of Wenzhou Medical University Wenzhou China
| | - Chen Jian
- Department of Gastrointestinal Surgery the 2nd Affiliated Hospital and Children’s Hospital of Wenzhou Medical University Wenzhou China
| | - Xu Xiaowu
- Department of Gastrointestinal Surgery the 2nd Affiliated Hospital and Children’s Hospital of Wenzhou Medical University Wenzhou China
| |
Collapse
|
12
|
Wang TY, Peng CY, Lee SS, Chou MY, Yu CC, Chang YC. Acquisition cancer stemness, mesenchymal transdifferentiation, and chemoresistance properties by chronic exposure of oral epithelial cells to arecoline. Oncotarget 2018; 7:84072-84081. [PMID: 27557511 PMCID: PMC5356645 DOI: 10.18632/oncotarget.11432] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 08/13/2016] [Indexed: 12/20/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC), one of the most deadliest malignancies in the world, is caused primarily by areca nut chewing in Southeast Asia. The mechanisms by which areca nut participates in OSCC tumorigenesis are not well understood. In this study, we investigated the effects of low dose long-term arecoline (10 μg/mL, 90-days), a major areca nut alkaloid, on enhancement cancer stemness of human oral epithelial (OE) cells. OE cells with chronic arecoline exposure resulted in increased ALDH1 population, CD44 positivity, stemness-related transcription factors (Oct4, Nanog, and Sox2), epithelial-mesenchymal transdifferentiation (EMT) traits, chemoresistance, migration/invasiveness/anchorage independent growth and in vivo tumor growth as compared to their untreated controls. Mechanistically, ectopic miR-145 over-expression in chronic arecoline-exposed OE (AOE) cells inhibited the cancer stemness and xenografic. In AOE cells, luciferase reporter assays further revealed that miR-145 directly targets the 3′ UTR regions of Oct4 and Sox2 and overexpression of Sox2/Oct4 effectively reversed miR-145-regulated cancer stemness-associated phenomenas. Additionally, clinical results further revealed that Sox2 and Oct4 expression was inversely correlated with miR-145 in the tissues of areca quid chewing-associated OSCC patients. This study hence attempts to provide novel insight into areca nut-induced oral carcinogenesis and new intervention for the treatment of OSCC patients, especially in areca nut users.
Collapse
Affiliation(s)
- Tung Yuan Wang
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Chih-Yu Peng
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shiuan-Shinn Lee
- School of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Yung Chou
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan.,Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan.,Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Chao Chang
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
13
|
Magistri P, Battistelli C, Strippoli R, Petrucciani N, Pellinen T, Rossi L, Mangogna L, Aurello P, D'Angelo F, Tripodi M, Ramacciato G, Nigri G. SMO Inhibition Modulates Cellular Plasticity and Invasiveness in Colorectal Cancer. Front Pharmacol 2018; 8:956. [PMID: 29456503 PMCID: PMC5801594 DOI: 10.3389/fphar.2017.00956] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 12/15/2017] [Indexed: 12/17/2022] Open
Abstract
HIGHLIGHTS Preliminary results of this work were presented at the 2016 Academic Surgical Congress, Jacksonville (FL), February 2-4 2016 (Original title: Selective Smo-Inhibition Interferes With Cellular Energetic Metabolism In Colorectal Cancer)This study was funded by "Sapienza-University of Rome" (Funds for young researchers) and "AIRC" (Italian Association for Cancer Research)Hedgehog inhibitor was kindly provided by Genentech, Inc.®. Colon Cancer (CC) is the fourth most frequently diagnosed tumor and the second leading cause of death in the USA. Abnormalities of Hedgehog pathway have been demonstrated in several types of human cancers, however the role of Hedgehog (Hh) in CC remain controversial. In this study, we analyzed the association between increased mRNA expression of GLI1 and GLI2, two Hh target genes, and CC survival and recurrence by gene expression microarray from a cohort of 382 CC patients. We found that patients with increased expression of GLI1 showed a statistically significant reduction in survival. In order to demonstrate a causal role of Hh pathway activation in the pathogenesis of CC, we treated HCT 116, SW480 and SW620 CC cells lines with GDC-0449, a pharmacological inhibitor of Smoothened (SMO). Treatment with GDC-0449 markedly reduced expression of Hh target genes GLI1, PTCH1, HIP1, MUC5AC, thus indicating that this pathway is constitutively active in CC cell lines. Moreover, GDC-0449 partially reduced cell proliferation, which was associated with upregulation of p21 and downregulation of CycD1. Finally, treatment with the same drug reduced migration and three-dimensional invasion, which were associated with downregulation of Snail1, the EMT master gene, and with induction of the epithelial markers Cytokeratin-18 and E-cadherin. These results were confirmed by SMO genetic silencing. Notably, treatment with 5E1, a Sonic Hedgehog-specific mAb, markedly reduced the expression of Hedgehog target genes, as well as inhibited cell proliferation and mediated reversion toward an epithelial phenotype. This suggests the existence of a Hedgehog autocrine signaling loop affecting cell plasticity and fostering cell proliferation and migration/invasion in CC cell lines. These discoveries encourage future investigations to better characterize the role of Hedgehog in cellular plasticity and invasion during the different steps of CC pathogenesis.
Collapse
Affiliation(s)
- Paolo Magistri
- Department of Medical and Surgical Sciences and Translational Medicine, Sapienza-University of Rome, Rome, Italy
| | - Cecilia Battistelli
- Molecular Genetics Section, Department of Cellular Biotechnology and Hematology, Sapienza-University of Rome, Rome, Italy
| | - Raffaele Strippoli
- Molecular Genetics Section, Department of Cellular Biotechnology and Hematology, Sapienza-University of Rome, Rome, Italy
| | - Niccolò Petrucciani
- Department of Medical and Surgical Sciences and Translational Medicine, Sapienza-University of Rome, Rome, Italy
| | - Teijo Pellinen
- FIMM Institute for Molecular Medicine Finland, Helsinki, Finland
| | - Lucia Rossi
- Molecular Genetics Section, Department of Cellular Biotechnology and Hematology, Sapienza-University of Rome, Rome, Italy
| | - Livia Mangogna
- Department of Medical and Surgical Sciences and Translational Medicine, Sapienza-University of Rome, Rome, Italy
| | - Paolo Aurello
- Department of Medical and Surgical Sciences and Translational Medicine, Sapienza-University of Rome, Rome, Italy
| | - Francesco D'Angelo
- Department of Medical and Surgical Sciences and Translational Medicine, Sapienza-University of Rome, Rome, Italy
| | - Marco Tripodi
- Molecular Genetics Section, Department of Cellular Biotechnology and Hematology, Sapienza-University of Rome, Rome, Italy
| | - Giovanni Ramacciato
- Department of Medical and Surgical Sciences and Translational Medicine, Sapienza-University of Rome, Rome, Italy
| | - Giuseppe Nigri
- Department of Medical and Surgical Sciences and Translational Medicine, Sapienza-University of Rome, Rome, Italy
| |
Collapse
|
14
|
Zheng HC. The molecular mechanisms of chemoresistance in cancers. Oncotarget 2017; 8:59950-59964. [PMID: 28938696 PMCID: PMC5601792 DOI: 10.18632/oncotarget.19048] [Citation(s) in RCA: 452] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/24/2017] [Indexed: 12/11/2022] Open
Abstract
Overcoming intrinsic and acquired drug resistance is a major challenge in treating cancer patients because chemoresistance causes recurrence, cancer dissemination and death. This review summarizes numerous molecular aspects of multi-resistance, including transporter pumps, oncogenes (EGFR, PI3K/Akt, Erk and NF-κB), tumor suppressor gene (p53), mitochondrial alteration, DNA repair, autophagy, epithelial-mesenchymal transition (EMT), cancer stemness, and exosome. The chemoresistance-related proteins are localized to extracellular ligand, membrane receptor, cytosolic signal messenger, and nuclear transcription factors for various events, including proliferation, apoptosis, EMT, autophagy and exosome. Their cross-talk frequently appears, such as the regulatory effects of EGFR-Akt-NF-κB signal pathway on the transcription of Bcl-2, Bcl-xL and survivin or EMT-related stemness. It is essential for the realization of the target, individualized and combine therapy to clarify these molecular mechanisms, explore the therapy target, screen chemosensitive population, and determine the efficacy of chemoreagents by cell culture and orthotopic model.
Collapse
Affiliation(s)
- Hua-Chuan Zheng
- Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
15
|
Ye C, Shen Z, Wang B, Li Y, Li T, Yang Y, Jiang K, Ye Y, Wang S. A novel long non-coding RNA lnc-GNAT1-1 is low expressed in colorectal cancer and acts as a tumor suppressor through regulating RKIP-NF-κB-Snail circuit. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:187. [PMID: 27912775 PMCID: PMC5135755 DOI: 10.1186/s13046-016-0467-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/24/2016] [Indexed: 01/16/2023]
Abstract
Background The role of long non-coding RNAs (lncRNAs) in colorectal cancer (CRC) progression has not fully been elucidated. This study was designed to report the identification of a novel lncRNA, lnc-GNAT1-1, and its functional role in CRC progression. Methods lncRNA expression profile microarray was performed in three paired primary and liver metastatic tissues of CRC, and a novel lncRNA, lnc-GNAT1-1, was identified to be a potential functional lncRNA. Quantitative real-time PCR was used to detect its expression in CRC tissues, cell lines, and patients’ plasma, cell fractionation was used to evaluate its subcellular location. lnc-GNAT1-1 was knockdown by siRNA or overexpressed by a lentivirus vector, then in vitro an vivo experiments were performed to evaluate its biological role and the underlying mechanisms in CRC. Results Expression of lnc-GNAT1-1 was decreased in liver metastasis than the primary tumor, while the later one is lower than the paired normal mucosa. Decreased lnc-GNAT1-1 expression was associated unfavorable clinicopathological features and a poor prognosis of CRC patients. In multivariate analysis, lnc-GNAT1-1 was proved to be an independent prognostic factor. In plasma, lnc-GNAT1-1 was significant decreased in CRC patients than healthy donors, and with the TNM stages advanced, the plasma lnc-GNAT1-1 level decreased; Receiver operating characteristic curve (ROC curve) showed that plasma lnc-GNAT1-1 had a moderate to well diagnostic efficiency for CRC. In vitro experiments showed that knockdown of lnc-GNAT1-1 could inhibit the aggressive phenotypes of CRC cell lines. In vivo study showed that overexpression of lnc-GNAT1-1 could suppress the liver metastasis of CRC cells. Finally, we explored the underlying mechanism of the role lnc-GNAT1-1 plays in CRC, and found a positive correlation between lnc-GNAT1-1 and Raf kinase inhibitor protein (RKIP) expression both in cells and in patients’ tissues. We further found that lnc-GNAT1-1 could regulate the RKIP-NF-κB-Snail circuit in CRC. Conclusions We have demonstrated in this study that a novel lncRNA, lnc-GNAT1-1, is low expressed in colorectal cancer tissues and plasma, and acts as a tumor suppressor through regulating RKIP-NF-κB-Snail circuit. Electronic supplementary material The online version of this article (doi:10.1186/s13046-016-0467-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chunxiang Ye
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China.,Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Zhanlong Shen
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China. .,Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, 100044, People's Republic of China. .,Peking University People's Hospital, No. 11 Xizhimen South Street Xicheng District, Beijing, People's Republic of China.
| | - Bo Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China.,Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Yansen Li
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China.,Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Tao Li
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China.,Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Yang Yang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China.,Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Kewei Jiang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China.,Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Yingjiang Ye
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China. .,Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, 100044, People's Republic of China. .,Peking University People's Hospital, No. 11 Xizhimen South Street Xicheng District, Beijing, People's Republic of China.
| | - Shan Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China. .,Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, 100044, People's Republic of China. .,Peking University People's Hospital, No. 11 Xizhimen South Street Xicheng District, Beijing, People's Republic of China.
| |
Collapse
|
16
|
Dia VP, Pangloli P. Epithelial-to-Mesenchymal Transition in Paclitaxel-Resistant Ovarian Cancer Cells Is Downregulated by Luteolin. J Cell Physiol 2016; 232:391-401. [PMID: 27198989 DOI: 10.1002/jcp.25436] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/18/2016] [Indexed: 12/21/2022]
Abstract
Ovarian cancer (OVCA) is the deadliest of all gynecological cancers which is attributed to late presentation, persistence, and development of chemoresistance. The objectives were to evaluate the association between OVCA paclitaxel-resistance and epithelial-to-mesenchymal transition (EMT) and to determine the capability of luteolin to chemosensitize OVCA cells. X10 and X22 cells were 11.8-25.3-fold and 7.8-8.6-fold resistant to paclitaxel than 1AP cells. X10 and X22 cells exhibited a mesenchymal phenotype, while 1AP has an epithelial characteristics. Furthermore, the expression of the epithelial marker E-cadherin was downregulated, while mesenchymal markers Vimentin and N-cadherin were upregulated in X10 and X22 cells when compared to 1AP cells. Transcription factors Snail, Slug, and Twist1 were upregulated in X10 cells, while Twist1 was highly expressed in X22 cells. Luteolin treatment caused cytotoxicity being most potent to X10 OVCA cells. Treatment of non-cytotoxic dose of luteolin at 15.625 μM chemosensitized X10 and X22 OVCA cells to paclitaxel as evidenced by reduced ED50 values from 11.8 to 0.2 μM and 8.6 to 3.6 μM for X10 and X22 cells, respectively. Moreover, luteolin treatment led to a more epithelial phenotype of X10 and X22 cells and modification of EMT markers indicating reversal of EMT. The mechanism involved is through reduction of phosphorylation of FAK and ERK leading to reduced nuclear translocation of p65. Our results highlight the significance of EMT in OVCA resistance to paclitaxel and warrant the investigation of luteolin as a potential therapeutic agent in chemoresistant OVCA. J. Cell. Physiol. 232: 391-401, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vermont P Dia
- Department of Food Science and Technology, University of Tennessee Institute of Agriculture, Knoxville, Tennessee.
| | - Philipus Pangloli
- Department of Food Science and Technology, University of Tennessee Institute of Agriculture, Knoxville, Tennessee
| |
Collapse
|