1
|
Xu X, Zhou T, Wei X, Jiang X, Cao J. Application of mPEG-CS-cRGD/ Bmi-1RNAi-PTX nanoparticles in suppression of laryngeal cancer by targeting cancer stem cells. Drug Deliv 2023; 30:2180112. [PMID: 38095348 PMCID: PMC9946312 DOI: 10.1080/10717544.2023.2180112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/08/2023] [Indexed: 02/23/2023] Open
Abstract
Although surgery-based comprehensive therapy is becoming the main approach to treat laryngeal cancer, recurrence, metastasis, radiotherapy resistance and chemotherapy tolerance are still the main causes of death in patients. Targeted inhibition of laryngeal cancer stem cells has been considered as the consensus to cure laryngeal cancer. Our previous study has confirmed proto-oncogene Bmi-1 as a key regulator for self-renewal of laryngeal cancer stem cells. Targeted knockdown of Bmi-1 gene effectively inhibited the self-renewal and differentiation of laryngeal cancer stem cells, leading to the promoted sensitivity to chemotherapy including paclitaxel. However, due to off-target effects and quick degradation of the naked Bmi-1-RNAi small RNA oligo by nuclease in body fluids, it is urgently needed to develop a tumor-targeted delivery system with a protective shell. In this study, we designed and synthesized cRGD peptide-modified chitosan-polyethylene glycol slow-release nanoparticles (mPEG-CS-cRGD/Bmi-1RNAi-PTX) containing Bmi-1RNAi siRNA oligo and paclitaxel, which showed spherical in shape, 200 nm diameter in size, low cytotoxicity, strong DNA wrapping, resistance to nuclease degradation and high transfection efficiency to cells. Functional analysis indicated significant suppression of cell proliferation and migration and induction of apoptosis by the nanocomplex in laryngeal cancer cells in vitro. By application to the mouse model with laryngeal cancer, the nanocomplex inhibited tumor growth significantly in vivo. In addition, cRGD peptide, paclitaxel and Bmi-1 siRNA in the nanoparticles showed synergistic effects to suppress laryngeal cancer stem cells. In conclusion, this study not only developed a laryngeal tumor-targeted chemotherapeutic system, but also demonstrated a Bmi-1 RNAi-based chemotherapeutic strategy to inhibit cancer stem cells, having strong potential to treat laryngeal cancer patients suffering therapy resistance and/or tumor recurrence.
Collapse
Affiliation(s)
- Xiaoyan Xu
- Department of E.N.T, Gansu Provincial Hospital, Lanzhou, P.R. China
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, P.R. China
| | - Tianhao Zhou
- Department of E.N.T, Gansu Provincial Hospital, Lanzhou, P.R. China
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, P.R. China
| | - Xudong Wei
- Department of E.N.T, Gansu Provincial Hospital, Lanzhou, P.R. China
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, P.R. China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, P.R. China
| | - Xuelian Jiang
- Department of E.N.T, Gansu Provincial Hospital, Lanzhou, P.R. China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, P.R. China
| | - Jiyan Cao
- Department of E.N.T, Gansu Provincial Hospital, Lanzhou, P.R. China
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, P.R. China
| |
Collapse
|
2
|
Ivey A, Pratt H, Boone BA. Molecular pathogenesis and emerging targets of gastric adenocarcinoma. J Surg Oncol 2022; 125:1079-1095. [PMID: 35481910 PMCID: PMC9069999 DOI: 10.1002/jso.26874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 12/24/2022]
Abstract
Gastric adenocarcinoma (GC) is a devastating disease and is the third leading cause of cancer deaths worldwide. This heterogeneous disease has several different classification systems that consider histological appearance and genomic alterations. Understanding the etiology of GC, including infection, hereditary conditions, and environmental factors, is of particular importance and is discussed in this review. To improve survival in GC, we also must improve our therapeutic strategies. Here, we discuss new targets that warrant further exploration.
Collapse
Affiliation(s)
- Abby Ivey
- Department of Cancer Cell Biology, West Virginia University Cancer Institute, West Virginia University, Morgantown, West Virginia, USA
| | - Hillary Pratt
- Department of Cancer Cell Biology, West Virginia University Cancer Institute, West Virginia University, Morgantown, West Virginia, USA
| | - Brian A Boone
- Department of Cancer Cell Biology, West Virginia University Cancer Institute, West Virginia University, Morgantown, West Virginia, USA
- Department of Surgery, Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
3
|
Guo Y, Zhou G, Ma Q, Zhang L, Chen J. Bmi-1 directly upregulates glucose transporter 1 in human gastric adenocarcinoma. Open Life Sci 2022; 17:261-271. [PMID: 35415241 PMCID: PMC8951214 DOI: 10.1515/biol-2022-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/22/2021] [Accepted: 01/03/2022] [Indexed: 12/24/2022] Open
Abstract
This study aimed to investigate whether and how Moloney murine leukemia virus integration site 1 (Bmi-1) plays a role in the regulation of glucose transporter 1 (GLUT1) in gastric adenocarcinoma (GAC). GAC and matched noncancerous tissues were obtained from GAC patients who underwent surgical treatment at the China-Japan Union Hospital, Jilin University (Changchun, Jilin, China). The human GAC cell line AGS and the gastric epithelial cell line GES-1 were used for in vitro studies. BALB/c nude mice were used for in vivo studies. The Bmi-1 and GLUT1 protein levels were significantly greater in human tissues from GAC patients and AGS cells in comparison with controls. Silencing of Bmi-1 resulted in significant decrease in glucose uptake, lactate levels, and GLUT1 expression. In vivo18F-deoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) imaging studies indicated that the nude mice bearing xenografts of AGS cells treated with Bmi-1-specific small interfering RNA (siRNA) had a significantly lower maximum standardized uptake value (SUVmax) in comparison with the control mice. Thus, Bmi-1 directly upregulates GLUT1 gene expression, through which it is involved in enhancing glucose uptake in GAC. The results also provide scientific evidence for 18F-FDG PET/CT imaging to evaluate Bmi-1 and glucose uptake in GAC.
Collapse
Affiliation(s)
- Ying Guo
- Department of Nephrology, China-Japan Union Hospital, Jilin University, Changchun , Jilin 130033 , China
| | - Guangyu Zhou
- Department of Nephrology, China-Japan Union Hospital, Jilin University, Changchun , Jilin 130033 , China
| | - Qingjie Ma
- Department of Nuclear Medicine, China-Japan Union Hospital, Jilin University , 126 Xiantai St., Changchun , Jilin 130033 , China
| | - Li Zhang
- Department of Neurology, China-Japan Union Hospital, Jilin University , 126 Xiantai St., Changchun , Jilin 130033 , China
| | - Jiwei Chen
- Department of Nephrology, China-Japan Union Hospital, Jilin University, Changchun , Jilin 130033 , China
| |
Collapse
|
4
|
Hacker UT, Bentler M, Kaniowska D, Morgan M, Büning H. Towards Clinical Implementation of Adeno-Associated Virus (AAV) Vectors for Cancer Gene Therapy: Current Status and Future Perspectives. Cancers (Basel) 2020; 12:E1889. [PMID: 32674264 PMCID: PMC7409174 DOI: 10.3390/cancers12071889] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
Adeno-associated virus (AAV) vectors have gained tremendous attention as in vivo delivery systems in gene therapy for inherited monogenetic diseases. First market approvals, excellent safety data, availability of large-scale production protocols, and the possibility to tailor the vector towards optimized and cell-type specific gene transfer offers to move from (ultra) rare to common diseases. Cancer, a major health burden for which novel therapeutic options are urgently needed, represents such a target. We here provide an up-to-date overview of the strategies which are currently developed for the use of AAV vectors in cancer gene therapy and discuss the perspectives for the future translation of these pre-clinical approaches into the clinic.
Collapse
Affiliation(s)
- Ulrich T. Hacker
- Department of Oncology, Gastroenterology, Hepatology, Pulmonology, and Infectious Diseases, University Cancer Center Leipzig (UCCL), Leipzig University Medical Center, 04103 Leipzig, Germany;
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (M.B.); (M.M.)
| | - Martin Bentler
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (M.B.); (M.M.)
| | - Dorota Kaniowska
- Department of Oncology, Gastroenterology, Hepatology, Pulmonology, and Infectious Diseases, University Cancer Center Leipzig (UCCL), Leipzig University Medical Center, 04103 Leipzig, Germany;
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (M.B.); (M.M.)
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (M.B.); (M.M.)
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstraße 7, 38124 Braunschweig, Germany
| |
Collapse
|
5
|
Fu Y, Du P, Zhao J, Hu C, Qin Y, Huang G. Gastric Cancer Stem Cells: Mechanisms and Therapeutic Approaches. Yonsei Med J 2018; 59:1150-1158. [PMID: 30450848 PMCID: PMC6240570 DOI: 10.3349/ymj.2018.59.10.1150] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer (GC) is the third leading cause of cancer-related deaths worldwide. GC stem-like cells (GCSCs), with unlimited self-renewal, differentiation, and tumor-regenerating capacities, contribute significantly to the refractory features of GC and have gained increasing attention for their role in GC drug resistance, relapse, and metastasis. Therapies targeting GCSCs seem to be one of the most promising methods to improve the outcomes of GC patients. Extensive investigations have attempted to outline the regulatory mechanisms in GCSCs and to develop GCSCs-targeting therapies with which to diminish GC drug resistance, metastasis and relapse. To the best of our knowledge, there is a lack of reviews summarizing these studies. In this review, we systematically recapitulated findings regarding the regulatory mechanisms of GCSCs, as well as therapies that target GCSCs, hoping to support the development of prognostic biomarkers and GCSCs-targeting anticancer therapies in GC.
Collapse
Affiliation(s)
- Yan Fu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Peizhun Du
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Zhao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Cheng'en Hu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yunyun Qin
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Guangjian Huang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Ma DQ, Zhang YH, Ding DP, Li J, Chen LL, Tian YY, Ao KJ. Effect of Bmi-1-mediated NF-κB signaling pathway on the stem-like properties of CD133+ human liver cancer cells. Cancer Biomark 2018; 22:575-585. [PMID: 29843222 DOI: 10.3233/cbm-181329] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To investigate the impact of Bmi-1-mediated NF-κB pathway on the biological characteristics of CD133+ liver cancer stem cells (LCSCs). METHODS Flow cytometry was used to isolate CD133+ LCSC cells from Huh7, Hep3B, SK-hep1, and PLC/PRF-5 cells. CD133+ Huh7 cells were divided into Control, Blank, Bmi-1 siRNA, JSH-23 (NF-κB pathway inhibitor), and Bmi-1 + JSH-23 groups. The properties of CD133+ Huh7 cells were detected by the colony-formation and sphere-forming assays. Besides, Transwell assay was applied for the measurement of cell invasion and migration, immunofluorescence staining for the detection of NF-κB p65 nuclear translocation, and qRT-PCR and Western blotting for the determination of SOX2, NANOG, OCT4, Bmi-1, and NF-κB p65 expression. RESULTS CD133+ Huh-7 cells were chosen as the experiment subjects after flow cytometry. Compared with CD133- Huh-7 cells, the expression of CD133, OCT4, SOX2, NANOG, Bmi-1, and NF-κB p65, the nuclear translocation of NF-κB p65, the number of cell colonies and Sphere formation, as well as the abilities of invasion and migration were observed to be increased in CD133+ Huh-7 cells, which was inhibited after treated with Bmi-1 siRNA or JSH-23, meanwhile, the cell cycle was arrested at the G0/G1 and S phases with apparently enhanced cell apoptosis. Importantly, no significant differences in the biological characteristics of CD133 + Huh-7 cells were found between the Blank group and Bmi-1 + JSH-23 group. CONCLUSION Down-regulating Bmi-1 may inhibit the biological properties of CD133+ LCSC by blocking NF-κB signaling pathway, which lays a scientific foundation for the clinical treatment of liver cancer.
Collapse
Affiliation(s)
- De-Qiang Ma
- Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.,Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Yin-Hua Zhang
- Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.,Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - De-Ping Ding
- Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Juan Li
- Maternal and Child Health-Care Hospital, Shiyan, Hubei 442000, China
| | - Lin-Li Chen
- Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - You-You Tian
- Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Kang-Jian Ao
- Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| |
Collapse
|
7
|
Zhu K, Li K, Yuan DW, Xu G, Kang L, Dang CX, Zhang Y. Clinicopathological and Prognostic Significance of Expression of B-Cell-Specific Moloney Murine Leukemia Virus Insertion Site 1 (BMI-1) Gene and Protein in Gastrointestinal Stromal Tumors. Med Sci Monit 2018; 24:6414-6421. [PMID: 30209248 PMCID: PMC6149236 DOI: 10.12659/msm.909443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/08/2018] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Gastrointestinal stromal tumor (GIST) is an uncommon visceral sarcoma that arises predominantly in the gastrointestinal tract. Since GISTs are encountered infrequently and inflexible to traditional therapy, the aim of the present study was to explore the correlation of B-cell-specific Moloney murine leukemia virus insertion site 1 (BMI-1) mRNA and BMI-1 protein levels with the clinicopathological characteristics and prognosis significance of GISTs. MATERIAL AND METHODS GIST tissues and normal tissues were collected from 156 patients who had undergone surgical treatment. RT-qPCR and immunohistochemistry were used to measure the BMI-1 mRNA and protein levels in GIST tissues and normal tissues. Univariate survival analysis was used for determination of the factors that affect prognosis of GIST patients. Cox proportional hazards model was plotted to determine the independent risk factors for prognosis of GIST patients. RESULTS The BMI-1 mRNA and protein levels in GIST tissues were higher than those in normal tissues. BMI-1 mRNA and positive protein levels were correlated with the National Institutes of Health (NIH) risk grade, tumor diameter and infiltration, and metastasis. There was a short survival period for the patients with a positive protein level and a high mRNA level of BMI-1. The site of primary tumor, tumor diameter, NIH risk grade, infiltration, and metastasis, as well as BMI-1 mRNA and protein levels were independent risk factors for prognosis of GIST patients. CONCLUSIONS Taken together, these findings suggest there might be a relationship between BMI-1 mRNA and protein levels, and clinicopathological characteristics, including NIH risk grade, tumor size as well as infiltration and metastasis, of GIST patients. In addition, BMI-1 mRNA and protein levels were identified as independent risk factors for prognosis of GIST patients.
Collapse
Affiliation(s)
- Kun Zhu
- Department of Oncology Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P.R. China
| | - Kang Li
- Department of Oncology Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P.R. China
| | - Da-Wei Yuan
- Department of Oncology Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P.R. China
| | - Gang Xu
- Department of Oncology Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P.R. China
| | - Li Kang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P.R. China
| | - Cheng-Xue Dang
- Department of Oncology Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P.R. China
| | - Yong Zhang
- Department of Oncology Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P.R. China
| |
Collapse
|
8
|
Chen C, Yue D, Lei L, Wang H, Lu J, Zhou Y, Liu S, Ding T, Guo M, Xu L. Promoter-Operating Targeted Expression of Gene Therapy in Cancer: Current Stage and Prospect. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 11:508-514. [PMID: 29858085 PMCID: PMC5992480 DOI: 10.1016/j.omtn.2018.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/24/2018] [Accepted: 04/09/2018] [Indexed: 02/07/2023]
Abstract
The technique of targeted expression of interesting genes, including distinct delivery systems and specific gene promoter-operating expression, is an important strategy for gene therapy against cancers. Up to now, extensive literature documented the efficacy of distinct delivery systems, such as the liposome system, nano-particle system, polyetherimide (PEI) system, and so on, in cancer gene therapy. However, a related document on the potential value of using a specific gene promoter, such as a tumor suppressor, in cancer gene therapy was still scary. The main obstacle might be that the selection of an ideal gene promoter to operate interesting gene expression in cancer gene therapy is still not fully understood. Therefore, many efforts need to be done in order to make it a real power tool for the human clinical treatment of cancer patients. The purpose of this review is to clarify the current state and some problematics in development of promoter-operating targeted expression of interesting genes and highlight its potential in cancer gene therapy.
Collapse
Affiliation(s)
- Chao Chen
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Dongxu Yue
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Liangyu Lei
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Hairong Wang
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Jia Lu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Ya Zhou
- Department of Medical Physics, Zunyi Medical University, Guizhou 563000, China
| | - Shiming Liu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Tao Ding
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Lin Xu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China.
| |
Collapse
|
9
|
Ma Y, Fu HL, Wang Z, Huang H, Ni J, Song J, Xia Y, Jin WL, Cui DX. USP22 maintains gastric cancer stem cell stemness and promotes gastric cancer progression by stabilizing BMI1 protein. Oncotarget 2018; 8:33329-33342. [PMID: 28415621 PMCID: PMC5464871 DOI: 10.18632/oncotarget.16445] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/09/2017] [Indexed: 12/11/2022] Open
Abstract
Increased ubiquitin-specific protease 22 (USP22) has been associated with poor prognosis in several cancers including gastric cancer. However, the role of USP22 in gastric tumorigenesis is still unclear. Gastric cancer stem cells have been identified and shown to correlate with gastric cancer initiation and metastasis. In this study, we found that silencing of USP22 inhibited proliferation of gastric cancer cells and suppressed the cancer stem cell spheroid formation in serum-free culture. Furthermore, cancer stem cell markers, such as CD133, SOX2, OCT4 and NANOG were down-regulated. Additionally, knockdown of USP22 inhibited gastric cancer xenografts growth. Our analysis of TCGA database indicated that BMI1 overexpression may predict gastric cancer patient survival, and TAT-BMI1 proteins reversed the USP22 knockdown-mediated decreased in cancer stem cell properties, and elevated the expression of stemness-associated genes. Furthermore, we found that overexpression of USP22 stabilized the BMI1 protein in gastric cancer cells. Taken together, our study demonstrates that USP22 is indispensable for gastric cancer stem cell self-renewal through stabilization of BMI1. These results may provide novel approaches to the theranostics of gastric cancer in the near future.
Collapse
Affiliation(s)
- Yue Ma
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.,School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hua-Lin Fu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.,National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Zhen Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiao Tong University, Xi'an 710049, China
| | - Hai Huang
- Department of Clinical Biochemistry, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou 550005, China
| | - Jian Ni
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.,National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.,National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Ying Xia
- Department of Clinical Biochemistry, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou 550005, China
| | - Wei-Lin Jin
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.,National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Da-Xiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.,School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.,National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| |
Collapse
|
10
|
Wang JL, Wu JH, Hong C, Wang YN, Zhou Y, Long ZW, Zhou Y, Qin HS. Involvement of Bmi-1 gene in the development of gastrointestinal stromal tumor by regulating p16 Ink4A /p14 ARF gene expressions: An in vivo and in vitro study. Pathol Res Pract 2017; 213:1542-1551. [DOI: 10.1016/j.prp.2017.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/05/2017] [Accepted: 09/15/2017] [Indexed: 12/31/2022]
|
11
|
Huang H, Chen Z, Ni X. Tissue transglutaminase-1 promotes stemness and chemoresistance in gastric cancer cells by regulating Wnt/β-catenin signaling. Exp Biol Med (Maywood) 2016; 242:194-202. [PMID: 27660242 DOI: 10.1177/1535370216670541] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Gastric cancer is a common malignancy, and is one of the most frequent causes of cancer deaths worldwide. Recently, members of the transglutaminases (TGM) family, especially TGM2, have been implicated in the progression and drug resistance of cancers, but the function of TGM1 in cancer development has been largely overlooked. In this study, we demonstrate the roles of TGM1 in development of gastric cancer. We found that expression levels of TGM1 were upregulated in both gastric cancer tissues and cultured gastric cancer cells, and that TGM1 expression levels were correlated with patient survival. In cultured gastric cancer cells, loss of TGM1 expression inhibited cell proliferation and promoted apoptosis, as well increased gastric cancer cell sensitivity to chemotherapeutic drugs and reducing stemness. These results strongly supported the participation of TGM1 in the regulation of gastric cancer development. In addition, we found evidence that the mechanism of action of TGM1 in regulating gastric cancer cell might involve the Wnt signaling pathway, as loss of TGM1 expression in gastric cancer cells led to a significant suppression of Wnt signaling activities.
Collapse
Affiliation(s)
- Haitao Huang
- 1 Department of General Surgery, Oilfield General Hospital of Daqing, Daqing 163001, China
| | - Zhiqi Chen
- 1 Department of General Surgery, Oilfield General Hospital of Daqing, Daqing 163001, China
| | - Xiuqin Ni
- 2 Department of Anatomy, Harbin Medical University-Daqing, Daqing 163319, China
| |
Collapse
|