1
|
Lucà S, Pignata G, Cioce A, Salzillo C, De Cecio R, Ferrara G, Della Corte CM, Morgillo F, Fiorelli A, Montella M, Franco R. Diagnostic Challenges in the Pathological Approach to Pleural Mesothelioma. Cancers (Basel) 2025; 17:481. [PMID: 39941848 PMCID: PMC11816244 DOI: 10.3390/cancers17030481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Malignant pleural mesothelioma (MPM) still represents a complex diagnostic challenge for pathologists in routine practice. This diagnosis requires a multidisciplinary approach, and pathological evaluation is mandatory. The histopathological diagnosis is stepwise and should be based on morphological and immunohistochemical assessment, sometimes associated with molecular tests, and supported by clinical and radiological findings. A correct morphological approach aims to exclude pleural metastasis or benign mesothelial proliferations, which are the main differential diagnoses. While certain histological features are diagnostic of MPM, others are highly suggestive but not definitive. Immunohistochemistry plays a pivotal role, with a panel of both traditional and newer markers being used to assess mesothelial differentiation and to differentiate malignant from benign proliferations. In more challenging cases, molecular tests, such as fluorescent in situ hybridization (FISH) to detect CDKN2A deletion, can be helpful in distinguishing malignant from benign pleural lesions. This review summarizes the key morphological, immunohistochemical, and molecular features that should be considered when pleural biopsy samples are examined, with the aim of improving diagnostic accuracy in this complex area.
Collapse
Affiliation(s)
- Stefano Lucà
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (S.L.); (A.C.); (M.M.)
- Department of Experimental Medicine, PhD Course in Public Health, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Giovanna Pignata
- Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy; (G.P.); (R.D.C.); (G.F.)
| | - Alessandro Cioce
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (S.L.); (A.C.); (M.M.)
- Department of Experimental Medicine, PhD Course in Public Health, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Cecilia Salzillo
- Department of Experimental Medicine, PhD Course in Public Health, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
- Department of Precision and Regenerative Medicine and Ionian Area, Pathology Unit, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Rossella De Cecio
- Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy; (G.P.); (R.D.C.); (G.F.)
| | - Gerardo Ferrara
- Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy; (G.P.); (R.D.C.); (G.F.)
| | - Carminia Maria Della Corte
- Department of Precision Medicine, Medical Oncology, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (C.M.D.C.); (F.M.)
| | - Floriana Morgillo
- Department of Precision Medicine, Medical Oncology, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (C.M.D.C.); (F.M.)
| | - Alfonso Fiorelli
- Thoracic Surgery Unit, Department of Translational Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Marco Montella
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (S.L.); (A.C.); (M.M.)
| | - Renato Franco
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (S.L.); (A.C.); (M.M.)
| |
Collapse
|
2
|
Kuryk L, Rodella G, Staniszewska M, Pancer KW, Wieczorek M, Salmaso S, Caliceti P, Garofalo M. Novel Insights Into Mesothelioma Therapy: Emerging Avenues and Future Prospects. Front Oncol 2022; 12:916839. [PMID: 35785199 PMCID: PMC9247278 DOI: 10.3389/fonc.2022.916839] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022] Open
Abstract
Malignant mesothelioma is a rare and aggressive cancer that develops in the thin layer surrounding the mesothelium and is mainly caused by asbestos exposure. Despite improvements in patient prognosis with conventional cancer treatments, such as surgery, chemotherapy, and radiotherapy, there are still no curative treatment modalities for advanced disease. In recent years, new therapeutic avenues have been explored. Improved understanding of the mechanisms underlying the dynamic tumor interaction with the immune system has led to the development of immunotherapeutic approaches. Numerous recent clinical trials have shown a desire to develop more effective treatments that can be used to fight against the disease. Immune checkpoint inhibitors, oncolytic adenoviruses, and their combination represent a promising strategy that can be used to synergistically overcome immunosuppression in the mesothelioma tumor microenvironment. This review provides a synthesized overview of the current state of knowledge on new therapeutic options for mesothelioma with a focus on the results of clinical trials conducted in the field.
Collapse
Affiliation(s)
- Lukasz Kuryk
- Department of Virology, National Institute of Public Health National Institute of Hygiene (NIH)—National Institute of Research, Warsaw, Poland
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Giulia Rodella
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Monika Staniszewska
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Warsaw, Poland
| | - Katarzyna Wanda Pancer
- Department of Virology, National Institute of Public Health National Institute of Hygiene (NIH)—National Institute of Research, Warsaw, Poland
| | - Magdalena Wieczorek
- Department of Virology, National Institute of Public Health National Institute of Hygiene (NIH)—National Institute of Research, Warsaw, Poland
| | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Mariangela Garofalo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
3
|
Shamseddin M, Obacz J, Garnett MJ, Rintoul RC, Francies HE, Marciniak SJ. Use of preclinical models for malignant pleural mesothelioma. Thorax 2021; 76:1154-1162. [PMID: 33692175 PMCID: PMC8526879 DOI: 10.1136/thoraxjnl-2020-216602] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/16/2021] [Accepted: 02/26/2021] [Indexed: 01/08/2023]
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer most commonly caused by prior exposure to asbestos. Median survival is 12-18 months, since surgery is ineffective and chemotherapy offers minimal benefit. Preclinical models that faithfully recapitulate the genomic and histopathological features of cancer are critical for the development of new treatments. The most commonly used models of MPM are two-dimensional cell lines established from primary tumours or pleural fluid. While these have provided some important insights into MPM biology, these cell models have significant limitations. In order to address some of these limitations, spheroids and microfluidic chips have more recently been used to investigate the role of the three-dimensional environment in MPM. Efforts have also been made to develop animal models of MPM, including asbestos-induced murine tumour models, MPM-prone genetically modified mice and patient-derived xenografts. Here, we discuss the available in vitro and in vivo models of MPM and highlight their strengths and limitations. We discuss how newer technologies, such as the tumour-derived organoids, might allow us to address the limitations of existing models and aid in the identification of effective treatments for this challenging-to-treat disease.
Collapse
Affiliation(s)
- Marie Shamseddin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Joanna Obacz
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Mathew J Garnett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Robert Campbell Rintoul
- Department of Oncology, University of Cambridge, Cambridge, Cambridgeshire, UK
- Department of Thoracic Oncology, Royal Papworth Hospital NHS Foundation Trust, Cambridge, Cambridgeshire, UK
| | | | - Stefan John Marciniak
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, Cambridgeshire, UK
| |
Collapse
|
4
|
Sun S, Frontini F, Qi W, Hariharan A, Ronner M, Wipplinger M, Blanquart C, Rehrauer H, Fonteneau JF, Felley-Bosco E. Endogenous retrovirus expression activates type-I interferon signaling in an experimental mouse model of mesothelioma development. Cancer Lett 2021; 507:26-38. [PMID: 33713739 DOI: 10.1016/j.canlet.2021.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/23/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023]
Abstract
Early events in an experimental model of mesothelioma development include increased levels of editing in double-stranded RNA (dsRNA). We hypothesised that expression of endogenous retroviruses (ERV) contributes to dsRNA formation and type-I interferon signaling. ERV and interferon stimulated genes (ISGs) expression were significantly higher in tumor compared to non-tumor samples. 12 tumor specific ERV ("MesoERV1-12") were identified and verified by qPCR in mouse tissues. "MesoERV1-12" expression was lower in mouse embryonic fibroblasts (MEF) compared to mesothelioma cells. "MesoERV1-12" levels were significantly increased by demethylating agent 5-Aza-2'-deoxycytidine treatment and were accompanied by increased levels of dsRNA and ISGs. Basal ISGs expression was higher in mesothelioma cells compared to MEF and was significantly decreased by JAK inhibitor Ruxolitinib, by blocking Ifnar1 and by silencing Mavs. "MesoERV7" promoter was demethylated in asbestos-exposed compared to sham mice tissue as well as in mesothelioma cells and MEF upon 5-Aza-CdR treatment. These observations uncover novel aspects of asbestos-induced mesothelioma whereby ERV expression increases due to promoter demethylation and is paralleled by increased levels of dsRNA and activation of type-I IFN signaling. These features are important for early diagnosis and therapy.
Collapse
Affiliation(s)
- Suna Sun
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, Lungen- und Thoraxonkologie Zentrum, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland
| | - Francesca Frontini
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, Lungen- und Thoraxonkologie Zentrum, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland
| | - Weihong Qi
- Functional Genomics Center Zürich, ETH Zürich/University of Zürich, Zürich, Switzerland
| | - Ananya Hariharan
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, Lungen- und Thoraxonkologie Zentrum, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland
| | - Manuel Ronner
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, Lungen- und Thoraxonkologie Zentrum, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland
| | - Martin Wipplinger
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, Lungen- und Thoraxonkologie Zentrum, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland
| | | | - Hubert Rehrauer
- Functional Genomics Center Zürich, ETH Zürich/University of Zürich, Zürich, Switzerland
| | | | - Emanuela Felley-Bosco
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, Lungen- und Thoraxonkologie Zentrum, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland.
| |
Collapse
|
5
|
Abstract
Despite multiple diagnostic toolkits, the diagnosis of diffuse malignant pleural mesothelioma relies primarily on proper histologic assessment. The definitive diagnosis of diffuse malignant pleural mesothelioma is based on the pathologic assessment of tumor tissue, which can be obtained from core biopsy sampling, pleurectomy, or other more extensive resections, such as extrapleural pneumonectomy. Given its rarity and overlapping microscopic features with other conditions, the histologic diagnosis of diffuse malignant pleural mesothelioma is challenging. This review discusses the pathologic features and the differential diagnosis of diffuse malignant pleural mesothelioma, including select diagnostic pitfalls.
Collapse
Affiliation(s)
- Yin P Hung
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Lucian R Chirieac
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Abstract
RNA editing is a post-transcriptional process increasing transcript diversity, thereby regulating different biological processes. We recently observed that mutations resulting from RNA editing due to hydrolytic deamination of adenosine increase during the development of mesothelioma, a rare cancer linked to chronic exposure to asbestos. This review gathers information from the published literature and public data mining to explore several aspects of RNA editing and their possible implications for cancer growth and therapy. We address possible links between RNA editing and particular types of mesothelioma genetic and epigenetic alterations and discuss the relevance of an edited substrate in the context of current chemotherapy or immunotherapy.
Collapse
Affiliation(s)
- Ananya Hariharan
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, Lungen- und Thoraxonkologie Zentrum, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Suna Sun
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, Lungen- und Thoraxonkologie Zentrum, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Martin Wipplinger
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, Lungen- und Thoraxonkologie Zentrum, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Emanuela Felley-Bosco
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, Lungen- und Thoraxonkologie Zentrum, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| |
Collapse
|
7
|
Cross-Species Proteomics Identifies CAPG and SBP1 as Crucial Invasiveness Biomarkers in Rat and Human Malignant Mesothelioma. Cancers (Basel) 2020; 12:cancers12092430. [PMID: 32867073 PMCID: PMC7564583 DOI: 10.3390/cancers12092430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 12/25/2022] Open
Abstract
Malignant mesothelioma (MM) still represents a devastating disease that is often detected too late, while the current effect of therapies on patient outcomes remains unsatisfactory. Invasiveness biomarkers may contribute to improving early diagnosis, prognosis, and treatment for patients, a task that could benefit from the development of high-throughput proteomics. To limit potential sources of bias when identifying such biomarkers, we conducted cross-species proteomic analyzes on three different MM sources. Data were collected firstly from two human MM cell lines, secondly from rat MM tumors of increasing invasiveness grown in immunocompetent rats and human MM tumors grown in immunodeficient mice, and thirdly from paraffin-embedded sections of patient MM tumors of the epithelioid and sarcomatoid subtypes. Our investigations identified three major invasiveness biomarkers common to the three tumor sources, CAPG, FABP4, and LAMB2, and an additional set of 25 candidate biomarkers shared by rat and patient tumors. Comparing the data to proteomic analyzes of preneoplastic and neoplastic rat mesothelial cell lines revealed the additional role of SBP1 in the carcinogenic process. These observations could provide new opportunities to identify highly vulnerable MM patients with poor survival outcomes, thereby improving the success of current and future therapeutic strategies.
Collapse
|
8
|
Pouliquen DL, Boissard A, Coqueret O, Guette C. Biomarkers of tumor invasiveness in proteomics (Review). Int J Oncol 2020; 57:409-432. [PMID: 32468071 PMCID: PMC7307599 DOI: 10.3892/ijo.2020.5075] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Over the past two decades, quantitative proteomics has emerged as an important tool for deciphering the complex molecular events involved in cancers. The number of references involving studies on the cancer metastatic process has doubled since 2010, while the last 5 years have seen the development of novel technologies combining deep proteome coverage capabilities with quantitative consistency and accuracy. To highlight key findings within this huge amount of information, the present review identified a list of tumor invasive biomarkers based on both the literature and data collected on a biocollection of experimental cell lines, tumor models of increasing invasiveness and tumor samples from patients with colorectal or breast cancer. Crossing these different data sources led to 76 proteins of interest out of 1,245 mentioned in the literature. Information on these proteins can potentially be translated into clinical prospects, since they represent potential targets for the development and evaluation of innovative therapies, alone or in combination. Herein, a systematical review of the biology of each of these proteins, including their specific subcellular/extracellular or multiple localizations is presented. Finally, as an important advantage of quantitative proteomics is the ability to provide data on all these molecules simultaneously in cell pellets, body fluids or paraffin‑embedded sections of tumors/invaded tissues, the significance of some of their interconnections is discussed.
Collapse
Affiliation(s)
| | - Alice Boissard
- Paul Papin ICO Cancer Center, CRCINA, Inserm, Université d'Angers, F‑44000 Nantes, France
| | | | - Catherine Guette
- Paul Papin ICO Cancer Center, CRCINA, Inserm, Université d'Angers, F‑44000 Nantes, France
| |
Collapse
|
9
|
S100A4 is a Biomarker of Tumorigenesis, EMT, Invasion, and Colonization of Host Organs in Experimental Malignant Mesothelioma. Cancers (Basel) 2020; 12:cancers12040939. [PMID: 32290283 PMCID: PMC7226589 DOI: 10.3390/cancers12040939] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 12/20/2022] Open
Abstract
Recent findings suggest that S100A4, a protein involved in communication between stromal cells and cancer cells, could be more involved than previously expected in cancer invasiveness. To investigate its cumulative value in the multistep process of the pathogenesis of malignant mesothelioma (MM), SWATH-MS (sequential window acquisition of all theoretical fragmentation spectra), an advanced and robust technique of quantitative proteomics, was used to analyze a collection of 26 preneoplastic and neoplastic rat mesothelial cell lines and models of MM with increasing invasiveness. Secondly, proteomic and histological analyses were conducted on formalin-fixed paraffin-embedded sections of liver metastases vs. primary tumor, and spleen from tumor-bearing rats vs. controls in the most invasive MM model. We found that S100A4, along with 12 other biomarkers, differentiated neoplastic from preneoplastic mesothelial cell lines, and invasive vs. non-invasive tumor cells in vitro, and MM tumors in vivo. Additionally, S100A4 was the only protein differentiating preneoplastic mesothelial cell lines with sarcomatoid vs. epithelioid morphology in relation to EMT (epithelial-to-mesenchymal transition). Finally, S100A4 was the most significantly increased biomarker in liver metastases vs. primary tumor, and in the spleen colonized by MM cells. Overall, we showed that S100A4 was the only protein that showed increased abundance in all situations, highlighting its crucial role in all stages of MM pathogenesis.
Collapse
|
10
|
Blanquart C, Jaurand MC, Jean D. The Biology of Malignant Mesothelioma and the Relevance of Preclinical Models. Front Oncol 2020; 10:388. [PMID: 32269966 PMCID: PMC7109283 DOI: 10.3389/fonc.2020.00388] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 03/04/2020] [Indexed: 12/19/2022] Open
Abstract
Malignant mesothelioma (MM), especially its more frequent form, malignant pleural mesothelioma (MPM), is a devastating thoracic cancer with limited therapeutic options. Recently, clinical trials that used immunotherapy strategies have yielded promising results, but the benefits are restricted to a limited number of patients. To develop new therapeutic strategies and define predictors of treatment response to existing therapy, better knowledge of the cellular and molecular mechanisms of MM tumors and sound preclinical models are needed. This review aims to provide an overview of our present knowledge and issues on both subjects. MM shows a complex pattern of molecular changes, including genetic, chromosomic, and epigenetic alterations. MM is also a heterogeneous cancer. The recently described molecular classifications for MPM could better consider inter-tumor heterogeneity, while histo-molecular gradients are an interesting way to consider both intra- and inter-tumor heterogeneities. Classical preclinical models are based on use of MM cell lines in culture or implanted in rodents, i.e., xenografts in immunosuppressed mice or isografts in syngeneic rodents to assess the anti-tumor immune response. Recent developments are tumoroids, patient-derived xenografts (PDX), xenografts in humanized mice, and genetically modified mice (GEM) that carry mutations identified in human MM tumor cells. Multicellular tumor spheroids are an interesting in vitro model to reduce animal experimentation; they are more accessible than tumoroids. They could be relevant, especially if they are co-cultured with stromal and immune cells to partially reproduce the human microenvironment. Even if preclinical models have allowed for major advances, they show several limitations: (i) the anatomical and biological tumor microenvironments are incompletely reproduced; (ii) the intra-tumor heterogeneity and immunological contexts are not fully reconstructed; and (iii) the inter-tumor heterogeneity is insufficiently considered. Given that these limitations vary according to the models, preclinical models must be carefully selected depending on the objectives of the experiments. New approaches, such as organ-on-a-chip technologies or in silico biological systems, should be explored in MM research. More pertinent cell models, based on our knowledge on mesothelial carcinogenesis and considering MM heterogeneity, need to be developed. These endeavors are mandatory to implement efficient precision medicine for MM.
Collapse
Affiliation(s)
- Christophe Blanquart
- Université de Nantes, CNRS, INSERM, CRCINA, Nantes, France.,Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Marie-Claude Jaurand
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors Laboratory, Paris, France
| | - Didier Jean
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors Laboratory, Paris, France
| |
Collapse
|
11
|
Chapel DB, Schulte JJ, Husain AN, Krausz T. Application of immunohistochemistry in diagnosis and management of malignant mesothelioma. Transl Lung Cancer Res 2020; 9:S3-S27. [PMID: 32206567 PMCID: PMC7082260 DOI: 10.21037/tlcr.2019.11.29] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Immunohistochemistry plays an indispensable role in accurate diagnosis of malignant mesothelioma, particularly in morphologically challenging cases and in biopsy and cytology specimens, where tumor architecture is difficult or impossible to evaluate. Application of a targeted panel of mesothelial- and epithelial-specific markers permits correct identification of tumor lineage in the vast majority of cases. An immunopanel including two mesothelial markers (calretinin, CK5/6, WT-1, or D2-40) and two epithelial markers (MOC-31 and claudin-4) offers good sensitivity and specificity, with adjustments as appropriate for the differential diagnosis. Once mesothelial lineage is established, malignancy-specific studies can help verify a diagnosis of malignant mesothelioma. BAP1 loss, CDKN2A homozygous deletion, and MTAP loss are highly specific markers of malignancy in a mesothelial lesion, and they attain acceptable diagnostic sensitivity when applied as a diagnostic panel. Novel markers of malignancy, such as 5-hmC loss and increased EZH2 expression, are promising, but have not yet achieved widespread clinical adoption. Some diagnostic markers also have prognostic significance, and PD-L1 immunohistochemistry may predict tumor response to immunotherapy. Application and interpretation of these immnuomarkers should always be guided by clinical history, radiographic findings, and above all histomorphology.
Collapse
Affiliation(s)
- David B Chapel
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jefree J Schulte
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Aliya N Husain
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Thomas Krausz
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
12
|
Immunohistochemical evaluation of nuclear 5-hydroxymethylcytosine (5-hmC) accurately distinguishes malignant pleural mesothelioma from benign mesothelial proliferations. Mod Pathol 2019; 32:376-386. [PMID: 30315275 DOI: 10.1038/s41379-018-0159-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/10/2018] [Accepted: 09/16/2018] [Indexed: 12/22/2022]
Abstract
Accurate distinction of benign mesothelial proliferations from malignant mesothelioma remains a diagnostic challenge. Sequential use of BAP1 immunohistochemistry and CDKN2A fluorescence in situ hybridization is specific for diagnosis of mesothelioma, but fluorescence in situ hybridization is both costly and time-consuming. Early data indicate that mesothelioma shows extensive loss of nuclear 5-hydroxymethylcytosine (5-hmC). We studied 49 cases of mesothelioma (17 epithelioid mesothelioma, 22 biphasic mesothelioma, and 10 sarcomatoid mesothelioma) and 23 benign mesothelial proliferations using a 5-hmC single immunohistochemical stain, CAM5.2/5-hmC double immunohistochemical stain, and BAP1 immunohistochemistry. Estimations of extent of 5-hmC loss were made using the 5-hmC single stain and CAM5.2/5-hmC double stain, and extent of nuclear 5-hmC loss was definitively quantitated in at least 1000 cells per case. Mean nuclear 5-hmC loss in mesothelioma (84%) was significantly greater than in benign mesothelial proliferations (4%) (p < 0.0001). Using 5-hmC loss in > 50% of tumor nuclei to define the diagnosis of mesothelioma, 5-hmC immunohistochemistry showed sensitivity of 92% and specificity of 100%. An immunopanel including 5-hmC and BAP1 immunohistochemistry achieved sensitivity of 98% and specificity of 100%. Extensive nuclear 5-hmC loss is sensitive and specific for mesothelioma in the differential diagnosis with benign mesothelial proliferations. In challenging mesothelial lesions, immunohistochemical studies showing either extensive 5-hmC loss or BAP1 loss indicate a diagnosis of mesothelioma, precluding the need for CDKN2A fluorescence in situ hybridization in a considerable number of cases.
Collapse
|
13
|
Nader JS, Abadie J, Deshayes S, Boissard A, Blandin S, Blanquart C, Boisgerault N, Coqueret O, Guette C, Grégoire M, Pouliquen DL. Characterization of increasing stages of invasiveness identifies stromal/cancer cell crosstalk in rat models of mesothelioma. Oncotarget 2018; 9:16311-16329. [PMID: 29662647 PMCID: PMC5893242 DOI: 10.18632/oncotarget.24632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/25/2018] [Indexed: 12/11/2022] Open
Abstract
Sarcomatoid mesothelioma (SM) is a devastating cancer associated with one of the poorest outcome. Therefore, representative preclinical models reproducing different tumor microenvironments (TME) observed in patients would open up new prospects for the identification of markers and evaluation of innovative therapies. Histological analyses of four original models of rat SM revealed their increasing infiltrative and metastatic potential were associated with differences in Ki67 index, blood-vessel density, and T-lymphocyte and macrophage infiltration. In comparison with the noninvasive tumor M5-T2, proteomic analysis demonstrated the three invasive tumors F4-T2, F5-T1 and M5-T1 shared in common a very significant increase in the abundance of the multifunctional proteins galectin-3, prohibitin and annexin A5, and a decrease in proteins involved in cell adhesion, tumor suppression, or epithelial differentiation. The increased metastatic potential of the F5-T1 tumor, relative to F4-T2, was associated with an increased macrophage vs T-cell infiltrate, changes in the levels of expression of a panel of cytokine genes, an increased content of proteins involved in chromatin organization, ribosome structure, splicing, or presenting anti-adhesive properties, and a decreased content of proteins involved in protection against oxidative stress, normoxia and intracellular trafficking. The most invasive tumor, M5-T1, was characterized by a pattern of specific phenotypic and molecular features affecting the presentation of MHC class I-mediated antigens and immune cell infiltration, or involved in the reorganization of the cytoskeleton and composition of the extracellular matrix. These four preclinical models and data represent a new resource available to the cancer research community to catalyze further investigations on invasiveness.
Collapse
Affiliation(s)
- Joëlle S. Nader
- CRCINA, INSERM, Université d’Angers, Université de Nantes, Nantes, France
| | - Jérôme Abadie
- CRCINA, INSERM, Université d’Angers, Université de Nantes, Nantes, France
- ONIRIS, Nantes, France
| | - Sophie Deshayes
- CRCINA, INSERM, Université d’Angers, Université de Nantes, Nantes, France
| | - Alice Boissard
- CRCINA, INSERM, Université de Nantes, Université d’Angers, Angers, France
- ICO, Angers, France
| | - Stéphanie Blandin
- Plate-Forme MicroPICell, SFR François Bonamy, Université de Nantes, France
| | | | | | - Olivier Coqueret
- CRCINA, INSERM, Université de Nantes, Université d’Angers, Angers, France
- ICO, Angers, France
| | - Catherine Guette
- CRCINA, INSERM, Université de Nantes, Université d’Angers, Angers, France
- ICO, Angers, France
| | - Marc Grégoire
- CRCINA, INSERM, Université d’Angers, Université de Nantes, Nantes, France
| | | |
Collapse
|
14
|
Pouliquen DL, Nawrocki-Raby B, Nader J, Blandin S, Robard M, Birembaut P, Grégoire M. Evaluation of intracavitary administration of curcumin for the treatment of sarcomatoid mesothelioma. Oncotarget 2017; 8:57552-57573. [PMID: 28915695 PMCID: PMC5593667 DOI: 10.18632/oncotarget.15744] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 02/06/2017] [Indexed: 12/15/2022] Open
Abstract
A rat model of sarcomatoid mesothelioma, mimicking some of the worst clinical conditions encountered, was established to evaluate the therapeutic potential of intracavitary curcumin administration. The M5-T1 cell line, selected from a collection established from F344 rats induced with asbestos, produces tumors within three weeks, with extended metastasis in normal tissues, after intraperitoneal inoculation in syngeneic rats. The optimal concentration/time conditions for killing M5-T1 cells with curcumin were first determined in vitro. Secondly, the potential of intraperitoneal curcumin administration to kill tumor cells in vivo was evaluated in tumor-bearing rats, in comparison with a reference epigenetic drug, SAHA. Both agents administered at days 21 and 26 after tumor challenge produced necrosis within the solid tumors at day 28. However, tumor tissue necrosis induced with curcumin was much more extensive than with SAHA, and was characterized by infiltration with mononuclear phagocytic cells. In contrast, tumor tissue treated with SAHA contained foci of resistant cells and was infiltrated by many isolated CD8+ cells. The treatment of tumor-bearing rats with 1.5 mg/kg curcumin on days 7, 9, 11 and 14 after tumor challenge dramatically reduced the mean total tumor mass at day 16. Clusters of CD8+ T lymphocytes were observed at the periphery of small residual tumor masses in the peritoneal cavity, which presented a significant reduction in mitotic index, IL6 and vimentin expression compared with tumors in untreated rats. These data open up interesting new prospects for the therapy of sarcomatoid mesothelioma with curcumin and its derivatives.
Collapse
Affiliation(s)
- Daniel L Pouliquen
- INSERM, UMR 1232, Nantes, France.,Université de Nantes, Nantes, France.,CNRS ERL, Nantes, France
| | - Béatrice Nawrocki-Raby
- INSERM, UMR-S 903, Reims, France.,Université de Reims Champagne-Ardenne, Reims, France.,SFR CAP-Santé, Reims, France
| | - Joëlle Nader
- INSERM, UMR 1232, Nantes, France.,Université de Nantes, Nantes, France.,CNRS ERL, Nantes, France
| | - Stéphanie Blandin
- Université de Nantes, Nantes, France.,Plate-forme MicroPICell, SFR François Bonamy, Nantes, France
| | - Myriam Robard
- Université de Nantes, Nantes, France.,Plate-forme MicroPICell, SFR François Bonamy, Nantes, France
| | - Philippe Birembaut
- INSERM, UMR-S 903, Reims, France.,Université de Reims Champagne-Ardenne, Reims, France.,SFR CAP-Santé, Reims, France.,Laboratory of Biopathology, CHU Reims, Reims, France
| | - Marc Grégoire
- INSERM, UMR 1232, Nantes, France.,Université de Nantes, Nantes, France.,CNRS ERL, Nantes, France
| |
Collapse
|