1
|
Rajkumar-Calkins A, Sagar V, Wang J, Bailey S, Anderson P, Abdulkadir SA, Kirschner AN. PIM kinase inhibition counters resistance to radiotherapy and chemotherapy in human prostate cancer. Radiother Oncol 2025; 206:110794. [PMID: 39978680 DOI: 10.1016/j.radonc.2025.110794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
PURPOSE PIM kinases are associated with treatment resistance and poor prognosis in prostate cancer through roles in DNA damage response, cellular metabolism, proliferation, and survival. We hypothesized PIM inhibition addresses treatment resistance to radiotherapy and docetaxel in prostate cancer. METHODS PIM inhibition in prostate cancer cell lines was examined by phosphorylated H2AX and colony formations assays. In normal and castrated mice with prostate tumor xenografts, tumor growth was monitored with daily oral PIM inhibition +/- fractionated radiotherapy (RT) or docetaxel. Radiotherapy was given 30 Gy in 15 treatments, mimicking clinical conventional daily treatment over 3 weeks in a translational murine model system. RESULTS PIM inhibition decreased radiotherapy-induced DNA-damage repair and decreased cell proliferation and survival. In mice, PIM inhibition increased the efficacy of both radiation and docetaxel to reduce tumor size in hormone-dependent and -independent xenografts. Xenografts showed altered gene expression changes, including downregulation of ribosomal pathways and upregulation of cardiomyocyte signaling pathways, due to PIM inhibition as analyzed by RNA-Seq. Immunostaining of multiple proteins, including COX-2 and MDM2, was altered by PIM inhibition. CONCLUSIONS PIM inhibition addresses treatment resistance to docetaxel and radiotherapy in multiple prostate cancer models. Our data provide a strong rationale for testing PIM inhibitors in combination with standard therapies for treatment-resistant high-risk localized or metastatic prostate cancer in clinical trials.
Collapse
Affiliation(s)
- Anne Rajkumar-Calkins
- Department of Radiation Oncology, Vanderbilt University Medical Center, 2220 Pierce Ave, B1003 PRB, Nashville, TN 37232, USA; Department of Radiation Oncology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Vinay Sagar
- Department of Urology, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 676 N. St. Clair St., Arkes 2300, Chicago, IL 60611, USA
| | - Jian Wang
- Department of Radiation Oncology, Vanderbilt University Medical Center, 2220 Pierce Ave, B1003 PRB, Nashville, TN 37232, USA
| | - Shania Bailey
- Department of Biological Sciences, Salisbury University, 1101 Camden Avenue, Salisbury, MD 21801, USA
| | - Philip Anderson
- Department of Biological Sciences, Salisbury University, 1101 Camden Avenue, Salisbury, MD 21801, USA
| | - Sarki A Abdulkadir
- Department of Urology and Pathology, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 303 E Superior St., Chicago, IL 60611, USA
| | - Austin N Kirschner
- Department of Radiation Oncology, Vanderbilt University Medical Center, 2220 Pierce Ave, B1003 PRB, Nashville, TN 37232, USA.
| |
Collapse
|
2
|
Seo J, Ko R, Kim M, Seo J, Lee H, Kim D, Jeong W, Kim HS, Lee SY. Pim1 promotes the maintenance of bone homeostasis by regulating osteoclast function. Exp Mol Med 2025; 57:733-744. [PMID: 40164682 PMCID: PMC12046003 DOI: 10.1038/s12276-025-01421-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/24/2024] [Accepted: 01/05/2025] [Indexed: 04/02/2025] Open
Abstract
The Pim1 (proviral integration site for Moloney leukemia virus 1) protein is a serine/threonine kinase that is essential for cell proliferation, apoptosis and innate immune responses. Here we show that Pim1 promotes osteoclast resorptive function without affecting osteoclast numbers. Specifically, we found that mice lacking Pim1 (Pim1-/-) developed increased trabecular bone mass and indices such as trabecular bone-mass density. This was due to the direct phosphorylation of TRAF6 by Pim1 in mature osteoclasts, which activated the Akt-GSK3β signaling pathway. This, in turn, promoted the acetylation and consequent stabilization of microtubules, which permitted the formation of the osteoclast sealing zone. In vivo experiments then showed that, when mice with lipopolysaccharide-induced bone loss or tumor-induced osteolysis were treated with SGI-1776, a Pim1 inhibitor that is more selective for Pim1, the bone loss was significantly ameliorated. Thus, Pim1 plays an important role in osteoclast function and may be a therapeutic target for bone-related diseases.
Collapse
Affiliation(s)
- Jeongin Seo
- Department of Life Science, Ewha Womans University, Seoul, South Korea
- Multitasking Macrophage Research Center, Ewha Womans University, Seoul, South Korea
- Brain Korea 21 FOUR Program, LIFE Talent Development for Future Response, Ewha Womans University, Seoul, South Korea
| | - Ryeojin Ko
- Department of Life Science, Ewha Womans University, Seoul, South Korea
- Multitasking Macrophage Research Center, Ewha Womans University, Seoul, South Korea
| | - Minhee Kim
- Department of Life Science, Ewha Womans University, Seoul, South Korea
- Multitasking Macrophage Research Center, Ewha Womans University, Seoul, South Korea
- Brain Korea 21 FOUR Program, LIFE Talent Development for Future Response, Ewha Womans University, Seoul, South Korea
| | - Jeongmin Seo
- Department of Life Science, Ewha Womans University, Seoul, South Korea
- Multitasking Macrophage Research Center, Ewha Womans University, Seoul, South Korea
| | - Hana Lee
- Department of Biomedical Engineering, Yonsei University, Wonju, South Korea
| | - Doyong Kim
- Department of Biomedical Engineering, Yonsei University, Wonju, South Korea
| | - Woojin Jeong
- Department of Life Science, Ewha Womans University, Seoul, South Korea
- Multitasking Macrophage Research Center, Ewha Womans University, Seoul, South Korea
- Brain Korea 21 FOUR Program, LIFE Talent Development for Future Response, Ewha Womans University, Seoul, South Korea
| | - Han Sung Kim
- Department of Biomedical Engineering, Yonsei University, Wonju, South Korea
| | - Soo Young Lee
- Department of Life Science, Ewha Womans University, Seoul, South Korea.
- Multitasking Macrophage Research Center, Ewha Womans University, Seoul, South Korea.
- Brain Korea 21 FOUR Program, LIFE Talent Development for Future Response, Ewha Womans University, Seoul, South Korea.
| |
Collapse
|
3
|
Bhoopalan SV, Yen JS, Mayuranathan T, Mayberry KD, Yao Y, Lillo Osuna MA, Jang Y, Liyanage JS, Blanc L, Ellis SR, Wlodarski MW, Weiss MJ. An RPS19-edited model for Diamond-Blackfan anemia reveals TP53-dependent impairment of hematopoietic stem cell activity. JCI Insight 2023; 8:e161810. [PMID: 36413407 PMCID: PMC9870085 DOI: 10.1172/jci.insight.161810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
Diamond-Blackfan anemia (DBA) is a genetic blood disease caused by heterozygous loss-of-function mutations in ribosomal protein (RP) genes, most commonly RPS19. The signature feature of DBA is hypoplastic anemia occurring in infants, although some older patients develop multilineage cytopenias with bone marrow hypocellularity. The mechanism of anemia in DBA is not fully understood and even less is known about the pancytopenia that occurs later in life, in part because patient hematopoietic stem and progenitor cells (HSPCs) are difficult to obtain, and the current experimental models are suboptimal. We modeled DBA by editing healthy human donor CD34+ HSPCs with CRISPR/Cas9 to create RPS19 haploinsufficiency. In vitro differentiation revealed normal myelopoiesis and impaired erythropoiesis, as observed in DBA. After transplantation into immunodeficient mice, bone marrow repopulation by RPS19+/- HSPCs was profoundly reduced, indicating hematopoietic stem cell (HSC) impairment. The erythroid and HSC defects resulting from RPS19 haploinsufficiency were partially corrected by transduction with an RPS19-expressing lentiviral vector or by Cas9 disruption of TP53. Our results define a tractable, biologically relevant experimental model of DBA based on genome editing of primary human HSPCs and they identify an associated HSC defect that emulates the pan-hematopoietic defect of DBA.
Collapse
Affiliation(s)
| | | | | | | | - Yu Yao
- Department of Hematology, and
| | | | | | - Janaka S.S. Liyanage
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Lionel Blanc
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Steven R. Ellis
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky, USA
| | | | | |
Collapse
|
4
|
Desai AS, Sagar V, Lysy B, Weiner AB, Ko OS, Driscoll C, Rodriguez Y, Vatapalli R, Unno K, Han H, Cohen JE, Vo AX, Pham M, Shin M, Jain-Poster K, Ross J, Morency EG, Meyers TJ, Witte JS, Wu J, Abdulkadir SA, Kundu SD. Correction: Inflammatory bowel disease induces inflammatory and preneoplastic changes in the prostate. Prostate Cancer Prostatic Dis 2022; 25:375. [PMID: 34158596 DOI: 10.1038/s41391-021-00409-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anuj S Desai
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Vinay Sagar
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Barbara Lysy
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Adam B Weiner
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Oliver S Ko
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Conor Driscoll
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yara Rodriguez
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rajita Vatapalli
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kenji Unno
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Huiying Han
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jason E Cohen
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Amanda X Vo
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Minh Pham
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Michael Shin
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ketan Jain-Poster
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jennifer Ross
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,ICON Central Laboratories, New York, NY, USA
| | - Elizabeth G Morency
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Travis J Meyers
- Department of Epidemiology and Biostatistics, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - John S Witte
- Department of Epidemiology and Biostatistics, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Jennifer Wu
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sarki A Abdulkadir
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Shilajit D Kundu
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
5
|
Zhao Y, Aziz AUR, Zhang H, Zhang Z, Li N, Liu B. A systematic review on active sites and functions of PIM-1 protein. Hum Cell 2022; 35:427-440. [PMID: 35000143 DOI: 10.1007/s13577-021-00656-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
The Proviral Integration of Molony murine leukemia virus (PIM)-1 protein contributes to the solid cancers and hematologic malignancies, cell growth, proliferation, differentiation, migration, and other life activities. Many studies have related these functions to its molecular structure, subcellular localization and expression level. However, recognition of specific active sites and their effects on the activity of this constitutively active kinase is still a challenge. Based on the close relationship between its molecular structure and functional activity, this review covers the specific residues involved in the binding of ATP and different substrates in its catalytic domain. This review then elaborates on the relevant changes in protein conformation and cell functions after PIM-1 binds to different substrates. Therefore, this intensive study can improve the understanding of PIM-1-regulated signaling pathways by facilitating the discovery of its potential phosphorylation substrates.
Collapse
Affiliation(s)
- Youyi Zhao
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China
| | - Aziz Ur Rehman Aziz
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China
| | - Hangyu Zhang
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China
| | - Zhengyao Zhang
- School of Life and Pharmaceutical Sciences, Panjin Campus of Dalian University of Technology, Panjin, 124221, China
| | - Na Li
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China.
| | - Bo Liu
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
6
|
Seifert C, Balz E, Herzog S, Korolev A, Gaßmann S, Paland H, Fink MA, Grube M, Marx S, Jedlitschky G, Tzvetkov MV, Rauch BH, Schroeder HWS, Bien-Möller S. PIM1 Inhibition Affects Glioblastoma Stem Cell Behavior and Kills Glioblastoma Stem-like Cells. Int J Mol Sci 2021; 22:ijms222011126. [PMID: 34681783 PMCID: PMC8541331 DOI: 10.3390/ijms222011126] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 12/15/2022] Open
Abstract
Despite comprehensive therapy and extensive research, glioblastoma (GBM) still represents the most aggressive brain tumor in adults. Glioma stem cells (GSCs) are thought to play a major role in tumor progression and resistance of GBM cells to radiochemotherapy. The PIM1 kinase has become a focus in cancer research. We have previously demonstrated that PIM1 is involved in survival of GBM cells and in GBM growth in a mouse model. However, little is known about the importance of PIM1 in cancer stem cells. Here, we report on the role of PIM1 in GBM stem cell behavior and killing. PIM1 inhibition negatively regulates the protein expression of the stem cell markers CD133 and Nestin in GBM cells (LN-18, U-87 MG). In contrast, CD44 and the astrocytic differentiation marker GFAP were up-regulated. Furthermore, PIM1 expression was increased in neurospheres as a model of GBM stem-like cells. Treatment of neurospheres with PIM1 inhibitors (TCS PIM1-1, Quercetagetin, and LY294002) diminished the cell viability associated with reduced DNA synthesis rate, increased caspase 3 activity, decreased PCNA protein expression, and reduced neurosphere formation. Our results indicate that PIM1 affects the glioblastoma stem cell behavior, and its inhibition kills glioblastoma stem-like cells, pointing to PIM1 targeting as a potential anti-glioblastoma therapy.
Collapse
Affiliation(s)
- Carolin Seifert
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
- Department of Neurosurgery, University Medicine Greifswald, 17489 Greifswald, Germany; (S.M.); (H.W.S.S.)
| | - Ellen Balz
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
- Department of Neurosurgery, University Medicine Greifswald, 17489 Greifswald, Germany; (S.M.); (H.W.S.S.)
| | - Susann Herzog
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
| | - Anna Korolev
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
| | - Sebastian Gaßmann
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
| | - Heiko Paland
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
- Department of Neurosurgery, University Medicine Greifswald, 17489 Greifswald, Germany; (S.M.); (H.W.S.S.)
| | - Matthias A. Fink
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
- Department of Neurosurgery, University Medicine Greifswald, 17489 Greifswald, Germany; (S.M.); (H.W.S.S.)
| | - Markus Grube
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
| | - Sascha Marx
- Department of Neurosurgery, University Medicine Greifswald, 17489 Greifswald, Germany; (S.M.); (H.W.S.S.)
| | - Gabriele Jedlitschky
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
| | - Mladen V. Tzvetkov
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
| | - Bernhard H. Rauch
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
- Department of Pharmacology and Toxicology, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Henry W. S. Schroeder
- Department of Neurosurgery, University Medicine Greifswald, 17489 Greifswald, Germany; (S.M.); (H.W.S.S.)
| | - Sandra Bien-Möller
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
- Department of Neurosurgery, University Medicine Greifswald, 17489 Greifswald, Germany; (S.M.); (H.W.S.S.)
- Correspondence: ; Tel.: +49-03834-865646
| |
Collapse
|
7
|
Fukui Y, Hayano S, Kawanabe N, Wang Z, Shimada A, Saito MK, Asaka I, Kamioka H. Investigation of the molecular causes underlying physical abnormalities in Diamond-Blackfan anemia patients with RPL5 haploinsufficiency. Pathol Int 2021; 71:803-813. [PMID: 34587661 DOI: 10.1111/pin.13168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/12/2021] [Indexed: 01/05/2023]
Abstract
Diamond-Blackfan anemia (DBA) is a genetic disorder caused by mutations in genes encoding ribosomal proteins and characterized by erythroid aplasia and various physical abnormalities. Although accumulating evidence suggests that defective ribosome biogenesis leads to p53-mediated apoptosis in erythroid progenitor cells, little is known regarding the underlying causes of the physical abnormalities. In this study, we established induced pluripotent stem cells from a DBA patient with RPL5 haploinsufficiency. These cells retained the ability to differentiate into osteoblasts and chondrocytes. However, RPL5 haploinsufficiency impaired the production of mucins and increased apoptosis in differentiated chondrocytes. Increased expression of the pro-apoptotic genes BAX and CASP9 further indicated that RPL5 haploinsufficiency triggered p53-mediated apoptosis in chondrocytes. Murine double minute 2 (MDM2), the primary negative regulator of p53, plays a crucial role in erythroid aplasia in DBA patient. We found the phosphorylation level of MDM2 was significantly decreased in RPL5 haploinsufficient chondrocytes. In stark contrast, we found no evidence that RPL5 haploinsufficiency impaired osteogenesis. Collectively, our data support a model in which RPL5 haploinsufficiency specifically induces p53-mediated apoptosis in chondrocytes through MDM2 inhibition, which leads to physical abnormalities in DBA patients.
Collapse
Affiliation(s)
- Yuko Fukui
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Satoru Hayano
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.,Department of Orthodontics, Okayama University Hospital, Okayama, Japan
| | - Noriaki Kawanabe
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ziyi Wang
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Akira Shimada
- Department of Pediatric Hematology/Oncology, Okayama University Hospital, Okayama, Japan.,Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - Megumu K Saito
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Isao Asaka
- Department of Fundamental Cell Technology, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Hiroshi Kamioka
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
8
|
Cui X, Pan G, Chen Y, Guo X, Liu T, Zhang J, Yang X, Cheng M, Gao H, Jiang F. The p53 pathway in vasculature revisited: A therapeutic target for pathological vascular remodeling? Pharmacol Res 2021; 169:105683. [PMID: 34019981 DOI: 10.1016/j.phrs.2021.105683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/26/2021] [Accepted: 05/14/2021] [Indexed: 02/08/2023]
Abstract
Pathological vascular remodeling contributes to the development of restenosis following intraluminal interventions, transplant vasculopathy, and pulmonary arterial hypertension. Activation of the tumor suppressor p53 may counteract vascular remodeling by inhibiting aberrant proliferation of vascular smooth muscle cells and repressing vascular inflammation. In particular, the development of different lines of small-molecule p53 activators ignites the hope of treating remodeling-associated vascular diseases by targeting p53 pharmacologically. In this review, we discuss the relationships between p53 and pathological vascular remodeling, and summarize current experimental data suggesting that drugging the p53 pathway may represent a novel strategy to prevent the development of vascular remodeling.
Collapse
Affiliation(s)
- Xiaopei Cui
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Guopin Pan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Ye Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Xiaosun Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Tengfei Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Jing Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Xiaofan Yang
- Department of Pediatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Mei Cheng
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Haiqing Gao
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Fan Jiang
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
9
|
Karayel Ö, Xu P, Bludau I, Velan Bhoopalan S, Yao Y, Ana Rita FC, Santos A, Schulman BA, Alpi AF, Weiss MJ, Mann M. Integrative proteomics reveals principles of dynamic phosphosignaling networks in human erythropoiesis. Mol Syst Biol 2020; 16:e9813. [PMID: 33259127 PMCID: PMC7706838 DOI: 10.15252/msb.20209813] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022] Open
Abstract
Human erythropoiesis is an exquisitely controlled multistep developmental process, and its dysregulation leads to numerous human diseases. Transcriptome and epigenome studies provided insights into system-wide regulation, but we currently lack a global mechanistic view on the dynamics of proteome and post-translational regulation coordinating erythroid maturation. We established a mass spectrometry (MS)-based proteomics workflow to quantify and dynamically track 7,400 proteins and 27,000 phosphorylation sites of five distinct maturation stages of in vitro reconstituted erythropoiesis of CD34+ HSPCs. Our data reveal developmental regulation through drastic proteome remodeling across stages of erythroid maturation encompassing most protein classes. This includes various orchestrated changes in solute carriers indicating adjustments to altered metabolic requirements. To define the distinct proteome of each maturation stage, we developed a computational deconvolution approach which revealed stage-specific marker proteins. The dynamic phosphoproteomes combined with a kinome-targeted CRISPR/Cas9 screen uncovered coordinated networks of erythropoietic kinases and pinpointed downregulation of c-Kit/MAPK signaling axis as key driver of maturation. Our system-wide view establishes the functional dynamic of complex phosphosignaling networks and regulation through proteome remodeling in erythropoiesis.
Collapse
Affiliation(s)
- Özge Karayel
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Peng Xu
- Department of HematologySt. Jude Children’s Research HospitalMemphisTNUSA
| | - Isabell Bludau
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | | | - Yu Yao
- Department of HematologySt. Jude Children’s Research HospitalMemphisTNUSA
| | - Freitas Colaco Ana Rita
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Alberto Santos
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Brenda A Schulman
- Department of Molecular Machines and SignalingMax Planck Institute of BiochemistryMartinsriedGermany
| | - Arno F Alpi
- Department of Molecular Machines and SignalingMax Planck Institute of BiochemistryMartinsriedGermany
| | - Mitchell J Weiss
- Department of HematologySt. Jude Children’s Research HospitalMemphisTNUSA
| | - Matthias Mann
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
10
|
Vatapalli R, Sagar V, Rodriguez Y, Zhao JC, Unno K, Pamarthy S, Lysy B, Anker J, Han H, Yoo YA, Truica M, Chalmers ZR, Giles F, Yu J, Chakravarti D, Carneiro B, Abdulkadir SA. Histone methyltransferase DOT1L coordinates AR and MYC stability in prostate cancer. Nat Commun 2020; 11:4153. [PMID: 32814769 PMCID: PMC7438336 DOI: 10.1038/s41467-020-18013-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 07/20/2020] [Indexed: 12/19/2022] Open
Abstract
The histone methyltransferase DOT1L methylates lysine 79 (K79) on histone H3 and is involved in Mixed Lineage Leukemia (MLL) fusion leukemogenesis; however, its role in prostate cancer (PCa) is undefined. Here we show that DOT1L is overexpressed in PCa and is associated with poor outcome. Genetic and chemical inhibition of DOT1L selectively impaired the viability of androgen receptor (AR)-positive PCa cells and organoids, including castration-resistant and enzalutamide-resistant cells. The sensitivity of AR-positive cells is due to a distal K79 methylation-marked enhancer in the MYC gene bound by AR and DOT1L not present in AR-negative cells. DOT1L inhibition leads to reduced MYC expression and upregulation of MYC-regulated E3 ubiquitin ligases HECTD4 and MYCBP2, which promote AR and MYC degradation. This leads to further repression of MYC in a negative feed forward manner. Thus DOT1L selectively regulates the tumorigenicity of AR-positive prostate cancer cells and is a promising therapeutic target for PCa. Histone methyltransferase, DOTL1 is implicated in the pathogenesis of MLL-rearranged leukemia, however, not much is known of its role in prostate cancer (PCa). Here, the authors report that DOTL1 inhibition suppresses both androgen receptor and MYC pathways in a negative feed forward manner to reduce growth of AR-positive PCa.
Collapse
Affiliation(s)
- R Vatapalli
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - V Sagar
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Y Rodriguez
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - J C Zhao
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - K Unno
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - S Pamarthy
- Atrin Pharmaceuticals, Pennsylvania Biotechnology Center, Doylestown, PA, USA
| | - B Lysy
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - J Anker
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - H Han
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Y A Yoo
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - M Truica
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Z R Chalmers
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - F Giles
- Developmental Therapeutics Consortium, Chicago, IL, USA
| | - J Yu
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - D Chakravarti
- Division of Reproductive Science in Medicine, Department of OB/GYN, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - B Carneiro
- Lifespan Cancer Institute, Division of Hematology/Oncology, Alpert Medical School, Brown University, Providence, RI, USA
| | - S A Abdulkadir
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
11
|
Sagar V, Vatapalli R, Lysy B, Pamarthy S, Anker JF, Rodriguez Y, Han H, Unno K, Stadler WM, Catalona WJ, Hussain M, Gill PS, Abdulkadir SA. EPHB4 inhibition activates ER stress to promote immunogenic cell death of prostate cancer cells. Cell Death Dis 2019; 10:801. [PMID: 31641103 PMCID: PMC6805914 DOI: 10.1038/s41419-019-2042-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/09/2019] [Accepted: 10/03/2019] [Indexed: 01/01/2023]
Abstract
The EPHB4 receptor is implicated in the development of several epithelial tumors and is a promising therapeutic target, including in prostate tumors in which EPHB4 is overexpressed and promotes tumorigenicity. Here, we show that high expression of EPHB4 correlated with poor survival in prostate cancer patients and EPHB4 inhibition induced cell death in both hormone sensitive and castration-resistant prostate cancer cells. EPHB4 inhibition reduced expression of the glucose transporter, GLUT3, impaired glucose uptake, and reduced cellular ATP levels. This was associated with the activation of endoplasmic reticulum stress and tumor cell death with features of immunogenic cell death (ICD), including phosphorylation of eIF2α, increased cell surface calreticulin levels, and release of HMGB1 and ATP. The changes in tumor cell metabolism after EPHB4 inhibition were associated with MYC downregulation, likely mediated by the SRC/p38 MAPK/4EBP1 signaling cascade, known to impair cap-dependent translation. Together, our study indicates a role for EPHB4 inhibition in the induction of immunogenic cell death with implication for prostate cancer therapy.
Collapse
Affiliation(s)
- Vinay Sagar
- Department of Urology, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Rajita Vatapalli
- Department of Urology, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Barbara Lysy
- Department of Urology, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Sahithi Pamarthy
- Atrin Pharmaceuticals, Pennsylvania Biotechnology Center, Doylestown, PA, 18902, USA
| | - Jonathan F Anker
- Department of Urology, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Yara Rodriguez
- Department of Urology, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Huiying Han
- Department of Urology, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Kenji Unno
- Department of Urology, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Walter M Stadler
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL, 60637, USA
| | - William J Catalona
- Department of Urology and Medical Social Sciences (DEV), Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Maha Hussain
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Parkash S Gill
- Division of Hematology, Department of Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Sarki A Abdulkadir
- Department of Urology, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA. .,Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
12
|
Karakostis K, Fåhraeus R. Shaping the regulation of the p53 mRNA tumour suppressor: the co-evolution of genetic signatures. BMC Cancer 2019; 19:915. [PMID: 31519161 PMCID: PMC6743176 DOI: 10.1186/s12885-019-6118-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
Structured RNA regulatory motifs exist from the prebiotic stages of the RNA world to the more complex eukaryotic systems. In cases where a functional RNA structure is within the coding sequence a selective pressure drives a parallel co-evolution of the RNA structure and the encoded peptide domain. The p53-MDM2 axis, describing the interactions between the p53 tumor suppressor and the MDM2 E3 ubiquitin ligase, serves as particularly useful model revealing how secondary RNA structures have co-evolved along with corresponding interacting protein motifs, thus having an impact on protein - RNA and protein - protein interactions; and how such structures developed signal-dependent regulation in mammalian systems. The p53(BOX-I) RNA sequence binds the C-terminus of MDM2 and controls p53 synthesis while the encoded peptide domain binds MDM2 and controls p53 degradation. The BOX-I peptide domain is also located within p53 transcription activation domain. The folding of the p53 mRNA structure has evolved from temperature-regulated in pre-vertebrates to an ATM kinase signal-dependent pathway in mammalian cells. The protein - protein interaction evolved in vertebrates and became regulated by the same signaling pathway. At the same time the protein - RNA and protein - protein interactions evolved, the p53 trans-activation domain progressed to become integrated into a range of cellular pathways. We discuss how a single synonymous mutation in the BOX-1, the p53(L22 L), observed in a chronic lymphocyte leukaemia patient, prevents the activation of p53 following DNA damage. The concepts analysed and discussed in this review may serve as a conceptual mechanistic paradigm of the co-evolution and function of molecules having roles in cellular regulation, or the aetiology of genetic diseases and how synonymous mutations can affect the encoded protein.
Collapse
Affiliation(s)
| | - Robin Fåhraeus
- Université Paris 7, INSERM UMR 1131, 27 Rue Juliette Dodu, 75010 Paris, France
- Department of Medical Biosciences, Umea University, SE-90185 Umea, Sweden
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| |
Collapse
|
13
|
Zhang C, Qie Y, Yang T, Wang L, Du E, Liu Y, Xu Y, Qiao B, Zhang Z. Kinase PIM1 promotes prostate cancer cell growth via c-Myc-RPS7-driven ribosomal stress. Carcinogenesis 2018; 40:52-60. [PMID: 30247545 DOI: 10.1093/carcin/bgy126] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/26/2018] [Accepted: 09/19/2018] [Indexed: 01/01/2023] Open
Affiliation(s)
- Changwen Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| | - Yunkai Qie
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| | - Tong Yang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| | - Li Wang
- Department of Gynaecology and Obstetrics, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - E Du
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| | - Yan Liu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| | - Yong Xu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| | - Baomin Qiao
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| | - Zhihong Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| |
Collapse
|
14
|
Terrazas K, Dixon J, Trainor PA, Dixon MJ. Rare syndromes of the head and face: mandibulofacial and acrofacial dysostoses. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2017; 6:10.1002/wdev.263. [PMID: 28186364 PMCID: PMC5400673 DOI: 10.1002/wdev.263] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/26/2016] [Accepted: 11/21/2016] [Indexed: 12/13/2022]
Abstract
Craniofacial anomalies account for approximately one-third of all congenital birth defects reflecting the complexity of head and facial development. Craniofacial development is dependent upon a multipotent, migratory population of neural crest cells, which generate most of the bone and cartilage of the head and face. In this review, we discuss advances in our understanding of the pathogenesis of a specific array of craniofacial anomalies, termed facial dysostoses, which can be subdivided into mandibulofacial dysostosis, which present with craniofacial defects only, and acrofacial dysostosis, which encompasses both craniofacial and limb anomalies. In particular, we focus on Treacher Collins syndrome, Acrofacial Dysostosis-Cincinnati Type as well as Nager and Miller syndromes, and animal models that provide new insights into the molecular and cellular basis of these congenital syndromes. We emphasize the etiologic and pathogenetic similarities between these birth defects, specifically their unique deficiencies in global processes including ribosome biogenesis, DNA damage repair, and pre-mRNA splicing, all of which affect neural crest cell development and result in similar tissue-specific defects. WIREs Dev Biol 2017, 6:e263. doi: 10.1002/wdev.263 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Karla Terrazas
- Stowers Institute for Medical Research, 1000 E. 50th Street Kansas City, MO 64110, USA
| | - Jill Dixon
- Division of Dentistry, Faculty of Biology, Medicine & Health, Michael Smith Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Paul A Trainor
- Stowers Institute for Medical Research, 1000 E. 50th Street Kansas City, MO 64110, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Michael J Dixon
- Division of Dentistry, Faculty of Biology, Medicine & Health, Michael Smith Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
15
|
Juli G, Gismondi A, Monteleone V, Caldarola S, Iadevaia V, Aspesi A, Dianzani I, Proud CG, Loreni F. Depletion of ribosomal protein S19 causes a reduction of rRNA synthesis. Sci Rep 2016; 6:35026. [PMID: 27734913 PMCID: PMC5062126 DOI: 10.1038/srep35026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/19/2016] [Indexed: 12/25/2022] Open
Abstract
Ribosome biogenesis plays key roles in cell growth by providing increased capacity for protein synthesis. It requires coordinated production of ribosomal proteins (RP) and ribosomal RNA (rRNA), including the processing of the latter. Here, we show that, the depletion of RPS19 causes a reduction of rRNA synthesis in cell lines of both erythroid and non-erythroid origin. A similar effect is observed upon depletion of RPS6 or RPL11. The deficiency of RPS19 does not alter the stability of rRNA, but instead leads to an inhibition of RNA Polymerase I (Pol I) activity. In fact, results of nuclear run-on assays and ChIP experiments show that association of Pol I with the rRNA gene is reduced in RPS19-depleted cells. The phosphorylation of three known regulators of Pol I, CDK2, AKT and AMPK, is altered during ribosomal stress and could be involved in the observed downregulation. Finally, RNA from patients with Diamond Blackfan Anemia (DBA), shows, on average, a lower level of 47S precursor. This indicates that inhibition of rRNA synthesis could be one of the molecular alterations at the basis of DBA.
Collapse
Affiliation(s)
- Giada Juli
- Department of Biology, University of Rome Tor Vergata, Roma, Italy
| | - Angelo Gismondi
- Department of Biology, University of Rome Tor Vergata, Roma, Italy
| | | | - Sara Caldarola
- Department of Biology, University of Rome Tor Vergata, Roma, Italy
| | - Valentina Iadevaia
- Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - Anna Aspesi
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Irma Dianzani
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | | | - Fabrizio Loreni
- Department of Biology, University of Rome Tor Vergata, Roma, Italy
| |
Collapse
|
16
|
Stępiński D. Nucleolus-derived mediators in oncogenic stress response and activation of p53-dependent pathways. Histochem Cell Biol 2016; 146:119-39. [PMID: 27142852 DOI: 10.1007/s00418-016-1443-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2016] [Indexed: 12/12/2022]
Abstract
Rapid growth and division of cells, including tumor ones, is correlated with intensive protein biosynthesis. The output of nucleoli, organelles where translational machineries are formed, depends on a rate of particular stages of ribosome production and on accessibility of elements crucial for their effective functioning, including substrates, enzymes as well as energy resources. Different factors that induce cellular stress also often lead to nucleolar dysfunction which results in ribosome biogenesis impairment. Such nucleolar disorders, called nucleolar or ribosomal stress, usually affect cellular functioning which in fact is a result of p53-dependent pathway activation, elicited as a response to stress. These pathways direct cells to new destinations such as cell cycle arrest, damage repair, differentiation, autophagy, programmed cell death or aging. In the case of impaired nucleolar functioning, nucleolar and ribosomal proteins mediate activation of the p53 pathways. They are also triggered as a response to oncogenic factor overexpression to protect tissues and organs against extensive proliferation of abnormal cells. Intentional impairment of any step of ribosome biosynthesis which would direct the cells to these destinations could be a strategy used in anticancer therapy. This review presents current knowledge on a nucleolus, mainly in relation to cancer biology, which is an important and extremely sensitive element of the mechanism participating in cellular stress reaction mediating activation of the p53 pathways in order to counteract stress effects, especially cancer development.
Collapse
Affiliation(s)
- Dariusz Stępiński
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland.
| |
Collapse
|