1
|
Okamoto K, Nozawa H, Ozawa T, Yamamoto Y, Yokoyama Y, Emoto S, Murono K, Sasaki K, Fujishiro M, Ishihara S. Comparative microRNA signatures based on liquid biopsy to identify lymph node metastasis in T1 colorectal cancer patients undergoing upfront surgery or endoscopic resection. Cell Death Discov 2025; 11:67. [PMID: 39971948 PMCID: PMC11840149 DOI: 10.1038/s41420-025-02348-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/24/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025] Open
Abstract
After endoscopic resection of T1 colorectal cancer (CRC) with a high risk of lymph node metastasis (LNM), additional surgery is required. However, the actual frequency of LNM based on conventional risk factors is less than 16%. There is a need for biomarkers to identify T1 CRC carrying a high risk of metastasis to avoid unnecessary radical surgery. Based on the comparison of serum miRNA between stage I/II and stage III from a large-scale in silico dataset, we conducted a validation analysis of the selected miRNAs using plasma samples from LNM-positive and LNM-negative T1 CRC patients who underwent endoscopic treatment followed by radical surgery at our hospital. In the validation cohort, the three-miRNA classifiers (miR-195-5p, miR-221-3p, and miR-193b-3p) effectively identified LNM-positive T1 CRC patients who received upfront surgery with an area under the curve (AUC) value of 0.74. Moreover, in T1 CRC patients after endoscopic resection, miR-195-5p and miR-221-3p were able to predict LNM with an AUC of 0.74. Plasma miRNA signatures may serve as effective predictors for LNM in T1 CRC both before upfront surgery and after endoscopic resection.
Collapse
Affiliation(s)
- Kazuaki Okamoto
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan.
- Department of Translational Molecular Medicine, Division of Molecular Oncology, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA.
| | - Hiroaki Nozawa
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Ozawa
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Yoko Yamamoto
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Yuichiro Yokoyama
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Shigenobu Emoto
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Koji Murono
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Kazuhito Sasaki
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | | | - Soichiro Ishihara
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Zhu J, Cao X, Chen Z, Lai B, Xi L, Zhang J, Zhu S, Qi S, Liang Y, Cao F, Zhou B, Song Y, Jiang S, Wang T, Kang X, Kong E. Inhibiting S-palmitoylation arrests metastasis by relocating Rap2b from plasma membrane in colorectal cancer. Cell Death Dis 2024; 15:675. [PMID: 39277583 PMCID: PMC11401852 DOI: 10.1038/s41419-024-07061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
Rap2b, a proto-oncogene upregulated in colorectal cancer (CRC), undergoes protein S-palmitoylation at specific C-terminus sites (C176/C177). These palmitoylation sites are crucial for Rap2b localization on the plasma membrane (PM), as mutation of C176 or C177 results in cytosolic relocation of Rap2b. Our study demonstrates that Rap2b influences cell migration and invasion in CRC cells, independent of proliferation, and this activity relies on its palmitoylation. We identify ABHD17a as the depalmitoylating enzyme for Rap2b, altering PM localization and inhibiting cell migration and invasion. EGFR/PI3K signaling regulates Rap2b palmitoylation, with PI3K phosphorylating ABHD17a to modulate its activity. These findings highlight the potential of targeting Rap2b palmitoylation as an intervention strategy. Blocking the C176/C177 sites using an interacting peptide attenuates Rap2b palmitoylation, disrupting PM localization, and suppressing CRC metastasis. This study offers insights into therapeutic approaches targeting Rap2b palmitoylation for the treatment of metastatic CRC, presenting opportunities to improve patient outcomes.
Collapse
Affiliation(s)
- Jiangli Zhu
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China
| | - Xize Cao
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China
| | - Zhenshuai Chen
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China
- Lankao County Central Hospital, Lankao, China
| | - Birou Lai
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China
| | - Lingling Xi
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China
| | - Jinghang Zhang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Health Commission Key Laboratory of Gastrointestinal Cancer Prevention and Treatment, Xinxiang Medical University, Xinxiang, China
| | - Shaohui Zhu
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Shiqian Qi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, China
| | - Yinming Liang
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China
| | - Fei Cao
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China
| | - Binhui Zhou
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China
| | - Yu Song
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Sheng Jiang
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Tianyu Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Xiaohong Kang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
| | - Eryan Kong
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China.
- Henan Health Commission Key Laboratory of Gastrointestinal Cancer Prevention and Treatment, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
3
|
Dang H, Verhoeven DA, Boonstra JJ, van Leerdam ME. Management after non-curative endoscopic resection of T1 rectal cancer. Best Pract Res Clin Gastroenterol 2024; 68:101895. [PMID: 38522888 DOI: 10.1016/j.bpg.2024.101895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/03/2024] [Accepted: 02/15/2024] [Indexed: 03/26/2024]
Abstract
Since the introduction of population-based screening, increasing numbers of T1 rectal cancers are detected and removed by local endoscopic resection. Patients can be cured with endoscopic resection alone, but there is a possibility of residual tumor cells remaining after the initial resection. These can be located intraluminally at the resection site or extraluminally in the form of (lymph node) metastases. To decrease the risk of residual cells progressing towards more advanced disease, additional treatment is usually needed. However, with the currently available risk stratification models, it remains challenging to determine who should and should not be further treated after non-curative endoscopic resection. In this review, the different management strategies for patients with non-curatively treated T1 rectal cancers are discussed, along with the available evidence for each strategy and relevant considerations for clinical decision making. Furthermore, we provide practical guidance on the management and surveillance following non-curative endoscopic resection of T1 rectal cancer.
Collapse
Affiliation(s)
- Hao Dang
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Daan A Verhoeven
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jurjen J Boonstra
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Monique E van Leerdam
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
4
|
Dai H, Li L, Yang Y, Chen H, Dong X, Mao Y, Gao Y. Screening microRNAs as potential prognostic biomarkers for lung adenocarcinoma. Ann Med 2023; 55:2241013. [PMID: 37930873 PMCID: PMC10629414 DOI: 10.1080/07853890.2023.2241013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 07/21/2023] [Indexed: 11/08/2023] Open
Abstract
OBJECTIVE To screen and identify microRNAs (miRNAs) associated with the prognosis of lung adenocarcinoma (LUAD) using clinical samples and construct a prediction model for the prognosis of LUAD. METHODS 160 patient samples were used to screen and identify miRNAs associated with the prognosis of LUAD. Differentially expressed miRNAs were analyzed using gene chip technology. The selected miRNAs were validated using samples from the validation sample group. Cox proportional hazards regression was used to construct the model and Kaplan-Meier was used to plot survival curves. Model power was assessed by testing the prognosis of the constructed model using real-time polymerase chain reaction (RT-PCR) data. RESULTS The data showed that miR-1260b, miR-21-3p and miR-92a-3p were highly expressed in the early recurrence and metastasis group, while miR-2467-3p, miR-4659a-3p, miR-4514, miR-1471 and miR-3621 were lowly expressed. It was further confirmed that miR-21-3p was significantly highly expressed in the early recurrence and metastasis group (p = 0.02). Receiver operating characteristic (ROC) curve results showed cut-off point value of 0.0172, sensitivity of 88.2% and specificity of 100%. The predictive results of the constructed model were in good agreement with the actual prognosis of patients by using the validation sample test (Kappa = 0.426, p < 0.001), with a model sensitivity of 74.4%, a specificity of 68.3%, and an accuracy of 71.3%. CONCLUSION miRNAs associated with the prognosis of patients with stage I LUAD were screened and validated, and a risk model for predicting the prognosis of patients was constructed. This model has good consistency with the actual prognosis of patients.
Collapse
Affiliation(s)
- Hongshuang Dai
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center; National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Li
- Department of Pathology, National Cancer Center;National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College Cancer Hospital, Beijing, China
| | - Yikun Yang
- Department of Thoracic Surgical Oncology, National Cancer Center; National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College Cancer Hospital, Beijing, China
| | - Huang Chen
- Department of Pathology, China-Japan Friendship Hospital, Beijing, China
| | - Xin Dong
- Department of Clinical Laboratory, National Cancer Center; National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College Cancer Hospital, Beijing, China
| | - Yousheng Mao
- Department of Thoracic Surgical Oncology, National Cancer Center; National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College Cancer Hospital, Beijing, China
| | - Yanning Gao
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center; National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Kitakaze M, Fujino S, Miyoshi N, Sekido Y, Hata T, Ogino T, Takahashi H, Uemura M, Mizushima T, Doki Y, Eguchi H. Tumor-infiltrating T cells as a risk factor for lymph node metastasis in patients with submucosal colorectal cancer. Sci Rep 2023; 13:2077. [PMID: 36746991 PMCID: PMC9902519 DOI: 10.1038/s41598-023-29260-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Approximately 10% of patients with colorectal cancer with submucosal invasion have lymph node metastasis. Pathological risk factors for lymph node metastasis have varying sensitivities and specificities. To predict the risk of lymph node metastasis, the identification of new risk factors is vital. Tumor-infiltrating T cells have been reported to improve the prognosis of many solid tumors. Therefore, the purpose of this study was to examine the relationship between lymph node metastasis and tumor-infiltrating T cells in patients with colorectal cancer with submucosal invasion. We examined CD8+ tumor-infiltrating T cells level as a risk factor for lymph node metastasis in patients with colorectal cancer with submucosal invasion. Using immunohistochemical staining, we identified CD8 + T cells in surgically resected specimens from 98 patients with SM-CRC. We showed that low CD8+ tumor-infiltrating T cells levels are positively correlated with lymph node metastasis. Furthermore, by combining the number of CD8+ tumor-infiltrating T cell and the number of CD103+ tumor-infiltrating T cells, the results showed a high positive predictive value for lymph node metastasis in cases with low numbers of both types of tumor-infiltrating T cells and a high negative predictive value in cases with high numbers of both types of tumor-infiltrating T cells.
Collapse
Affiliation(s)
- Masatoshi Kitakaze
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shiki Fujino
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Department of Gastroenterological Surgery, Minoh City Hospital, Minoh, Osaka, 562-0014, Japan.
| | - Norikatsu Miyoshi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuki Sekido
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tsuyoshi Hata
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takayuki Ogino
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hidekazu Takahashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mamoru Uemura
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tsunekazu Mizushima
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Gastroenterological Surgery, Osaka Police Hospital, Osaka, Osaka, 543-0035, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
6
|
Wei S, Hu W, Feng J, Geng Y. Promotion or remission: a role of noncoding RNAs in colorectal cancer resistance to anti-EGFR therapy. Cell Commun Signal 2022; 20:150. [PMID: 36131281 PMCID: PMC9490904 DOI: 10.1186/s12964-022-00960-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022] Open
Abstract
Anti-epidermal-growth-factor-receptor (EGFR) monoclonal antibodies (mAbs) are of great significance for RAS and BRAF wild-type metastatic colorectal cancer (mCRC) patients. However, the generation of primary and secondary resistance to anti-EGFR mAbs has become an important factor restricting its efficacy. Recent studies have revealed that non-coding RNAs (ncRNAs), especially long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), are implicated in anti-EGFR antibodies resistance, affecting the sensitivity of CRC cells to Cetuximab and Panitumumab. This paper briefly reviewed the research advance of the expression, signaling network and functional mechanism of ncRNAs related to anti-EGFR mAbs resistance in CRC, as well as their relationship with clinical prognosis and the possibility of therapeutic targets. In addition, some ncRNAs that are involved in the regulation of signaling pathways or genes related to anti-EGFR resistance, but need to be further verified by resistance experiments were also included in this review, thereby providing more ideas and basis for ncRNAs as CRC prognostic markers and anti-EGFR therapy sensitizers. Video Abstract.
Collapse
Affiliation(s)
- Shanshan Wei
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China
| | - Wenwei Hu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jun Feng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China
| | - Yiting Geng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China.
| |
Collapse
|
7
|
Kang J, Choi YJ, Kim IK, Lee HS, Kim H, Baik SH, Kim NK, Lee KY. LASSO-Based Machine Learning Algorithm for Prediction of Lymph Node Metastasis in T1 Colorectal Cancer. Cancer Res Treat 2021; 53:773-783. [PMID: 33421980 PMCID: PMC8291173 DOI: 10.4143/crt.2020.974] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/28/2020] [Indexed: 02/08/2023] Open
Abstract
PURPOSE The role of tumor-infiltrating lymphocytes (TILs) in predicting lymph node metastasis (LNM) in patients with T1 colorectal cancer (CRC) remains unclear. Furthermore, clinical utility of a machine learning-based approach has not been widely studied. MATERIALS AND METHODS Immunohistochemistry for TILs against CD3, CD8, and forkhead box P3 in both center and invasive margin of the tumor were performed using surgically resected T1 CRC slides. Three hundred and sixteen patients were enrolled and categorized into training (n=221) and validation (n=95) sets via random sampling. Using clinicopathologic variables including TILs, the least absolute shrinkage and selection operator (LASSO) regression model was applied for variable selection and predictive signature building in the training set. The predictive accuracy of our model and the Japanese criteria were compared using area under the receiver operating characteristic (AUROC), net reclassification improvement (NRI)/integrated discrimination improvement (IDI), and decision curve analysis (DCA) in the validation set. RESULTS LNM was detected in 29 (13.1%) and 12 (12.6%) patients in training and validation sets, respectively. Nine variables were selected and used to generate the LASSO model. Its performance was similar in training and validation sets (AUROC, 0.795 vs. 0.765; p=0.747). In the validation set, the LASSO model showed better outcomes in predicting LNM than Japanese criteria, as measured by AUROC (0.765 vs. 0.518, p=0.003) and NRI (0.447, p=0.039)/IDI (0.121, p=0.034). DCA showed positive net benefits in using our model. CONCLUSION Our LASSO model incorporating histopathologic parameters and TILs showed superior performance compared to conventional Japanese criteria in predicting LNM in patients with T1 CRC.
Collapse
Affiliation(s)
- Jeonghyun Kang
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Yoon Jung Choi
- Department of Pathology, Yongin Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Im-kyung Kim
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Korea
| | - Hogeun Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Hyuk Baik
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Nam Kyu Kim
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Kang Young Lee
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
8
|
Zhou L, Li J, Tang Y, Yang M. Exosomal LncRNA LINC00659 transferred from cancer-associated fibroblasts promotes colorectal cancer cell progression via miR-342-3p/ANXA2 axis. J Transl Med 2021; 19:8. [PMID: 33407563 PMCID: PMC7789760 DOI: 10.1186/s12967-020-02648-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/29/2020] [Indexed: 12/11/2022] Open
Abstract
Background Cancer-associated fibroblasts (CAFs) play a pivotal role in regulating tumor progression by transferring exosomes to adjacent cells. Our aim was to clarify the role of LINC00659 encapsulated in CAFs-derived exosomes (CAFs-exo) in colorectal cancer (CRC). Methods CAFs and normal fibroblasts (NFs) were isolated and cultured. CAFs-exo and NFs-derived exosomes (NFs-exo) were characterized by transmission electron microscope and Western blot. The mRNA level of LINC00659 in CAFs-exo and NFs-exo were measured. Then we analyzed cell proliferation by CCK-8 and clone formation assay, cell migration by cell scratch, and cell invasion by Transwell. Epithelial mesenchymal transformation (EMT) related markers E-cadherin, N-cadherin, Vimentin and Snail-1 expressions were assessed by Western blot. The binding of LINC00659 and miR-342-3p, miR-342-3p and ANXA2 were analyzed by dual-luciferase reporter gene assay. Results CAFs and NFs showed a spindle-like morphology. CAFs-exo promoted CRC cell proliferation, migration, invasion and EMT progression. The expression of LINC00659 in CAF-derived exosomes was significantly increased, and fibroblasts could transfer exosomal LINC00659 to CRC cells. We further revealed that transfection of miR-342-3p mimic or sh-ANXA2 could obviously reverse the promotion effect of exosomal LINC00659 on CRC progression. Functional studies reveal that LINC00659 is transferred from CAFs to the cancer cells via exosomes, where it promotes CRC cell proliferation, invasion, migration and EMT progression in vitro. Mechanistically, LINC00659 interacts directly with miR-342-3p to increase ANXA2 expression in CRC cells. Conclusion Collected evidence supported that CAFs-derived exosomal LINC00659 promotes CRC cell proliferation, invasion and migration via miR-342-3p/ANXA2axis.
Collapse
Affiliation(s)
- Lin Zhou
- Departmemt of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Jian Li
- Departmemt of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Yaping Tang
- Departmemt of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Mei Yang
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Kaifu District, Changsha, Hunan, 410008, People's Republic of China.
| |
Collapse
|
9
|
Hua B, Li Y, Yang X, Niu X, Zhao Y, Zhu X. MicroRNA-361-3p promotes human breast cancer cell viability by inhibiting the E2F1/P73 signalling pathway. Biomed Pharmacother 2020; 125:109994. [PMID: 32092817 DOI: 10.1016/j.biopha.2020.109994] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 01/20/2020] [Accepted: 02/03/2020] [Indexed: 01/26/2023] Open
Abstract
Analysis of the microRNA (miRNA) expression signature of breast cancer based on RNA sequencing demonstrated that miR-361-3p was significantly upregulated in breast cancer tissues. miR-361-3p is a novel miRNA, and its role in breast cancer is currently unclear. The aim of the present study was to investigate the functions of miR-361-3p in breast carcinoma. In this study, it was observed that the expression of miR-361-3p in cancer tissues was significantly higher compared with that in para-cancerous tissues and was correlated with advanced TNM stage, Ki-67 overexpression and shorter disease-free survival. Overexpression of miR-361-3p promoted proliferation and inhibited apoptosis of breast cancer cells. Through RNA sequencing, multi-library retrieval, luciferase reporter assays, quantitative polymerase chain reaction analysis, western blotting and other methods, it was verified that E2F1 was directly downregulated by miR-361-3p. The knockdown of E2F1 by siRNA promoted breast cancer cell proliferation and inhibited apoptosis, similar to miR-361-3p. In addition, miR-361-3p was able to decrease the expression of P73 by targeting E2F1, whereas overexpression of P73 reversed the effect of miR-361-3p on the viability of breast cancer cell lines. Thus, the present study demonstrated that miR-361-3p acts as an oncomiR in breast cancer to promote proliferation and inhibit apoptosis through inhibiting the P73 pathway by downregulating E2F1 expression, which may uncover valuable prognostic factors or treatment targets.
Collapse
Affiliation(s)
- Bin Hua
- Breast Center, Beijing Institute of Geriatrics National Health Commission, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China.
| | - Yao Li
- Breast Center, Beijing Institute of Geriatrics National Health Commission, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China.
| | - Xin Yang
- Breast Center, Beijing Institute of Geriatrics National Health Commission, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China.
| | - Xiaojuan Niu
- Breast Center, Beijing Institute of Geriatrics National Health Commission, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China.
| | - Yanyang Zhao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics National Health Commission, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China.
| | - Xiaoquan Zhu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics National Health Commission, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China.
| |
Collapse
|
10
|
Ding S, Liu G, Jiang H, Fang J. MicroRNA Determines the Fate of Intestinal Epithelial Cell Differentiation and Regulates Intestinal Diseases. Curr Protein Pept Sci 2019; 20:666-673. [PMID: 30678626 DOI: 10.2174/1389203720666190125110626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/30/2018] [Accepted: 01/10/2019] [Indexed: 12/19/2022]
Abstract
The rapid self-renewal of intestinal epithelial cells enhances intestinal function, promotes the nutritional needs of animals and strengthens intestinal barrier function to resist the invasion of foreign pathogens. MicroRNAs (miRNAs) are a class of short-chain, non-coding RNAs that regulate stem cell proliferation and differentiation by down-regulating hundreds of conserved target genes after transcription via seed pairing to the 3' untranslated regions. Numerous studies have shown that miRNAs can improve intestinal function by participating in the proliferation and differentiation of different cell populations in the intestine. In addition, miRNAs also contribute to disease regulation and therefore not only play a vital role in the gastrointestinal disease management but also act as blood or tissue biomarkers of disease. As changes to the levels of miRNAs can change cell fates, miRNA-mediated gene regulation can be used to update therapeutic strategies and approaches to disease treatment.
Collapse
Affiliation(s)
- Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China.,Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan, China.,Academician Workstation of Hunan Baodong Farming Co., Ltd., Hunan 422001, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China.,Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan, China
| | - Hongmei Jiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
11
|
Ma M, Lu S, Liu Y, Kong P, Long Z, Wan P, Zhang Y, Wang Y, Xu D. Identification and external validation of a novel miRNA signature for lymph node metastasis prediction in submucosal-invasive gastric cancer patients. Cancer Med 2019; 8:6315-6325. [PMID: 31486298 PMCID: PMC6797584 DOI: 10.1002/cam4.2530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 12/24/2022] Open
Abstract
Endoscopic resection (ER) has been increasingly performed in the treatment of early gastric cancer (GC). However, lymph node metastasis (LNM) can cause treatment failure with ER, especially in T1b patients. Here, we attempted to develop a miRNA-based classifier to detect LNM in T1b patients. Based on high-throughput data from The Cancer Genome Atlas, we identified 20 miRNAs whose expression significantly changed in T1-2 GC with LNM vs T1-2 GC without LNM. We then developed a miRNA signature to predict LNM of T1b GC using the LASSO model and backward step wise elimination approach in a training cohort. Furthermore, the predictive accuracy of this classifier was validated in both an internal testing group of 63 patients and an external independent group of 114 patients. This systematic and comprehensive in silico study identified a 7-miRNA signature with an area under the receiver operating characteristic curve (AUROC) value of 0.843 in T1-2 GC and 0.911 in T1 EGC. The backward elimination was further used to develop a 4-miRNA (miR-153-3p, miR-708, miR-940 and miR-375) risk-stratification model in the training cohort with an AUROC value of 0.898 in cohort 2. When pathologic results were used as a reference, the risk model yielded AUROC values of 0.829 and 0.792 in two cohorts of endoscopic biopsy specimens. This novel miRNA-LNM classifier works better than the currently used pathologic criteria of ER in T1b EGC. This classifier could individualize the management of T1b patients and facilitate treatment decisions.
Collapse
Affiliation(s)
- Mingzhe Ma
- Department of Gastric SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Shixun Lu
- Department of PathologySun Yat‐sen University Cancer CenterSun Yat‐sen UniversityGuangzhouChina
| | - Yinhua Liu
- Department of PathologyYijishan HospitalThe First Affiliated Hospital of Wannan Medical CollegeWuhuChina
| | - Pengfei Kong
- Department of Gastric SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Ziwen Long
- Department of Gastric SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Ping Wan
- Department of Liver SurgeryRenji HospitalSchool of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Yan Zhang
- Department of GastroenterologyYijishan HospitalThe First Affiliated Hospital of Wannan Medical CollegeWuhuChina
| | - Yanong Wang
- Department of Gastric SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Dazhi Xu
- Department of Gastric SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
12
|
Moreno EC, Pascual A, Prieto-Cuadra D, Laza VF, Molina-Cerrillo J, Ramos-Muñoz ME, Rodríguez-Serrano EM, Soto JL, Carrato A, García-Bermejo ML, Guillén-Ponce C. Novel Molecular Characterization of Colorectal Primary Tumors Based on miRNAs. Cancers (Basel) 2019; 11:cancers11030346. [PMID: 30862091 PMCID: PMC6468580 DOI: 10.3390/cancers11030346] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/13/2022] Open
Abstract
microRNAs (miRNA) expression in colorectal (CR) primary tumours can facilitate a more precise molecular characterization. We identified and validated a miRNA profile associated with clinical and histopathological features that might be useful for patient stratification. In situ hybridization array using paraffin-embedded biopsies of CR primary tumours were used to screen 1436 miRNAs. 17 miRNAs were selected for validation by quantitative reverse transcription polymerase chain reaction (qRT-PCR) (n = 192) and were further correlated with clinical and histopathological data. We demonstrated that miRNAs associated to Colorectal Cancer (CRC) diagnosis age (over 50s and 60s) included miR-1-3p, miR-23b-3p, miR-27b-3p, miR-143-3p, miR-145-5p and miR-193b-5p. miR-23b-3p and miR-24-3p discriminated between Lynch Syndrome and sporadic CRC. miR-10a-5p, miR-20a-5p, miR-642b and Let-7a-5p were associated to stroma abundance. miR-642b and Let-7a-5p were associated with to peritumoral inflammation abundance. miR-1-3p, miR-143-3p and miR-145-5p correlated with mucinous component. miR-326 correlated with tumour location (right or left sided). miR-1-3p associated with tumour grade. miR-20a-5p, miR-193b-5p, miR-320a, miR-326 and miR-642b-3p associated to tumour stage and progression. Remarkably, we also demonstrated that miR-1-3p and miR-326 expression significantly associated with patient overall survival (OS). Hierarchical clustering and bioinformatics analysis indicated that selected miRNAs could re-classify the patients and work cooperatively, modulating common target genes involved in colorectal cancer key signalling pathways. In conclusion, molecular characterization of CR primary tumours based on miRNAs could lead to more accurate patient reclassification and may be useful for efficient patient management.
Collapse
Affiliation(s)
- Elisa Conde Moreno
- Biomarkers and Therapeutic Targets Group and Core Facility, Ramon y Cajal Research Institute, (IRYCIS), 28034 Madrid, RedinRen, Spain.
| | - Alejandro Pascual
- Pathology Department, Ramon y Cajal Research Institute, University Hospital, 28034 Madrid, Spain.
| | - Daniel Prieto-Cuadra
- SynlabPathology, Pathology Department, Virgen de la Victoria, University Hospital, 29010 Málaga, Spain.
| | - Val F Laza
- Microbiology Department and Bioinformatics Core Facility, IRYCIS, 28034 Madrid, Spain.
| | - Javier Molina-Cerrillo
- Medical Oncology Department, Ramon y Cajal Research Institute, University Hospital, IRYCIS, 28034 Madrid, Spain.
| | - Miren Edurne Ramos-Muñoz
- Biomarkers and Therapeutic Targets Group and Core Facility, Ramon y Cajal Research Institute, (IRYCIS), 28034 Madrid, RedinRen, Spain.
| | | | - José Luis Soto
- Hereditary Cancer Program Valencian Region, Molecular Genetics Laboratory, Elche University Hospital, Elche, 03202 Alicante, Spain.
| | - Alfredo Carrato
- Medical Oncology Department, Ramon y Cajal Research Institute, University Hospital, IRYCIS, Alcala University, 28034 Ciberonc, Spain.
| | - María Laura García-Bermejo
- Biomarkers and Therapeutic Targets Group and Core Facility, Ramon y Cajal Research Institute, (IRYCIS), 28034 Madrid, RedinRen, Spain.
| | - Carmen Guillén-Ponce
- Medical Oncology Department, Ramon y Cajal Research Institute, University Hospital, IRYCIS, 28034 Madrid, Spain.
| |
Collapse
|
13
|
Liu S, Song L, Yao H, Zhang L, Xu D, Li Q, Li Y. Preserved miR-361-3p Expression Is an Independent Prognostic Indicator of Favorable Survival in Cervical Cancer. DISEASE MARKERS 2018; 2018:8949606. [PMID: 30344797 PMCID: PMC6174793 DOI: 10.1155/2018/8949606] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/09/2018] [Accepted: 07/26/2018] [Indexed: 01/12/2023]
Abstract
In this study, we aimed to assess the independent prognostic value of miR-361-3p in terms of overall survival (OS) and recurrence-free survival (RFS) in cervical cancer, as well as its possible regulative network. A retrospective analysis was performed by using data from the Cancer Genome Atlas-Cervical Cancer (TCGA-CESC). Results showed that decreased miR-361-3p expression was associated with lymphovascular invasion and poor responses to primary therapy. The patients with recurrence and the deceased cases had substantially lower miR-361-3p expression compared to their respective controls. By generating Kaplan-Meier curves of OS and RFS, we found that high miR-361-3p expression was associated with better survival outcome. More importantly, univariate and multivariate analysis confirmed that high miR-361-3p expression was an independent indicator of favorable OS (HR: 0.377, 95% CI: 0.233-0.608, p < 0.001) and RFS (HR: 0.398, 95% CI: 0.192-0.825, p = 0.013). By performing bioinformatic analysis, we identified 24 genes that were negatively correlated with miR-361-3p expression. Among the potential targeting genes, SOST, MTA1, TFRC, and YAP1 are involved in some important signaling pathways modulating cervical cancer cell invasion, migration, and drug sensitivity. Therefore, it is meaningful to verify the potential regulative effect of miR-361-3p on the expression of these genes in the future.
Collapse
Affiliation(s)
- Shikai Liu
- Department of Obstetrics & Gynecology, Cangzhou Central Hospital, Hebei 061001, China
| | - Lili Song
- Department of Obstetrics & Gynecology, Cangzhou Central Hospital, Hebei 061001, China
| | - Hairong Yao
- Department of Obstetrics & Gynecology, Cangzhou Central Hospital, Hebei 061001, China
| | - Liang Zhang
- Department of Obstetrics & Gynecology, Cangzhou Central Hospital, Hebei 061001, China
| | - Dongkui Xu
- Department of Obstetrics & Gynecology, Cangzhou Central Hospital, Hebei 061001, China
| | - Qian Li
- Department of Obstetrics & Gynecology, Cangzhou Central Hospital, Hebei 061001, China
| | - Ying Li
- Department of Obstetrics & Gynecology, Cangzhou Central Hospital, Hebei 061001, China
| |
Collapse
|
14
|
Jepsen RK, Novotny GW, Klarskov LL, Bang-Berthelsen CH, Haakansson IT, Hansen A, Christensen IJ, Riis LB, Høgdall E. Early metastatic colorectal cancers show increased tissue expression of miR-17/92 cluster members in the invasive tumor front. Hum Pathol 2018; 80:231-238. [PMID: 29902577 DOI: 10.1016/j.humpath.2018.05.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/28/2018] [Accepted: 05/22/2018] [Indexed: 01/05/2023]
Abstract
Accurate prediction of regional lymph node metastases (LNM) in endoscopically resected pT1 colorectal cancer (CRC) is crucial in treatment stratification for subsequent radical surgery. Several miRNAs have been linked to CRC invasion and metastasis, including the oncogenic miR-17/92 cluster, and expression levels might have predictive value in the risk assessment of early metastatic progression in CRC. We performed global miRNA microarray using tissue samples from the invasive front of pT1 CRC and investigated associations of the miR-17/92 cluster and presence of LNM. In total, 56 matched pT1 CRCs were thoroughly clinicopathologically characterized, and miRNA microarrays were performed on invasive front tissue samples. Global miRNA intensities were screened using paired t-tests between pT1pN+ and pT1pN0. Associations between miR-17/92 and histopathological features were analyzed using general linear models and tumor cell adjusted expression intensities. miR-17-3p and miR-92a were significantly higher expressed in the invasive front of tumors with LNM compared to those without, corresponding to 1.53-fold higher expression of miR-17-3p (95%CI: 1.04-2.24, P = .030) and 1.28-fold higher expression of miR-92a (95%CI: 1.01-1.68, P = .042). An inverse association between miR-19a and presence of high-grade tumor budding was observed (1.55-fold, 95%CI: 1.13-2.12, P = .008). We provide evidence for associations between early regional LNM and high expression levels of the miR-17/92 cluster members: miR-17-3p and miR-92a, in the invasive front of CRC. Our results support a role for the miR-17/92 cluster in early metastatic progression of CRC and calls for further investigation.
Collapse
Affiliation(s)
- Rikke Karlin Jepsen
- Department of Pathology and Molecular Unit, University of Copenhagen, Herlev and Gentofte Hospitals, 2730 Herlev, Denmark.
| | - Guy Wayne Novotny
- Department of Pathology and Molecular Unit, University of Copenhagen, Herlev and Gentofte Hospitals, 2730 Herlev, Denmark.
| | - Louise Laurberg Klarskov
- Department of Pathology and Molecular Unit, University of Copenhagen, Herlev and Gentofte Hospitals, 2730 Herlev, Denmark.
| | - Claus Heiner Bang-Berthelsen
- Technical University of Denmark, National Food Institute, Research Group for Microbial Biotechnology and Biorefining, 2800 Kgs Lyngby, Denmark.
| | | | - Anker Hansen
- Medical Prognosis Institute A/S, 2970 Hørsholm, Denmark.
| | - Ib Jarle Christensen
- Department of Pathology and Molecular Unit, University of Copenhagen, Herlev and Gentofte Hospitals, 2730 Herlev, Denmark.
| | - Lene Buhl Riis
- Department of Pathology and Molecular Unit, University of Copenhagen, Herlev and Gentofte Hospitals, 2730 Herlev, Denmark.
| | - Estrid Høgdall
- Department of Pathology and Molecular Unit, University of Copenhagen, Herlev and Gentofte Hospitals, 2730 Herlev, Denmark.
| |
Collapse
|
15
|
eNOS expression and NO release during hypoxia is inhibited by miR-200b in human endothelial cells. Angiogenesis 2018; 21:711-724. [PMID: 29737439 PMCID: PMC6208887 DOI: 10.1007/s10456-018-9620-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/03/2018] [Indexed: 02/07/2023]
Abstract
The nitric oxide (NO) secreted by vascular endothelium is required for the maintenance of cardiovascular homeostasis. Diminished release of NO generated by endothelial NO synthase contributes to endothelial dysfunction. Hypoxia and ischemia reduce endothelial eNOS expression via posttranscriptional mechanisms that result in NOS3 transcript destabilization. Here, we examine whether microRNAs contribute to this mechanism. We followed the kinetics of hypoxia-induced changes in NOS3 mRNA and eNOS protein levels in primary human umbilical vein endothelial cells (HUVECs). Utilizing in silico predictive protocols to identify potential miRNAs that regulate eNOS expression, we identified miR-200b as a candidate. We established the functional miR-200b target sequence within the NOS3 3′UTR, and demonstrated that manipulation of the miRNA levels during hypoxia using miR-200b mimics and antagomirs regulates eNOS levels, and established that miR-200b physiologically limits eNOS expression during hypoxia. Furthermore, we demonstrated that the specific ablation of the hypoxic induction of miR-200b in HUVECs restored eNOS-driven hypoxic NO release to the normoxic levels. To determine whether miR-200b might be the only miRNA that had this effect, we utilized Next Generation Sequencing (NGS) to follow hypoxia-induced changes in the miRNA levels in HUVECS and found 83 novel hypoxamiRs, with two candidate miRNAs besides miR-200b that could potentially influence eNOS levels. Taken together, the data establish miR-200b-eNOS regulation as a first hypoxamiR-based mechanism that limits NO bioavailability during hypoxia in endothelial cells, and show that hypoxamiRs could become useful therapeutic targets for cardiovascular diseases and other hypoxic-related diseases including various types of cancer.
Collapse
|
16
|
Liu W, Kang L, Han J, Wang Y, Shen C, Yan Z, Tai Y, Zhao C. miR-342-3p suppresses hepatocellular carcinoma proliferation through inhibition of IGF-1R-mediated Warburg effect. Onco Targets Ther 2018; 11:1643-1653. [PMID: 29615839 PMCID: PMC5870664 DOI: 10.2147/ott.s161586] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Insulin-like growth factor-1 receptor (IGF-1R) is a well-studied oncogenic factor that promotes cell proliferation and energy metabolism and is overexpressed in numerous cancers including hepatocellular carcinoma (HCC). Aerobic glycolysis is a hallmark of cancer, and drugs targeting its regulators, including IGF-1R, are being developed. However, the mechanisms of IGF-1R inhibition and the physiological significance of the IGF-1R inhibitors in cancer cells are unclear. Materials and methods Cell proliferation was evaluated by cell counting Kit-8 and colony formation assay. Western blot and real-time PCR were accordingly used to detect the relevant proteins, miRNA and gene expression. Luciferase reporter assays were used to illustrate the interaction between miR-342-3p and IGF-1R. The effect of miR-342-3p on glycolysis was determined by glucose uptake, ATP concentration, lactate generation, extracellular acidification rate and oxygen consumption rate assays. In vivo, subcutaneous tumor formation assay and PET were performed in nude mice. Results In this study, we demonstrate that by directly targeting the 3′-UTR (3′-untranslated regions) of IGF-1R, microRNA-342-3p (miR-342-3p) suppresses IGF-1R-mediated PI3K/AKT/GLUT1 signaling pathway both in vitro and in vivo. Through suppression of IGF-1R, miR-342-3p dampens glycolysis by decreasing glucose uptake, lactate generation, ATP production, and extracellular acidification rate (ECAR), and increasing oxygen consumption rate (OCR) in hepatoma cells. Importantly, glycolysis regulated by miR-342-3p is critical for its regulating HCC growth both in vitro and in vivo. Conclusion Our findings provide clues regarding the role of miR-342-3p as a tumor suppressor in liver cancer mainly through the inhibition of IGF-1R. Targeting IGF-1R by miR-342-3p could be a potential therapeutic strategy in liver cancer.
Collapse
Affiliation(s)
- Wenpeng Liu
- Department of Infectious Diseases, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Juqiang Han
- Institute of Liver Disease, Beijing Military General Hospital, Beijing, China
| | - Yadong Wang
- Department of Infectious Diseases, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chuan Shen
- Department of Infectious Diseases, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhifeng Yan
- Department of Gynecology and Obstetrics, PLA General Hospital, Beijing, China
| | - Yanhong Tai
- Department of Pathology, Hospital of PLA, Beijing, China
| | - Caiyan Zhao
- Department of Infectious Diseases, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
17
|
miR-509-3-5P inhibits the invasion and lymphatic metastasis by targeting PODXL and serves as a novel prognostic indicator for gastric cancer. Oncotarget 2018; 8:34867-34883. [PMID: 28432273 PMCID: PMC5471018 DOI: 10.18632/oncotarget.16802] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/23/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Our study aimed to investigate the clinicopathological feature and prognostic role of miR-509-3-5P in gastric cancer, to determine the invasive and metastatic role of miR-509-3-5P in vitro and in vivo and to explore the molecular mechanism between miR-509-3-5P and PODXL. RESULTS Strikingly lower miR-509-3-5P expression was detected in gastric cancer tissues with advanced tumor stage, poor differentiation and advanced pT stage, and was regarded as an independent prognostic role for poor prognosis. MiR-509-3-5P expression was markedly down-regulated in gastric cancer cell lines and tissues comparing with normal gastric cell and adjacent normal tissues, respectively. Decreased expression of miR-509-3-5P promoted the colony, migration and invasion abilities of gastric cancer cells in vitro as well as tumorigenesis and lymph node metastasis in vivo. Based on the luciferase assay and tissue microarray, PODXL was regarded as a target gene of miR-509-3-5P. MATERIALS AND METHODS The expression of miR-509-3-5P in gastric cancer patients and its clinicopathological relationships as well as prognostic role was studied employing tissue microarray; qRT-PCR was applied to explore miR-509-3-5P expression in gastric cancer cell lines and samples. Moreover, public database was used to analyze the expression of miR-509-3-5P and PODXL. Functional and molecular mechanism experiments were performed in vitro and in vivo. CONCLUSIONS Overexpression of miR-509-3-5P inhibits the invasion and metastasis of gastric cancer in vitro and in vivo, functioning as a tumor suppressor, by targeting PODXL. More importantly, miR-509-3-5P was downregulated in gastric cancer tissues and may serve as a novel prognostic indicator for gastric cancer.
Collapse
|
18
|
Tenascin C in colorectal cancer stroma is a predictive marker for liver metastasis and is a potent target of miR-198 as identified by microRNA analysis. Br J Cancer 2017; 117:1360-1370. [PMID: 29065427 PMCID: PMC5672932 DOI: 10.1038/bjc.2017.291] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 07/18/2017] [Accepted: 07/31/2017] [Indexed: 01/12/2023] Open
Abstract
Background: Tumour stroma has important roles in the development of colorectal cancer (CRC) metastasis. We aimed to clarify the roles of microRNAs (miRNAs) and their target genes in CRC stroma in the development of liver metastasis. Methods: Tumour stroma was isolated from formalin-fixed, paraffin-embedded tissues of primary CRCs with or without liver metastasis by laser capture microdissection, and miRNA expression was analysed using TaqMan miRNA arrays. Results: Hierarchical clustering classified 16 CRCs into two groups according to the existence of synchronous liver metastasis. Combinatory target prediction identified tenascin C as a predicted target of miR-198, one of the top 10 miRNAs downregulated in tumour stroma of CRCs with synchronous liver metastasis. Immunohistochemical analysis of tenascin C in 139 primary CRCs revealed that a high staining intensity was correlated with synchronous liver metastasis (P<0.001). Univariate and multivariate analyses revealed that the tenascin C staining intensity was an independent prognostic factor to predict postoperative overall survival (P=0.005; n=139) and liver metastasis-free survival (P=0.001; n=128). Conclusions: Alterations of miRNAs in CRC stroma appear to form a metastasis-permissive environment that can elevate tenascin C to promote liver metastasis. Tenascin C in primary CRC stroma has the potential to be a novel biomarker to predict postoperative prognosis.
Collapse
|
19
|
Dooley J, Lagou V, Pasciuto E, Linterman MA, Prosser HM, Himmelreich U, Liston A. No Functional Role for microRNA-342 in a Mouse Model of Pancreatic Acinar Carcinoma. Front Oncol 2017; 7:101. [PMID: 28573106 PMCID: PMC5435746 DOI: 10.3389/fonc.2017.00101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/02/2017] [Indexed: 11/24/2022] Open
Abstract
The intronic microRNA (miR)-342 has been proposed as a potent tumor-suppressor gene. miR-342 is found to be downregulated or epigenetically silenced in multiple different tumor sites, and this loss of expression permits the upregulation of several key oncogenic pathways. In several different cell lines, lower miR-342 expression results in enhanced proliferation and metastasis potential, both in vitro and in xenogenic transplant conditions. Here, we sought to determine the function of miR-342 in an in vivo spontaneous cancer model, using the Ela1-TAg transgenic model of pancreatic acinar carcinoma. Through longitudinal magnetic resonance imaging monitoring of Ela1-TAg transgenic mice, either wild-type or knockout for miR-342, we found no role for miR-342 in the development, growth rate, or pathogenicity of pancreatic acinar carcinoma. These results indicate the importance of assessing miR function in the complex physiology of in vivo model systems and indicate that further functional testing of miR-342 is required before concluding it is a bona fide tumor-suppressor-miR.
Collapse
Affiliation(s)
- James Dooley
- Translational Immunology Laboratory, VIB, Leuven, Belgium.,Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium
| | - Vasiliki Lagou
- Translational Immunology Laboratory, VIB, Leuven, Belgium.,Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium
| | - Emanuela Pasciuto
- Translational Immunology Laboratory, VIB, Leuven, Belgium.,Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium
| | - Michelle A Linterman
- Laboratory of Lymphocyte Signaling and Development, Babraham Institute, Cambridge, UK
| | - Haydn M Prosser
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Uwe Himmelreich
- Department of Imaging and Pathology, KU Leuven - University of Leuven, Leuven, Belgium
| | - Adrian Liston
- Translational Immunology Laboratory, VIB, Leuven, Belgium.,Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
20
|
Zhang S, Liu L, Lv Z, Li Q, Gong W, Wu H. MicroRNA-342-3p Inhibits the Proliferation, Migration, and Invasion of Osteosarcoma Cells by Targeting Astrocyte-Elevated Gene-1 (AEG-1). Oncol Res 2017; 25:1505-1515. [PMID: 28276315 PMCID: PMC7841055 DOI: 10.3727/096504017x14886485417426] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent studies suggest that microRNAs (miRNAs) are critical regulators in many types of cancer, including osteosarcoma. miR-342-3p has emerged as an important cancer-related miRNA in several types of cancers. However, the functional significance of miR-342-3p in osteosarcoma is unknown. The aims of this study were to investigate whether miR-342-3p is dysregulated in osteosarcoma and to explore the biological function of miR-342-3p in regulating cellular processes of osteosarcoma cells. We found that miR-342-3p expression was significantly decreased in osteosarcoma tissues and cell lines. Overexpression of miR-342-3p inhibits the proliferation, migration, and invasion of osteosarcoma cells. In contrast, the inhibition of miR-342-3p exhibited the opposite effect. Astrocyte-elevated gene-1 (AEG-1) was identified as one of the target genes of miR-342-3p in osteosarcoma cells by bioinformatics analysis, dual-luciferase reporter assay, real-time quantitative polymerase chain reaction, and Western blot analysis. Overexpression of miR-342-3p also inhibited the Wnt and nuclear factor κB signaling pathways. Moreover, overexpression of AEG-1 partially rescued the inhibitory effects of miR-342-3p mediated on the proliferation, migration, and invasion of osteosarcoma cells. Overall, our results show that miR-342-3p inhibits the proliferation, migration, and invasion of osteosarcoma cells through targeting AEG-1, suggesting a potential target for the development of miRNA-based therapy for osteosarcoma.
Collapse
|