1
|
Somrit K, Krobthong S, Yingchutrakul Y, Phueakphud N, Wongtrakoongate P, Komyod W. KHDRBS3 facilitates self-renewal and temozolomide resistance of glioblastoma cell lines. Life Sci 2024; 358:123132. [PMID: 39413902 DOI: 10.1016/j.lfs.2024.123132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/22/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Glioblastoma is a deadly tumor which possesses glioblastoma stem cell populations involved in temozolomide (TMZ) resistance. To gain insight into the mechanisms of self-renewing and therapy-resistant cancer stem cells, subcellular proteomics was utilized to identify proteins whose expression is enriched in U251-derived glioblastoma stem-like cells. The KH RNA Binding Domain Containing, Signal Transduction Associated 3, KHDRBS3, was successfully identified as a gene up-regulated in the cancer stem cell population compared with its differentiated derivatives. Depletion of KHDRBS3 by RNA silencing led to a decrease in cell proliferation, neurosphere formation, migration, and expression of genes involved in glioblastoma stemness. Importantly, TMZ sensitivity can be induced by the gene knockdown. Collectively, our results highlight KHDRBS3 as a novel factor associated with self-renewal of glioblastoma stem-like cells and TMZ resistance. As a consequence, targeting KHDRBS3 may help eradicate glioblastoma stem-like cells.
Collapse
Affiliation(s)
- Kanokkuan Somrit
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Sucheewin Krobthong
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yodying Yingchutrakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Nut Phueakphud
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Patompon Wongtrakoongate
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Waraporn Komyod
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
2
|
Roth C, Paulini L, Hoffmann ME, Mosler T, Dikic I, Brunschweiger A, Körschgen H, Behl C, Linder B, Kögel D. BAG3 regulates cilia homeostasis of glioblastoma via its WW domain. Biofactors 2024; 50:1113-1133. [PMID: 38655699 PMCID: PMC11627473 DOI: 10.1002/biof.2060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024]
Abstract
The multidomain protein BAG3 exerts pleiotropic oncogenic functions in many tumor entities including glioblastoma (GBM). Here, we compared BAG3 protein-protein interactions in either adherently cultured or stem-like cultured U251 GBM cells. In line with BAG3's putative role in regulating stem-like properties, identified interactors in sphere-cultured cells included different stem cell markers (SOX2, OLIG2, and NES), while interactomes of adherent BAG3-proficient cells indicated a shift toward involvement of BAG3 in regulation of cilium assembly (ACTR3 and ARL3). Applying a set of BAG3 deletion constructs we could demonstrate that none of the domains except the WW domain are required for suppression of cilia formation by full-length BAG3 in U251 and U343 cells. In line with the established regulation of the Hippo pathway by this domain, we could show that the WW mutant fails to rescue YAP1 nuclear translocation. BAG3 depletion reduced activation of a YAP1/AURKA signaling pathway and induction of PLK1. Collectively, our findings point to a complex interaction network of BAG3 with several pathways regulating cilia homeostasis, involving processes related to ciliogenesis and cilium degradation.
Collapse
Affiliation(s)
- Caterina Roth
- Department of Neurosurgery, Experimental NeurosurgeryUniversity Hospital, Goethe UniversityFrankfurt am MainGermany
| | - Lara Paulini
- Department of Neurosurgery, Experimental NeurosurgeryUniversity Hospital, Goethe UniversityFrankfurt am MainGermany
| | | | - Thorsten Mosler
- Institute of Biochemistry II, Goethe UniversityFrankfurt am MainGermany
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe UniversityFrankfurt am MainGermany
- Buchmann Institute for Molecular Life Sciences, Goethe UniversityFrankfurt am MainGermany
| | - Andreas Brunschweiger
- Institute of Pharmacy and Food Chemistry, Faculty of Chemistry and PharmacyJulius‐Maximilians‐UniversitätWürzburgGermany
| | - Hagen Körschgen
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Christian Behl
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Benedikt Linder
- Department of Neurosurgery, Experimental NeurosurgeryUniversity Hospital, Goethe UniversityFrankfurt am MainGermany
| | - Donat Kögel
- Department of Neurosurgery, Experimental NeurosurgeryUniversity Hospital, Goethe UniversityFrankfurt am MainGermany
- German Cancer Consortium (DKTK), Partner Site FrankfurtFrankfurt am MainGermany
- German Cancer Research Center DKFZHeidelbergGermany
| |
Collapse
|
3
|
Bark SA, Dalmolin M, Malafaia O, Roesler R, Fernandes MAC, Isolan GR. Gene Expression of CSF3R/CD114 Is Associated with Poorer Patient Survival in Glioma. Int J Mol Sci 2024; 25:3020. [PMID: 38474265 DOI: 10.3390/ijms25053020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Gliomas comprise most cases of central nervous system (CNS) tumors. Gliomas afflict both adults and children, and glioblastoma (GBM) in adults represents the clinically most important type of malignant brain cancer, with a very poor prognosis. The cell surface glycoprotein CD114, which is encoded by the CSF3R gene, acts as the receptor for the granulocyte colony stimulating factor (GCSF), and is thus also called GCSFR or CSFR. CD114 is a marker of cancer stem cells (CSCs), and its expression has been reported in several cancer types. In addition, CD114 may represent one among various cases where brain tumors hijack molecular mechanisms involved in neuronal survival and synaptic plasticity. Here, we describe CSF3R mRNA expression in human gliomas and their association with patient prognosis as assessed by overall survival (OS). We found that the levels of CSF3R/CD114 transcripts are higher in a few different types of gliomas, namely astrocytoma, pilocytic astrocytoma, and GBM, in comparison to non-tumoral neural tissue. We also observed that higher expression of CSF3R/CD114 in gliomas is associated with poorer outcome as measured by a shorter OS. Our findings provide early evidence suggesting that CSF3R/CD114 shows a potential role as a prognosis marker of OS in patients with GBM.
Collapse
Affiliation(s)
- Samir Ale Bark
- Graduate Program in Principles of Surgery, Mackenzie Evangelical University, Curitiba 80730-000, PR, Brazil
- The Center for Advanced Neurology and Neurosurgery (CEANNE), Porto Alegre 90560-010, RS, Brazil
| | - Matheus Dalmolin
- InovAI Lab, nPITI/IMD, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Bioinformatics Multidisciplinary Environment (BioME), Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Osvaldo Malafaia
- Graduate Program in Principles of Surgery, Mackenzie Evangelical University, Curitiba 80730-000, PR, Brazil
| | - Rafael Roesler
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
| | - Marcelo A C Fernandes
- InovAI Lab, nPITI/IMD, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Bioinformatics Multidisciplinary Environment (BioME), Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Department of Computer Engineering and Automation, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Gustavo R Isolan
- Graduate Program in Principles of Surgery, Mackenzie Evangelical University, Curitiba 80730-000, PR, Brazil
- The Center for Advanced Neurology and Neurosurgery (CEANNE), Porto Alegre 90560-010, RS, Brazil
- National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
| |
Collapse
|
4
|
Anderson G. Melatonin, BAG-1 and cortisol circadian interactions in tumor pathogenesis and patterned immune responses. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:962-993. [PMID: 37970210 PMCID: PMC10645470 DOI: 10.37349/etat.2023.00176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/07/2023] [Indexed: 11/17/2023] Open
Abstract
A dysregulated circadian rhythm is significantly associated with cancer risk, as is aging. Both aging and circadian dysregulation show suppressed pineal melatonin, which is indicated in many studies to be linked to cancer risk and progression. Another independently investigated aspect of the circadian rhythm is the cortisol awakening response (CAR), which is linked to stress-associated hypothalamus-pituitary-adrenal (HPA) axis activation. CAR and HPA axis activity are primarily mediated via activation of the glucocorticoid receptor (GR), which drives patterned gene expression via binding to the promotors of glucocorticoid response element (GRE)-expressing genes. Recent data shows that the GR can be prevented from nuclear translocation by the B cell lymphoma-2 (Bcl-2)-associated athanogene 1 (BAG-1), which translocates the GR to mitochondria, where it can have diverse effects. Melatonin also suppresses GR nuclear translocation by maintaining the GR in a complex with heat shock protein 90 (Hsp90). Melatonin, directly and/or epigenetically, can upregulate BAG-1, suggesting that the dramatic 10-fold decrease in pineal melatonin from adolescence to the ninth decade of life will attenuate the capacity of night-time melatonin to modulate the effects of the early morning CAR. The interactions of pineal melatonin/BAG-1/Hsp90 with the CAR are proposed to underpin how aging and circadian dysregulation are associated with cancer risk. This may be mediated via differential effects of melatonin/BAG-1/Hsp90/GR in different cells of microenvironments across the body, from which tumors emerge. This provides a model of cancer pathogenesis that better integrates previously disparate bodies of data, including how immune cells are regulated by cancer cells in the tumor microenvironment, at least partly via the cancer cell regulation of the tryptophan-melatonin pathway. This has a number of future research and treatment implications.
Collapse
|
5
|
Brenner CM, Choudhary M, McCormick MG, Cheung D, Landesberg GP, Wang JF, Song J, Martin TG, Cheung JY, Qu HQ, Hakonarson H, Feldman AM. BAG3: Nature's Quintessential Multi-Functional Protein Functions as a Ubiquitous Intra-Cellular Glue. Cells 2023; 12:937. [PMID: 36980278 PMCID: PMC10047307 DOI: 10.3390/cells12060937] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/30/2023] Open
Abstract
BAG3 is a 575 amino acid protein that is found throughout the animal kingdom and homologs have been identified in plants. The protein is expressed ubiquitously but is most prominent in cardiac muscle, skeletal muscle, the brain and in many cancers. We describe BAG3 as a quintessential multi-functional protein. It supports autophagy of both misfolded proteins and damaged organelles, inhibits apoptosis, maintains the homeostasis of the mitochondria, and facilitates excitation contraction coupling through the L-type calcium channel and the beta-adrenergic receptor. High levels of BAG3 are associated with insensitivity to chemotherapy in malignant cells whereas both loss of function and gain of function variants are associated with cardiomyopathy.
Collapse
Affiliation(s)
- Caitlyn M. Brenner
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, MERB 752, Philadelphia, PA 19140, USA; (C.M.B.); (M.C.)
| | - Muaaz Choudhary
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, MERB 752, Philadelphia, PA 19140, USA; (C.M.B.); (M.C.)
| | - Michael G. McCormick
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, MERB 752, Philadelphia, PA 19140, USA; (C.M.B.); (M.C.)
- Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - David Cheung
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, MERB 752, Philadelphia, PA 19140, USA; (C.M.B.); (M.C.)
- Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Gavin P. Landesberg
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, MERB 752, Philadelphia, PA 19140, USA; (C.M.B.); (M.C.)
- Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Ju-Fang Wang
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, MERB 752, Philadelphia, PA 19140, USA; (C.M.B.); (M.C.)
- Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Jianliang Song
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, MERB 752, Philadelphia, PA 19140, USA; (C.M.B.); (M.C.)
- Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Thomas G. Martin
- Department of Molecular, Cellular and Developmental Biology, Colorado University School of Medicine, Aurora, CO 80045, USA
| | - Joseph Y. Cheung
- Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hui-Qi Qu
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 191104, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 191104, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 191104, USA
- Division of Human Genetics and Division of Pulmonary Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 191104, USA
- Department of Pediatrics, Division of Human Genetics and Division of Pulmonary Medicine, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 191104, USA
| | - Arthur M. Feldman
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, MERB 752, Philadelphia, PA 19140, USA; (C.M.B.); (M.C.)
- Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
6
|
Mejía-Rodríguez R, Romero-Trejo D, González RO, Segovia J. Combined treatments with AZD5363, AZD8542, curcumin or resveratrol induce death of human glioblastoma cells by suppressing the PI3K/AKT and SHH signaling pathways. Biochem Biophys Rep 2023; 33:101430. [PMID: 36714540 PMCID: PMC9876780 DOI: 10.1016/j.bbrep.2023.101430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/02/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Glioblastoma (GBM) is a very aggressive tumor that presents vascularization, necrosis and is resistant to chemotherapy and radiotherapy. Current treatments are not effective eradicating GBM, thus, there is an urgent need to develop novel therapeutic strategies against GBM. AZD5363, AZD8542, curcumin and resveratrol, are widely studied for the treatment of cancer and in the present study we explored the effects of the administration of combined treatments with AZD5363, AZD8542, curcumin or resveratrol on human GBM cells. We found that the combined treatments with AZD5363+AZD8542+Curcumin and AZD8542+Curcumin+Resveratrol inhibit the PI3K/AKT and SHH survival pathways by decreasing the activity of AKT, the reduction of the expression of SMO, pP70S6k, pS6k, GLI1, p21 and p27, and the activation of caspase-3 as a marker of apoptosis. These results provide evidence that the combined treatments AZD5363+AZD8542+Curcumin and AZD8542+Curcumin+Resveratrol have the potential to be an interesting option against GBM.
Collapse
Affiliation(s)
- Rosalinda Mejía-Rodríguez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Mexico
| | - Daniel Romero-Trejo
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Mexico
| | - Rosa O. González
- Departamento de Matemáticas, Universidad Autónoma Metropolitana-Iztapalapa (UAM-I), Mexico
| | - José Segovia
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Mexico,Corresponding author. Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN # 2508, 07300, Mexico.
| |
Collapse
|
7
|
Lin H, Koren SA, Cvetojevic G, Girardi P, Johnson GV. The role of BAG3 in health and disease: A "Magic BAG of Tricks". J Cell Biochem 2022; 123:4-21. [PMID: 33987872 PMCID: PMC8590707 DOI: 10.1002/jcb.29952] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/25/2021] [Indexed: 01/03/2023]
Abstract
The multi-domain structure of Bcl-2-associated athanogene 3 (BAG3) facilitates its interaction with many different proteins that participate in regulating a variety of biological pathways. After revisiting the BAG3 literature published over the past ten years with Citespace software, we classified the BAG3 research into several clusters, including cancer, cardiomyopathy, neurodegeneration, and viral propagation. We then highlighted recent key findings in each cluster. To gain greater insight into the roles of BAG3, we analyzed five different published mass spectrometry data sets of proteins that co-immunoprecipitate with BAG3. These data gave us insight into universal, as well as cell-type-specific BAG3 interactors in cancer cells, cardiomyocytes, and neurons. Finally, we mapped variable BAG3 SNPs and also mutation data from previous publications to further explore the link between the domains and function of BAG3. We believe this review will provide a better understanding of BAG3 and direct future studies towards understanding BAG3 function in physiological and pathological conditions.
Collapse
Affiliation(s)
- Heng Lin
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| | - Shon A. Koren
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| | - Gregor Cvetojevic
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| | - Peter Girardi
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| | - Gail V.W. Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| |
Collapse
|
8
|
Zhao FY, Zhang Q, Wang JM, Jiang JY, Huyan LY, Liu BQ, Yan J, Li C, Wang HQ. BAG3 epigenetically regulates GALNT10 expression via WDR5 and facilitates the stem cell-like properties of platin-resistant ovarian cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:119077. [PMID: 34111434 DOI: 10.1016/j.bbamcr.2021.119077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 10/21/2022]
Abstract
Ovarian cancer is the most lethal gynecologic malignant cancer, frequently due to its late diagnosis and high recurrence. Cancer stem cells (CSCs) from different malignancies including ovarian cancer have been linked to chemotherapy resistance and poor prognosis. Therefore, identifying the molecular mechanisms mediating therapy resistance is urgent to finding novel targets for therapy-resistant tumors. Aberrant O-glycosylation ascribed to subtle alteration of GALNT family members during malignant transformation facilitate metastasis in various cancers. The current study demonstrated that BAG3 was upregulated in platin-resistant ovarian cancer tissues and cells, and high BAG3 predicted dismal disease-free survival of patients with ovarian cancer. In addition, the current study showed that BAG3 facilitated CSC-like properties of ovarian cancer cells via regulation of GALTN10. In a term of mechanism, BAG3 epigenetically regulated GALNT10 transactivation via histone H3 lysine 4 (H3K4) presenter WDR5. We demonstrated that WDR5 increased H3K4 trimethylation (H3K4me3) modification at the promoter regions of GALNT10, facilitating recruitment of transcription factor ZBTB2 to the GALNT10 promoter. Collectively, our study uncovers an epigenetic upregulation of GALNT10 by BAG3 via WDR5 to facilitate CSCs of platin-resistant ovarian cancers, providing additional information for further identification of attractive targets with therapeutic significance in platin-resistant ovarian cancer.
Collapse
Affiliation(s)
- Fu-Ying Zhao
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Qi Zhang
- Criminal Investigation Police University of China, Shenyang 110854, China
| | - Jia-Mei Wang
- Department of Laboratory Medicine, the 1st affiliated hospital, China Medical University, Shenyang 110001, China
| | - Jing-Yi Jiang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Ling-Yue Huyan
- 5+3 integrated clinical medicine 103K, China Medical University, Shenyang 110026, China
| | - Bao-Qin Liu
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Jing Yan
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Chao Li
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Hua-Qin Wang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China.
| |
Collapse
|
9
|
Diallo M, Herrera F. The role of understudied post-translational modifications for the behavior and function of Signal Transducer and Activator of Transcription 3. FEBS J 2021; 289:6235-6255. [PMID: 34235865 DOI: 10.1111/febs.16116] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/16/2021] [Accepted: 07/07/2021] [Indexed: 12/19/2022]
Abstract
The Signal Transducer and Activator of Transcription (STAT) family of transcription factors is involved in inflammation, immunity, development, cancer, and response to injury, among other biological phenomena. Canonical STAT signaling is often represented as a 3-step pathway involving the sequential activation of a membrane receptor, an intermediate kinase, and a STAT transcription factor. The rate-limiting phosphorylation at a highly conserved C-terminal tyrosine residue determines the nuclear translocation and transcriptional activity of STATs. This apparent simplicity is actually misleading and can hardly explain the pleiotropic nature of STATs, the existence of various noncanonical STAT pathways, or the key role of the N-terminal domain in STAT functions. More than 80 post-translational modifications (PTMs) have been identified for STAT3, but their functions remain barely understood. Here, we provide a brief but comprehensive overview of these underexplored PTMs and their role on STAT3 canonical and noncanonical functions. A less tyrosine-centric point of view may be required to advance our understanding of STAT signaling.
Collapse
Affiliation(s)
- Mickael Diallo
- Faculdade de Ciências da Universidade de Lisboa, Cell Structure and Dynamics Laboratory, BioISI - Instituto de Biosistemas e Ciências integrativas, Lisbon, Portugal.,MOSTMICRO Research Unit, Instituto de Tecnologia Química e Biológica (ITQB-NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
| | - Federico Herrera
- Faculdade de Ciências da Universidade de Lisboa, Cell Structure and Dynamics Laboratory, BioISI - Instituto de Biosistemas e Ciências integrativas, Lisbon, Portugal.,MOSTMICRO Research Unit, Instituto de Tecnologia Química e Biológica (ITQB-NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
10
|
Riew TR, Kim S, Jin X, Kim HL, Yoo K, Seo SB, Lee JH, Lee MY. Induction of BIS Protein During Astroglial and Fibrotic Scar Formation After Mitochondrial Toxin-Mediated Neuronal Injury in Rats. Mol Neurobiol 2020; 57:3846-3859. [PMID: 32607834 DOI: 10.1007/s12035-020-02000-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/22/2020] [Indexed: 10/24/2022]
Abstract
B cell leukemia/lymphoma-2 (Bcl-2)-interacting death suppressor (BIS), also identified as Bcl-2-associated athanogene 3 (BAG3), has been reported to be upregulated in reactive astrocytes after brain insults. The present study was designed to further substantiate the involvement of BIS protein in the astroglial reaction in the striatum of rats treated with the mitochondrial toxin, 3-nitropropionic acid. Weak constitutive immunoreactivity for BIS was observed in astrocytes in the control striatum, whereas its expression was upregulated, along with that of nestin, in the lesioned striatum. In the lesion core, where astrocytes are virtually absent, BIS/nestin double-labeled cells were associated with the vasculature and were identified as perivascular adventitial fibroblasts. By contrast, BIS/nestin double-labeled cells in the perilesional area were reactive astrocytes, which were confined to the border zone contributing to the formation of the astroglial scar; this was evident 3 days post-lesion and increased thereafter progressively throughout the 28-day experimental period. At the ultrastructural level, BIS protein was diffusely localized throughout the cytoplasm within the stained cells. Collectively, our results demonstrate the phenotypic and functional heterogeneity of BIS-positive cells in the lesioned striatum, suggesting the involvement of BIS in the formation of astroglial scar and its potential role in the development of fibrotic scar after brain insults.
Collapse
Affiliation(s)
- Tae-Ryong Riew
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Soojin Kim
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Xuyan Jin
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Hong Lim Kim
- Integrative Research Support Center, Laboratory of Electron Microscope, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Kyunghyun Yoo
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.,Department of Biochemistry, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,The Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Sung Bin Seo
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,The Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Jeong-Hwa Lee
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea. .,Department of Biochemistry, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea. .,The Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| | - Mun-Yong Lee
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea. .,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| |
Collapse
|
11
|
At the Crossroads of Apoptosis and Autophagy: Multiple Roles of the Co-Chaperone BAG3 in Stress and Therapy Resistance of Cancer. Cells 2020; 9:cells9030574. [PMID: 32121220 PMCID: PMC7140512 DOI: 10.3390/cells9030574] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 12/22/2022] Open
Abstract
BAG3, a multifunctional HSP70 co-chaperone and anti-apoptotic protein that interacts with the ATPase domain of HSP70 through its C-terminal BAG domain plays a key physiological role in cellular proteostasis. The HSP70/BAG3 complex determines the levels of a large number of selective client proteins by regulating their turnover via the two major protein degradation pathways, i.e. proteasomal degradation and macroautophagy. On the one hand, BAG3 competes with BAG1 for binding to HSP70, thereby preventing the proteasomal degradation of its client proteins. By functionally interacting with HSP70 and LC3, BAG3 also delivers polyubiquitinated proteins to the autophagy pathway. BAG3 exerts a number of key physiological functions, including an involvement in cellular stress responses, proteostasis, cell death regulation, development, and cytoskeletal dynamics. Conversely, aberrant BAG3 function/expression has pathophysiological relevance correlated to cardiomyopathies, neurodegeneration, and cancer. Evidence obtained in recent years underscores the fact that BAG3 drives several key hallmarks of cancer, including cell adhesion, metastasis, angiogenesis, enhanced autophagic activity, and apoptosis inhibition. This review provides a state-of-the-art overview on the role of BAG3 in stress and therapy resistance of cancer, with a particular focus on BAG3-dependent modulation of apoptotic signaling and autophagic/lysosomal activity.
Collapse
|
12
|
Yun HH, Kim S, Kuh HJ, Lee JH. Downregulation of BIS sensitizes A549 cells for digoxin-mediated inhibition of invasion and migration by the STAT3-dependent pathway. Biochem Biophys Res Commun 2020; 524:643-648. [PMID: 32029272 DOI: 10.1016/j.bbrc.2020.01.154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 11/15/2022]
Abstract
Digoxin, a compound of the cardiac glycoside family, was originally prescribed for heart failure but has recently been rediscovered for its potent antitumor activity. However, it has a narrow therapeutic margin due to its cardiotoxicity, limiting its safe use as an antitumor agent in clinical practice. To widen its therapeutic margin, we investigated whether the antitumor effect of digoxin is potentiated by the depletion of BCL-2-interacting cell death suppressor (BIS) in A549 lung cancer cells. BIS is a multifunctional protein that is frequently overexpressed in most human cancers including lung cancer. Our results demonstrated that the inhibitory potential of digoxin on the migratory behavior of A549 cells is significantly enhanced by BIS depletion as assessed by transwell assay and collagen-incorporated 3D spheroid culture. Western blotting revealed that combination treatment significantly reduces p-STAT3 expression. In addition, a STAT3 inhibitor substantially suppressed the aggressive phenotypes of A549 cells. Thus, our results suggest that loss of STAT3 activity is a possible molecular mechanism for the synergistic effect of digoxin and BIS depletion. Our findings suggest the sensitizing role of BIS silencing to reduce the dose of digoxin for treatment of lung cancer with a high metastatic potential.
Collapse
Affiliation(s)
- Hye Hyeon Yun
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea; Institute of Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Seulki Kim
- Department of Biomedicine & Health Sciences, Graduate School, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea; Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Hyo-Jeong Kuh
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Jeong-Hwa Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea; Institute of Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea.
| |
Collapse
|
13
|
BAG3 deletion suppresses stem cell-like features of pancreatic ductal adenocarcinoma via translational suppression of ISG15. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:819-827. [DOI: 10.1016/j.bbamcr.2019.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 11/21/2022]
|
14
|
Combined Inhibition of HDAC and EGFR Reduces Viability and Proliferation and Enhances STAT3 mRNA Expression in Glioblastoma Cells. J Mol Neurosci 2019; 68:49-57. [PMID: 30887411 DOI: 10.1007/s12031-019-01280-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/13/2019] [Indexed: 01/03/2023]
Abstract
Changes in expression of histone deacetylases (HDACs), which epigenetically regulate chromatin structure, and mutations and amplifications of the EGFR gene, which codes for the epidermal growth factor receptor (EGFR), have been reported in glioblastoma (GBM), the most common and malignant type of brain tumor. There are likely interplays between HDACs and EGFR in promoting GBM progression, and HDAC inhibition can cooperate with EGFR blockade in reducing the growth of lung cancer cells. Here, we found that either HDAC or EGFR inhibitors dose-dependently reduced the viability of U87 and A-172 human GBM cells. In U87 cells, the combined inhibition of HDACs and EGFR was more effective than inhibiting either target alone in reducing viability and long-term proliferation. In addition, HDAC or EGFR inhibition, alone or combined, led to G0/G1 cell cycle arrest. The EGFR inhibitor alone or combined with HDAC inhibition increased mRNA expression of the signal transducer and activator of transcription 3 (STAT3), which can act either as an oncogene or a tumor suppressor in GBM. These data provide early evidence that combining HDAC and EGFR inhibition may be an effective strategy to reduce GBM growth, through a mechanism possibly involving STAT3.
Collapse
|
15
|
Li P, Huang Z, Wang J, Chen W, Huang J. Ubiquitin-specific peptidase 28 enhances STAT3 signaling and promotes cell growth in non-small-cell lung cancer. Onco Targets Ther 2019; 12:1603-1611. [PMID: 30881015 PMCID: PMC6396656 DOI: 10.2147/ott.s194917] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Ubiquitin-specific peptidase 28 (USP28) has been reported to play significant roles in several tumors, but its roles in non-small-cell lung cancer (NSCLC) is still unknown. In this study, we aimed to investigate the biological function and molecular mechanisms of USP28 in NSCLC. MATERIALS AND METHODS Immunoblotting analysis was used to detect relative proteins' expression. Luciferase assay was performed to explore the activation of signal transducer and activator of transcription 3 (STAT3). Immunoprecipitation was performed to assess whether USP28 interacted with STAT3 or deubiquitinated STAT3. Quantitative real-time PCR was performed to evaluate the relative mRNA levels of STAT3 and USP28. Cycloheximide chase assay was carried out to examine whether USP28 affected the half-life of STAT3 protein. Cell Counting Kit-8 assay and xenograft model were used to assess whether USP28 regulated NSCLC cell growth. RESULTS In this study, the deubiquitinating enzyme USP28 was found to mediate STAT3 signaling in NSCLC cells. USP28 interacted with STAT3, and increased the stability of STAT3 by inducing its deubiquitination. Further studies showed that USP28 was upregulated in both the primary tissues and cell lines of NSCLC. The Kaplan-Meier plotter also indicated that USP28 predicted a poor prognosis of NSCLC patients. Moreover, knockdown of USP28 inhibited cell growth of NSCLC cells in vitro and delayed NSCLC tumor growth in vivo. CONCLUSION These results demonstrated that USP28 was functional in NSCLC cells, and promoted NSCLC cell growth by inducing STAT3 signaling. This suggests that USP28 could be a novel target for NSCLC therapy.
Collapse
Affiliation(s)
- Pengling Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China,
- Department of Respiratory Medicine, The Affiliated Huai'an No 1. People's Hospital, Nanjing Medical University, Huai'an 223300, Jiangsu, China
| | - Ziming Huang
- Department of Emergency Surgery, The Affiliated Huai'an No 1. People's Hospital, Nanjing Medical University, Huai'an 223300, Jiangsu, China
| | - Jipeng Wang
- Department of Respiratory Medicine, The Affiliated Huai'an No 1. People's Hospital, Nanjing Medical University, Huai'an 223300, Jiangsu, China
| | - Wei Chen
- Department of Respiratory Medicine, The Affiliated Huai'an No 1. People's Hospital, Nanjing Medical University, Huai'an 223300, Jiangsu, China
| | - Jianan Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China,
| |
Collapse
|
16
|
Liu J, Gao Q, Xie T, Liu Y, Luo L, Xu C, Shen L, Wan F, Lei T, Ye F. Synergistic effect of TRAIL and irradiation in elimination of glioblastoma stem-like cells. Clin Exp Med 2018; 18:399-411. [PMID: 29777390 DOI: 10.1007/s10238-018-0504-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common malignancy in central nervous system. A small subpopulation of GBM cells known as GBM stem-like cells (GSLCs) were supposed to be the most malignant cells among GBM cells as they are resistant to multiple therapies including radiotherapy. In this study, we set up two GSLCs cell lines from the two parental U87 and U251 glioma cell lines, and studied the expression of apoptosis-related genes alteration in GSLCs before and after irradiation. We found that one of the receptors of TNF-related apoptosis-inducing ligand (TRAIL), DR5, was dramatically up-regulated in GSLCs after irradiation (IR). Although GSLCs are resistant to both TRAIL and radiation treatment alone, the combined treatment with TRAIL and irradiation achieved maximum killing effect of GSLCs due to inducing the expression of DR5 and inhibiting the expression of cFLIP. Therefore, TRAIL and IR combined treatment would be a simple but practical therapeutic strategy for clinical application.
Collapse
Affiliation(s)
- Junfeng Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Qinglei Gao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Tao Xie
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Yu Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Longjun Luo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Cheng Xu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Lu Shen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Feng Wan
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Ting Lei
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Fei Ye
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
17
|
BAG3 promotes stem cell-like phenotype in breast cancer by upregulation of CXCR4 via interaction with its transcript. Cell Death Dis 2017; 8:e2933. [PMID: 28703799 PMCID: PMC5550869 DOI: 10.1038/cddis.2017.324] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/14/2017] [Accepted: 06/08/2017] [Indexed: 01/05/2023]
Abstract
BAG3 is an evolutionarily conserved co-chaperone expressed at high levels and has a prosurvival role in many tumor types. The current study reported that BAG3 was induced under specific floating culture conditions that enrich breast cancer stem cell (BCSC)-like cells in spheres. Ectopic BAG3 overexpression increased CD44+/CD24− CSC subpopulations, first-generation and second-generation mammosphere formation, indicating that BAG3 promotes CSC self-renewal and maintenance in breast cancer. We further demonstrated that mechanically, BAG3 upregulated CXCR4 expression at the post-transcriptional level. Further studies showed that BAG3 interacted with CXCR4 mRNA and promoted its expression via its coding and 3′-untranslational regions. BAG3 was also found to be positively correlated with CXCR4 expression and unfavorable prognosis in patients with breast cancer. Taken together, our data demonstrate that BAG3 promotes BCSC-like phenotype through CXCR4 via interaction with its transcript. Therefore, this study establishes BAG3 as a potential adverse prognostic factor and a therapeutic target of breast cancer.
Collapse
|
18
|
Stürner E, Behl C. The Role of the Multifunctional BAG3 Protein in Cellular Protein Quality Control and in Disease. Front Mol Neurosci 2017; 10:177. [PMID: 28680391 PMCID: PMC5478690 DOI: 10.3389/fnmol.2017.00177] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/18/2017] [Indexed: 01/01/2023] Open
Abstract
In neurons, but also in all other cells the complex proteostasis network is monitored and tightly regulated by the cellular protein quality control (PQC) system. Beyond folding of newly synthesized polypeptides and their refolding upon misfolding the PQC also manages the disposal of aberrant proteins either by the ubiquitin-proteasome machinery or by the autophagic-lysosomal system. Aggregated proteins are primarily degraded by a process termed selective macroautophagy (or aggrephagy). One such recently discovered selective macroautophagy pathway is mediated by the multifunctional HSP70 co-chaperone BAG3 (BCL-2-associated athanogene 3). Under acute stress and during cellular aging, BAG3 in concert with the molecular chaperones HSP70 and HSPB8 as well as the ubiquitin receptor p62/SQSTM1 specifically targets aggregation-prone proteins to autophagic degradation. Thereby, BAG3-mediated selective macroautophagy represents a pivotal adaptive safeguarding and emergency system of the PQC which is activated under pathophysiological conditions to ensure cellular proteostasis. Interestingly, BAG3-mediated selective macroautophagy is also involved in the clearance of aggregated proteins associated with age-related neurodegenerative disorders, like Alzheimer’s disease (tau-protein), Huntington’s disease (mutated huntingtin/polyQ proteins), and amyotrophic lateral sclerosis (mutated SOD1). In addition, based on its initial description BAG3 is an anti-apoptotic protein that plays a decisive role in other widespread diseases, including cancer and myopathies. Therefore, in the search for novel therapeutic intervention avenues in neurodegeneration, myopathies and cancer BAG3 is a promising candidate.
Collapse
Affiliation(s)
- Elisabeth Stürner
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University MainzMainz, Germany
| | - Christian Behl
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University MainzMainz, Germany
| |
Collapse
|
19
|
Li T, Wang Z, Hou YF, Li YY. Pim-3 Regulates Stemness of Pancreatic Cancer Cells via Activating STAT3 Signaling Pathway. J Cancer 2017; 8:1530-1541. [PMID: 28775772 PMCID: PMC5535708 DOI: 10.7150/jca.18628] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/27/2017] [Indexed: 02/06/2023] Open
Abstract
Due to its aggressiveness and unusual resistance to conventional therapies, pancreatic cancer is a highly lethal gastrointestinal malignancy with poor prognosis. According to the cancer stem cell hypothesis, there exists a fraction of cancer cells, that is, cancer stem cells, responsible for tumor maintenance and therapeutic failure. Herein we investigated the involvement of proto-oncogene Pim-3 in driving the stemness properties in pancreatic cancer. Expression levels of several stemness-associated markers were examined in several pancreatic cancer cell lines. The double positive (CD24+ESA+) and double negative (CD24-ESA-) pancreatic cancer cells were isolated from PANC-1 and L3.6pl, and their self-renewal ability, tumorigenicity as well as sensitivity to gemcitabine were then evaluated. Results showed that there existed heterogeneity in expression levels of stemness-associated surface markers among pancreatic cancer cell lines. CD24+ESA+ pancreatic cancer cells exhibited increased tumorigenicity and decreased chemosensitivity to gemcitabine as compared to CD24-ESA- cells. Besides, the double positive (CD24+ESA+) subpopulation also exhibited greater expression level of Pim-3 when compared with the double negative (CD24-ESA-) ones. Furthermore, silencing of Pim-3 in pancreatic cancer cells leads to decreased proportions of both single positive (CD24+ and ESA+) and double positive (CD24+ESA+) pancreatic cancer cells. Overexpression of Pim-3 was associated with increased levels of some stemness-associated transcription factors (STAT3, etc.). Moreover, the phosphorylation level and transcriptional activity of STAT3 were decreased in Pim-3 silenced pancreatic cancer cells and restoration of its activity results in restitution of stem cell-like phenotypes. Therefore, Pim-3 maintains stemness of pancreatic cancer cells via activating STAT3 signaling pathway and might be used as a novel therapeutic target in pancreatic cancer.
Collapse
Affiliation(s)
- Ting Li
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhen Wang
- Cancer Research Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Feng Hou
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ying-Yi Li
- Cancer Research Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Combination Treatment with PPAR γ Ligand and Its Specific Inhibitor GW9662 Downregulates BIS and 14-3-3 Gamma, Inhibiting Stem-Like Properties in Glioblastoma Cells. BIOMED RESEARCH INTERNATIONAL 2017. [PMID: 28642874 PMCID: PMC5470001 DOI: 10.1155/2017/5832824] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PPARγ is a nuclear receptor that regulates differentiation and proliferation and is highly expressed in many cancer cells. Its synthetic ligands, such as rosiglitazone and ciglitazone, and its inhibitor GW9662, were shown to induce cellular differentiation, inhibit proliferation, and lead to apoptosis. Glioblastoma is a common brain tumor with poor survival prospects. Recently, glioblastoma stem cells (GSCs) have been examined as a potential target for anticancer therapy; however, little is known about the combined effect of various agents on GSCs. In this study, we found that cotreatment with PPARγ ligands and GW9662 inhibited stem-like properties in GSC-like spheres, which significantly express SOX2. In addition, this treatment decreased the activation of STAT3 and AKT and decreased the amounts of 14-3-3 gamma and BIS proteins. Moreover, combined administration of small-interfering RNA (siRNA) transfection with PPARγ ligands induced downregulation of SOX2 and MMP2 activity together with inhibition of sphere-forming activity regardless of poly(ADP-ribose) polymerase (PARP) cleavage. Taken together, our findings suggest that a combination therapy using PPARγ ligands and its inhibitor could be a potential therapeutic strategy targeting GSCs.
Collapse
|
21
|
BIS overexpression does not affect the sensitivity of HEK 293T cells against apoptosis. Mol Cell Toxicol 2017. [DOI: 10.1007/s13273-017-0010-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Heat Shock Factor 1 Depletion Sensitizes A172 Glioblastoma Cells to Temozolomide via Suppression of Cancer Stem Cell-Like Properties. Int J Mol Sci 2017; 18:ijms18020468. [PMID: 28241425 PMCID: PMC5344000 DOI: 10.3390/ijms18020468] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 02/15/2017] [Accepted: 02/17/2017] [Indexed: 01/13/2023] Open
Abstract
Heat shock factor 1 (HSF1), a transcription factor activated by various stressors, regulates proliferation and apoptosis by inducing expression of target genes, such as heat shock proteins and Bcl-2 (B-cell lymphoma 2) interacting cell death suppressor (BIS). HSF1 also directly interacts with BIS, although it is still unclear whether this interaction is critical in the regulation of glioblastoma stem cells (GSCs). In this study, we examined whether small interfering RNA-mediated BIS knockdown decreased protein levels of HSF1 and subsequent nuclear localization under GSC-like sphere (SP)-forming conditions. Consistent with BIS depletion, HSF1 knockdown also reduced sex determining region Y (SRY)-box 2 (SOX2) expression, a marker of stemness, accompanying the decrease in SP-forming ability and matrix metalloprotease 2 (MMP2) activity. When HSF1 or BIS knockdown was combined with temozolomide (TMZ) treatment, a standard drug used in glioblastoma therapy, apoptosis increased, as measured by an increase in poly (ADP-ribose) polymerase (PARP) cleavage, whereas cancer stem-like properties, such as colony-forming activity and SOX2 protein expression, decreased. Taken together, our findings suggest that targeting BIS or HSF1 could be a viable therapeutic strategy for GSCs resistant to conventional TMZ treatment.
Collapse
|
23
|
Wang N, Wei L, Huang Y, Wu Y, Su M, Pang X, Wang N, Ji F, Zhong C, Chen T, Li B. miR520c blocks EMT progression of human breast cancer cells by repressing STAT3. Oncol Rep 2017; 37:1537-1544. [PMID: 28112380 DOI: 10.3892/or.2017.5393] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/27/2016] [Indexed: 11/06/2022] Open
Abstract
Breast cancer is one of the most malignant diseases world-wide and it ranks the first among female cancers. Masses of intrinsic and extrinsic factors, especially the inflammatory factors can lead to breast cancer. Aberrant activation and accumulation of key molecules can lead to inflammation associated carcinogenesis. The signal transducers and activators of transcription 3 (STAT3) is one of them. Therefore, to evaluate the novel molecular mechanisms, STAT3 has become our focus for breast cancer targeted therapy. At present, many tumor suppressing microRNAs have been validated, and are the highlights in research on microRNAs. Thus, we predicted microRNAs which could putatively regulate STAT3 through databases and selected six to screen with Dual-luciferase assay. The result hinted that miR520c could bind with STAT3 3'UTR. We mutated the seed sequence of miR520c on STAT3 3'UTR, which illustrated a reverse effect compared with wild-type of STAT3 3'UTR. Subsequently, STAT3, p-STAT3 and miR520c were assessed in three different grades of breast cancer cells, with the degree of malignancy, we found an escalating trend of STAT3 and p-STAT3, on the contrary, a downward trend of miR520c. We observed STAT3 was deactivated by miR520c. Epithelial to mesenchymal transition (EMT) is a fatal transfer of cancer progression. To find out whether the downregulation of STAT3 can repress breast cancer motility and invasion ability, we detected EMT markers. The result implied a suppression effect on EMT. We overexpressed STAT3 to conduct rescue experiments, the result showed a recovery of STAT3 and EMT characteristics. Cell motility and invasion property were regained as well. In the study, we elucidated miR520c could inhibit breast cancer EMT by targeting STAT3. It can enrich the mechanism of breast cancer and may lay the foundation for breast cancer targeted treatment.
Collapse
Affiliation(s)
- Nian Wang
- Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Lan Wei
- Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Yunxiu Huang
- Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Yang Wu
- Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Min Su
- Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Xueli Pang
- Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Nian Wang
- Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Feihu Ji
- Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Changli Zhong
- Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Tingmei Chen
- Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Bing Li
- Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| |
Collapse
|