1
|
Bakalenko N, Kuznetsova E, Malashicheva A. The Complex Interplay of TGF-β and Notch Signaling in the Pathogenesis of Fibrosis. Int J Mol Sci 2024; 25:10803. [PMID: 39409132 PMCID: PMC11477142 DOI: 10.3390/ijms251910803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Fibrosis is a major medical challenge, as it leads to irreversible tissue remodeling and organ dysfunction. Its progression contributes significantly to morbidity and mortality worldwide, with limited therapeutic options available. Extensive research on the molecular mechanisms of fibrosis has revealed numerous factors and signaling pathways involved. However, the interactions between these pathways remain unclear. A comprehensive understanding of the entire signaling network that drives fibrosis is still missing. The TGF-β and Notch signaling pathways play a key role in fibrogenesis, and this review focuses on their functional interplay and molecular mechanisms. Studies have shown synergy between TGF-β and Notch cascades in fibrosis, but antagonistic interactions can also occur, especially in cardiac fibrosis. The molecular mechanisms of these interactions vary depending on the cell context. Understanding these complex and context-dependent interactions is crucial for developing effective strategies for treating fibrosis.
Collapse
Affiliation(s)
| | | | - Anna Malashicheva
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg 194064, Russia; (N.B.); (E.K.)
| |
Collapse
|
2
|
Li J, Deng B, Zhang J, Zhang X, Cheng L, Li G, Su P, Miao X, Yang W, Xie J, Wang R. The Peptide DH α-(4-pentenyl)-ANPQIR-NH 2 Exhibits Antifibrotic Activity in Multiple Pulmonary Fibrosis Models Induced by Particulate and Soluble Chemical Fibrogenic Agents. J Pharmacol Exp Ther 2024; 388:701-714. [PMID: 38129127 DOI: 10.1124/jpet.123.001849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 12/23/2023] Open
Abstract
Interstitial lung diseases (ILDs) are a group of restrictive lung diseases characterized by interstitial inflammation and pulmonary fibrosis. The incidence of ILDs associated with exposure to multiple hazards such as inhaled particles, fibers, and ingested soluble chemicals is increasing yearly, and there are no ideal drugs currently available. Our previous research showed that the novel and low-toxicity peptide DHα-(4-pentenyl)-ANPQIR-NH2 (DR3penA) had a strong antifibrotic effect on a bleomycin-induced murine model. Based on the druggability of DR3penA, we sought to investigate its effects on respirable particulate silicon dioxide (SiO2)- and soluble chemical paraquat (PQ)-induced pulmonary fibrosis in this study by using western blot, quantitative reverse-transcription polymerase chain reaction (RT-qPCR), immunofluorescence, H&E and Masson staining, immunohistochemistry, and serum biochemical assays. The results showed that DR3penA alleviated the extent of fibrosis by inhibiting the expression of fibronectin and collagen I and suppressed oxidative stress and epithelial-mesenchymal transition (EMT) in vitro and in vivo. Further study revealed that DR3penA may mitigate pulmonary fibrosis by negatively regulating the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway and mitogen-activated protein kinase (MAPK) pathway. Unexpectedly, through the conversion of drug bioavailability under different routes of administration, DR3penA exerted antifibrotic effects equivalent to those of the positive control drug pirfenidone (PFD) at lower doses. In summary, DR3penA may be a promising lead compound for various fibrotic ILDs. SIGNIFICANCE STATEMENT: Our study verified that DHα-(4-pentenyl)-ANPQIR-NH2 (DR3penA) exhibited positive antifibrotic activity in pulmonary fibrosis induced by silicon dioxide (SiO2) particles and soluble chemical paraquat (PQ) and demonstrated a low-dose advantage compared to the small-molecule drug pirfenidone (PFD). The peptide DR3penA can be further developed for the treatment of multiple fibrotic lung diseases.
Collapse
Affiliation(s)
- Jieru Li
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (J.L., R.W.); Department of General Surgery, The Second Hospital and Clinical Medical School (J.L.) and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066 (B.D., J.Z., X.Z., P.S., X.M., W.Y., J.X., R.W.), Lanzhou University, Lanzhou, China; and School of Biomedical Engineering (L.C.) and School of Pharmaceutical Sciences (G.L.), Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| | - Bochuan Deng
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (J.L., R.W.); Department of General Surgery, The Second Hospital and Clinical Medical School (J.L.) and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066 (B.D., J.Z., X.Z., P.S., X.M., W.Y., J.X., R.W.), Lanzhou University, Lanzhou, China; and School of Biomedical Engineering (L.C.) and School of Pharmaceutical Sciences (G.L.), Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| | - Jiao Zhang
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (J.L., R.W.); Department of General Surgery, The Second Hospital and Clinical Medical School (J.L.) and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066 (B.D., J.Z., X.Z., P.S., X.M., W.Y., J.X., R.W.), Lanzhou University, Lanzhou, China; and School of Biomedical Engineering (L.C.) and School of Pharmaceutical Sciences (G.L.), Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| | - Xiang Zhang
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (J.L., R.W.); Department of General Surgery, The Second Hospital and Clinical Medical School (J.L.) and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066 (B.D., J.Z., X.Z., P.S., X.M., W.Y., J.X., R.W.), Lanzhou University, Lanzhou, China; and School of Biomedical Engineering (L.C.) and School of Pharmaceutical Sciences (G.L.), Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| | - Lu Cheng
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (J.L., R.W.); Department of General Surgery, The Second Hospital and Clinical Medical School (J.L.) and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066 (B.D., J.Z., X.Z., P.S., X.M., W.Y., J.X., R.W.), Lanzhou University, Lanzhou, China; and School of Biomedical Engineering (L.C.) and School of Pharmaceutical Sciences (G.L.), Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| | - Guofeng Li
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (J.L., R.W.); Department of General Surgery, The Second Hospital and Clinical Medical School (J.L.) and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066 (B.D., J.Z., X.Z., P.S., X.M., W.Y., J.X., R.W.), Lanzhou University, Lanzhou, China; and School of Biomedical Engineering (L.C.) and School of Pharmaceutical Sciences (G.L.), Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| | - Ping Su
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (J.L., R.W.); Department of General Surgery, The Second Hospital and Clinical Medical School (J.L.) and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066 (B.D., J.Z., X.Z., P.S., X.M., W.Y., J.X., R.W.), Lanzhou University, Lanzhou, China; and School of Biomedical Engineering (L.C.) and School of Pharmaceutical Sciences (G.L.), Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| | - Xiaokang Miao
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (J.L., R.W.); Department of General Surgery, The Second Hospital and Clinical Medical School (J.L.) and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066 (B.D., J.Z., X.Z., P.S., X.M., W.Y., J.X., R.W.), Lanzhou University, Lanzhou, China; and School of Biomedical Engineering (L.C.) and School of Pharmaceutical Sciences (G.L.), Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| | - Wenle Yang
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (J.L., R.W.); Department of General Surgery, The Second Hospital and Clinical Medical School (J.L.) and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066 (B.D., J.Z., X.Z., P.S., X.M., W.Y., J.X., R.W.), Lanzhou University, Lanzhou, China; and School of Biomedical Engineering (L.C.) and School of Pharmaceutical Sciences (G.L.), Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| | - Junqiu Xie
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (J.L., R.W.); Department of General Surgery, The Second Hospital and Clinical Medical School (J.L.) and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066 (B.D., J.Z., X.Z., P.S., X.M., W.Y., J.X., R.W.), Lanzhou University, Lanzhou, China; and School of Biomedical Engineering (L.C.) and School of Pharmaceutical Sciences (G.L.), Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| | - Rui Wang
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (J.L., R.W.); Department of General Surgery, The Second Hospital and Clinical Medical School (J.L.) and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066 (B.D., J.Z., X.Z., P.S., X.M., W.Y., J.X., R.W.), Lanzhou University, Lanzhou, China; and School of Biomedical Engineering (L.C.) and School of Pharmaceutical Sciences (G.L.), Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| |
Collapse
|
3
|
Zhao L, Liu M, Sun H, Yang JC, Huang YX, Huang JQ, Lei X, Sun LH. Selenium deficiency-induced multiple tissue damage with dysregulation of immune and redox homeostasis in broiler chicks under heat stress. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2056-2069. [PMID: 36795182 DOI: 10.1007/s11427-022-2226-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/15/2022] [Indexed: 02/17/2023]
Abstract
Broiler chicks are fast-growing and susceptible to dietary selenium (Se) deficiency. This study sought to reveal the underlying mechanisms of how Se deficiency induces key organ dysfunctions in broilers. Day-old male chicks (n=6 cages/diet, 6 chicks/cage) were fed with a Se-deficient diet (Se-Def, 0.047 mg Se/kg) or the Se-Def+0.3 mg Se/kg (Control, 0.345 mg Se/kg) for 6 weeks. The serum, liver, pancreas, spleen, heart, and pectoral muscle of the broilers were collected at week 6 to assay for Se concentration, histopathology, serum metabolome, and tissue transcriptome. Compared with the Control group, Se deficiency induced growth retardation and histopathological lesions and reduced Se concentration in the five organs. Integrated transcriptomics and metabolomics analysis revealed that dysregulation of immune and redox homeostasis related biological processes and pathways contributed to Se deficiency-induced multiple tissue damage in the broilers. Meanwhile, four metabolites in the serum, daidzein, epinephrine, L-aspartic acid and 5-hydroxyindoleacetic acid, interacted with differentially expressed genes with antioxidative effects and immunity among all the five organs, which contributed to the metabolic diseases induced by Se deficiency. Overall, this study systematically elucidated the underlying molecular mechanisms in the pathogenesis of Se deficiency-related diseases, which provides a better understanding of the significance of Se-mediated heath in animals.
Collapse
Affiliation(s)
- Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meng Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hua Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jia-Cheng Yang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu-Xuan Huang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jia-Qiang Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China.
| | - Xingen Lei
- Department of Animal Science, Cornell University, Ithaca, 14853, USA
| | - Lv-Hui Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
4
|
Abstract
The mammalian respiratory system or lung is a tree-like branching structure, and the main site of gas exchange with the external environment. Structurally, the lung is broadly classified into the proximal (or conducting) airways and the distal alveolar region, where the gas exchange occurs. In parallel with the respiratory tree, the pulmonary vasculature starts with large pulmonary arteries that subdivide rapidly ending in capillaries adjacent to alveolar structures to enable gas exchange. The NOTCH signalling pathway plays an important role in lung development, differentiation and regeneration post-injury. Signalling via the NOTCH pathway is mediated through activation of four NOTCH receptors (NOTCH1-4), with each receptor capable of regulating unique biological processes. Dysregulation of the NOTCH pathway has been associated with development and pathophysiology of multiple adult acute and chronic lung diseases. This includes accumulating evidence that alteration of NOTCH3 signalling plays an important role in the development and pathogenesis of chronic obstructive pulmonary disease, lung cancer, asthma, idiopathic pulmonary fibrosis and pulmonary arterial hypertension. Herein, we provide a comprehensive summary of the role of NOTCH3 signalling in regulating repair/regeneration of the adult lung, its association with development of lung disease and potential therapeutic strategies to target its signalling activity.
Collapse
|
5
|
Zhu DW, Yu Q, Jiang MF, Wang DD, Shen YH. Exploring the Anti-Pulmonary Fibrosis Mechanism of Jingyin Granule by Network Pharmacology Strategy. Front Pharmacol 2022; 13:825667. [PMID: 35222040 PMCID: PMC8874130 DOI: 10.3389/fphar.2022.825667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/03/2022] [Indexed: 12/15/2022] Open
Abstract
Pulmonary fibrosis (PF) is a clinically common disease caused by many factors, which will lead to lung function decline and even respiratory failure. Jingyin granule has been confirmed to have anti-inflammatory and antiviral effects by former studies, and has been recommended for combating H1N1 influenza A virus (H1N1) infection and Coronavirus disease 2019 (COVID-19) in China. At present, studies have shown that patients with severe COVID-19 infection developed lung fibrotic lesions. Although Jingyin granule can improve symptoms in COVID-19 patients, no study has yet reported whether it can attenuate the process of PF. Here, we explored the underlying mechanism of Jingyin granule against PF by network pharmacology combined with in vitro experimental validation. In the present study, the active ingredients as well as the corresponding action targets of Jingyin granule were firstly collected by TCMSP and literature data, and the disease target genes of PF were retrieved by disease database. Then, the common targets were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, and then a PPI network and an ingredient–target network were constructed. Next, UPLC-MS was used to isolate and identify selected representative components in Jingyin granule. Finally, LPS was used to induce the A549 cell fibrosis model to verify the anti-PF effect of Jingyin granule in vitro. Our results indicated that STAT3, JUN, RELA, MAPK3, TNF, MAPK1, IL-6, and AKT1 were core targets of action and bound with good affinity to selected components, and Jingyin granule may alleviate PF progression by Janus kinase 2/signal transducers and activators of transcription (JAK2/STAT3), the mammalian nuclear factor-κB (NF-κB), the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), tumor necrosis factor (TNF), and the extracellular signal-regulated kinases 1 and 2 (ERK1/2) signaling pathways. Overall, these results provide future therapeutic strategies into the mechanism study of Jingyin granule on PF.
Collapse
Affiliation(s)
- De-wei Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qun Yu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mei-fang Jiang
- SPH Xing Ling Sci. & Tech. Pharmaceutical Co., Ltd., Shanghai, China
| | - Dan-dan Wang
- SPH Xing Ling Sci. & Tech. Pharmaceutical Co., Ltd., Shanghai, China
| | - Yun-hui Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yun-hui Shen,
| |
Collapse
|
6
|
Zhu W, Ding Q, Wang L, Xu G, Diao Y, Qu S, Chen S, Shi Y. Vitamin D3 alleviates pulmonary fibrosis by regulating the MAPK pathway via targeting PSAT1 expression in vivo and in vitro. Int Immunopharmacol 2021; 101:108212. [PMID: 34656907 DOI: 10.1016/j.intimp.2021.108212] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal fibrotic lung disease. However, there are insufficient drugs available for IPF treatment, and the currently used drugs are accompanied by many adverse reactions. Deficiency of vitamin D3 (VD3) in the development of IPF and the potential role of VD3 in the treatment of IPF have attracted increasing attention. In vivo experimental results showed that VD3 could increase the survival rate in bleomycin (BLM)-induced models, relieve lung inflammation, reduce hydroxyproline content, and inhibit collagen deposition and cell apoptosis. We further performed proteomics analysis and screened 251 target proteins that reflect VD3 intervention in BLM-induced animal models. These target proteins were involved in acute inflammation, oxidative stress, antioxidant activity and extracellular matrix binding. Combined with the comprehensive analysis of clinical samples, PSAT1 was screened out as a candidate target related to IPF disease and VD3 treatment. Through further computational analysis, the MAPK signaling pathway was considered to be the most probable candidate pathway for VD3 function targeting IPF. In in vivo experiments, VD3 inhibited BLM-induced expression of PSAT1 and phosphorylation of p38 and ERK1/2 in mouse lung tissue. The experiments of cell proliferation and western blot confirmed that VD3 inhibited the expression of PSAT1 and the activation of the mitogen-activated protein kinase (MAPK) pathway in human pulmonary fibroblasts (HPF). Furthermore, experiments with transfection plasmids overexpressing PSAT1 proved that VD3 could attenuate the proliferation and differentiation of HPF by suppressing the effect of PSAT1 on the MAPK signaling pathway. Finally, we confirmed that vitamin D receptor (VDR) could occupy the PSAT1 promoter to reveal the transcriptional regulation effect of VD3 on PSAT1. In conclusion, VD3 exerted a therapeutic effect on IPF by down-regulating the MAPK signaling pathway via targeting the expression of PSAT1.
Collapse
Affiliation(s)
- Wenxiang Zhu
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China; Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, China
| | - Qi Ding
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China; Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, China
| | - Lu Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China; Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, China
| | - Gonghao Xu
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Yirui Diao
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Sihao Qu
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Sheng Chen
- Shenzhen Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China.
| | - Yuanyuan Shi
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China; Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, China.
| |
Collapse
|
7
|
Pacurari M, Mitra A, Turner T. Idiopathic Pulmonary Comorbidities and Mechanisms. Int J Inflam 2021; 2021:3963659. [PMID: 34691383 PMCID: PMC8528608 DOI: 10.1155/2021/3963659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 09/24/2021] [Accepted: 10/05/2021] [Indexed: 11/20/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a disease with an unknown etiology mainly characterized by a progressive decline of lung function due to the scarring of the tissue deep in the lungs. The overall survival after diagnosis remains low between 3 and 5 years. IPF is a heterogeneous disease and much progress has been made in the past decade in understanding the disease mechanisms that contributed to the development of two new drugs, pirfenidone and nintedanib, which improved the therapeutic management of the disease. The understanding of the cofactors and comorbidities of IPF also contributed to improved management of the disease outcome. In the present review, we evaluate scientific evidence which indicates IPF as a risk factor for other diseases based on the complexity of molecular and cellular mechanisms involved in the disease development and of comorbidities. We conclude from the existing literature that while much progress has been made in understating the mechanisms involved in IPF development, further studies are still necessary to fully understand IPF pathogenesis which will contribute to the identification of novel therapeutic targets for IPF management as well as other diseases for which IPF is a major risk factor.
Collapse
Affiliation(s)
- Maricica Pacurari
- Department of Biology, College of Science, Engineering, and Technology, Jackson State University, Jackson, MS 39217, USA
| | - Amal Mitra
- Department of Epidemiology and Biostatistics, School of Public Health, Jackson State University, Jackson, MS 39217, USA
| | - Timothy Turner
- Department of Biology, College of Science, Engineering, and Technology, Jackson State University, Jackson, MS 39217, USA
| |
Collapse
|
8
|
Zhang HQ, Wang JY, Li ZF, Cui L, Huang SS, Zhu LB, Sun Y, Yang R, Fan HH, Zhang X, Zhu JH. DNA Methyltransferase 1 Is Dysregulated in Parkinson's Disease via Mediation of miR-17. Mol Neurobiol 2021; 58:2620-2633. [PMID: 33483902 DOI: 10.1007/s12035-021-02298-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022]
Abstract
Aberrant DNA methylation is closely associated with the pathogenesis of Parkinson's disease (PD). DNA methyltransferases (DNMTs) are the enzymes for establishment and maintenance of DNA methylation patterns. It has not been clearly defined how DNMTs respond in PD and what mechanisms are associated. Models of PD were established by treatment of five different neurotoxins in cells and intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. Plasma samples of PD patients were also used. Western blot, real-time PCR, immunostaining, and/or luciferase reporter were employed. DNA methylation was analyzed by the bisulfite sequencing analysis. Protein expression of DNMT1, but not of DNMT3A and DNMT3B, was reduced in the cellular and mouse models of PD. Paradoxically, mRNA levels of DNMT1 were increased in these models. After ruling out the possibility of protein degradation, we screened a set of miRNAs that potentially targeted DNMT1 3'-UTR by luciferase reporters and expression abundancies. miR-17 was identified for further investigation with miR-19a of low expression as a parallel comparison. Although exogenous transfection of either miR-17 or miR-19a mimics could inhibit DNMT1 expression, results of miRNA inhibitors showed that miR-17, but not miR-19a, endogenously regulated DNMT1 and the subsequent DNA methylation. Furthermore, levels of miR-17 were elevated in the neurotoxin-induced PD models and the plasma of PD patients. This study demonstrates that the miR-17-mediated DNMT1 downregulation underlies the aberrant DNA methylation in PD. Our results provide a link bridging environmental insults and epigenetic changes and implicate miR-17 in therapeutical modulation of DNA methylation in PD.
Collapse
Affiliation(s)
- Hong-Qiu Zhang
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Jian-Yong Wang
- Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Zhao-Feng Li
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Lei Cui
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Shi-Shi Huang
- Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Lan-Bing Zhu
- Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Yue Sun
- Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Rui Yang
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Hui-Hui Fan
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiong Zhang
- Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Jian-Hong Zhu
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
9
|
Vera L, Garcia-Olloqui P, Petri E, Viñado AC, Valera PS, Blasco-Iturri Z, Calvo IA, Cenzano I, Ruppert C, Zulueta JJ, Prosper F, Saez B, Pardo-Saganta A. Notch3 Deficiency Attenuates Pulmonary Fibrosis and Impedes Lung-Function Decline. Am J Respir Cell Mol Biol 2021; 64:465-476. [PMID: 33493092 DOI: 10.1165/rcmb.2020-0516oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/30/2020] [Indexed: 01/05/2023] Open
Abstract
Fibroblast activation includes differentiation to myofibroblasts and is a key feature of organ fibrosis. The Notch pathway has been involved in myofibroblast differentiation in several tissues, including the lung. Here, we identify a subset of collagen-expressing cells in the lung that exhibit Notch3 activity at homeostasis. After injury, this activation increases, being found in αSMA-expressing myofibroblasts in the mouse and human fibrotic lung. Although previous studies suggest a contribution of Notch3 in stromal activation, in vivo evidence of the role of Notch3 in lung fibrosis remains unknown. In this study, we examine the effects of Notch3 deletion in pulmonary fibrosis and demonstrate that Notch3-deficient lungs are protected from lung injury with significantly reduced collagen deposition after bleomycin administration. The induction of profibrotic genes is reduced in bleomycin-treated Notch3-knockout lungs that consistently present fewer αSMA-positive myofibroblasts. As a result, the volume of healthy lung tissue is higher and lung function is improved in the absence of Notch3. Using in vitro cultures of lung primary fibroblasts, we confirmed that Notch3 participates in their survival and differentiation. Thus, Notch3 deficiency mitigates the development of lung fibrosis because of its role in mediating fibroblast activation. Our findings reveal a previously unidentified mechanism underlying lung fibrogenesis and provide a potential novel therapeutic approach to target pulmonary fibrosis.
Collapse
Affiliation(s)
| | | | - Eva Petri
- Department of Regenerative Medicine and
| | - Ana Cristina Viñado
- Department of Hematology-Oncology, Center for Applied Medical Research, Universidad de Navarra, Pamplona, Spain
| | | | - Zuriñe Blasco-Iturri
- Molecular and Functional Biomarkers Lab, Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), San Sebastián, Spain
| | - Isabel A Calvo
- Department of Hematology-Oncology, Center for Applied Medical Research, Universidad de Navarra, Pamplona, Spain
| | - Itziar Cenzano
- Department of Hematology-Oncology, Center for Applied Medical Research, Universidad de Navarra, Pamplona, Spain
| | - Clemens Ruppert
- Biobank of the Universities of Giessen and Marburg Lung Center and the European Idiopathic Pulmonary Fibrosis Registry, German Center for Lung Research, Giessen, Germany; and
| | - Javier J Zulueta
- Pulmonary Department, Clinica Universidad de Navarra, Pamplona, Spain
| | - Felipe Prosper
- Department of Regenerative Medicine and
- Department of Hematology-Oncology, Center for Applied Medical Research, Universidad de Navarra, Pamplona, Spain
| | - Borja Saez
- Department of Hematology-Oncology, Center for Applied Medical Research, Universidad de Navarra, Pamplona, Spain
| | | |
Collapse
|
10
|
Shao ZQ, Zhang X, Fan HH, Wang XS, Wu HM, Zhang L, Cheng WH, Zhu JH. Selenoprotein T Promotes Proliferation and G1-to-S Transition in SK-N-SH Cells: Implications in Parkinson's Disease. J Nutr 2019; 149:2110-2119. [PMID: 31504723 DOI: 10.1093/jn/nxz199] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/21/2019] [Accepted: 07/25/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Selenium is prioritized to the brain mainly for selenoprotein expression. Selenoprotein T (SELENOT) protects dopaminergic, postmitotic neurons in a mouse model of Parkinson's disease (PD). OBJECTIVE We hypothesized a proliferative role of SELENOT in neural cells. METHODS To assess SELENOT status in PD, sedated male C57BL/6 mice at 10-12 wk of age were injected with 6-hydroxydopamine in neurons, and human peripheral blood mononuclear cells were isolated from 9 healthy subjects (56% men, 68-y-old) and 11 subjects with PD (64% men, 63-y-old). Dopaminergic neural progenitor-like SK-N-SH cells with transient SELENOT overexpression or knockdown were maintained in the presence or absence of the antioxidant N-acetyl-l-cysteine and the calcium channel blocker nimodipine. Cell cycle, proliferation, and signaling parameters were determined by immunoblotting, qPCR, and flow cytometry. RESULTS SELENOT mRNA abundance was increased (P < 0.05) in SK-N-SH cells treated with 1-methyl-4-phenylpyridinium iodide (3.5-fold) and peripheral blood mononuclear cells from PD patients (1.6-fold). Likewise, SELENOT was expressed in tyrosine hydroxylase-positive dopaminergic neurons of 6-hydroxydopamine-injected mice. Knockdown of SELENOT in SK-N-SH cells suppressed (54%; P < 0.05) 5-ethynyl-2'-deoxyuridine incorporation but induced (17-47%; P < 0.05) annexin V-positive cells, CASPASE-3 cleavage, and G1/S cell cycle arrest. SELENOT knockdown and overexpression increased (88-120%; P < 0.05) and reduced (37-42%; P < 0.05) both forkhead box O3 and p27, but reduced (51%; P < 0.05) and increased (1.2-fold; P < 0.05) cyclin-dependent kinase 4 protein abundance, respectively. These protein changes were diminished by nimodipine or N-acetyl-l-cysteine treatment (24 h) at steady-state levels. While the N-acetyl-l-cysteine treatment did not influence the reduction in the amount of calcium (13%; P < 0.05) by SELENOT knockdown, the nimodipine treatment reversed the decreased amount of reactive oxygen species (33%; P < 0.05) by SELENOT overexpression. CONCLUSIONS These cellular and mouse data link SELENOT to neural proliferation, expanding our understanding of selenium protection in PD.
Collapse
Affiliation(s)
- Zi-Qiang Shao
- Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiong Zhang
- Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hui-Hui Fan
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiao-Shuang Wang
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hong-Mei Wu
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Li Zhang
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, MS, USA.,Department of Poultry Science, Mississippi State University, Mississippi State, MS, USA
| | - Wen-Hsing Cheng
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, MS, USA
| | - Jian-Hong Zhu
- Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
11
|
Penke LR, Peters-Golden M. Molecular determinants of mesenchymal cell activation in fibroproliferative diseases. Cell Mol Life Sci 2019; 76:4179-4201. [PMID: 31563998 PMCID: PMC6858579 DOI: 10.1007/s00018-019-03212-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/01/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023]
Abstract
Uncontrolled scarring, or fibrosis, can interfere with the normal function of virtually all tissues of the body, ultimately leading to organ failure and death. Fibrotic diseases represent a major cause of death in industrialized countries. Unfortunately, no curative treatments for these conditions are yet available, highlighting the critical need for a better fundamental understanding of molecular mechanisms that may be therapeutically tractable. The ultimate indispensable effector cells responsible for deposition of extracellular matrix proteins that comprise scars are mesenchymal cells, namely fibroblasts and myofibroblasts. In this review, we focus on the biology of these cells and the molecular mechanisms that regulate their pertinent functions. We discuss key pro-fibrotic mediators, signaling pathways, and transcription factors that dictate their activation and persistence. Because of their possible clinical and therapeutic relevance, we also consider potential brakes on mesenchymal cell activation and cellular processes that may facilitate myofibroblast clearance from fibrotic tissue-topics that have in general been understudied.
Collapse
Affiliation(s)
- Loka R Penke
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, 6301 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109-5642, USA
| | - Marc Peters-Golden
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, 6301 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109-5642, USA.
| |
Collapse
|
12
|
Shikonin suppresses pulmonary fibroblasts proliferation and activation by regulating Akt and p38 MAPK signaling pathways. Biomed Pharmacother 2017; 95:1119-1128. [PMID: 28922731 DOI: 10.1016/j.biopha.2017.09.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/03/2017] [Accepted: 09/06/2017] [Indexed: 01/23/2023] Open
Abstract
Fibroblast is believed to be the primary effector in idiopathic pulmonary fibrosis (IPF), a progressive lung disorder characterized by aberrant tissue remodeling and the formation of fibroblastic foci. Due to the complicated etiology and mechanism, there are few effective drugs for this fatal disease. Shikonin (SHI), which is the major ingredient isolated from the plant Lithospermum Erythrorhizon, has long been used as traditional medicine for many diseases including inflammation and cancer. The roles of SHI in attenuating skin scar and renal fibrosis by reducing TGFβ1-stimulated fibroblast activation are also reported. But whether SHI works on IPF which exhibits both inflammatory and carcinoma-like features remains unknown. In this study, using isolated pulmonary fibroblasts, we demonstrated that SHI inhibited the proliferation, migration of fibroblasts, enhanced cell apoptosis and led to cell cycle arrest at G1 and G2/M phase. Moreover, SHI reduced the production of α-SMA, fibronectin, collagen I and III in response to TGF-β induction in pulmonary fibroblasts, and all of these gene production is the key component of extracellular matrix for tissue remodeling for IPF. The phosphorylation of Akt was down-regulated, p53 increased, the mRNA levels of p21 and p27 enhanced after SHI treatments. The phosphorylation of both p38 MAPK and Akt stimulated by TGF-β was reduced after SHI treatments. Collectively, these data indicate that SHI has a strong cytotoxicity in pulmonary fibroblast via inhibiting Akt activation signaling pathway, and attenuates TGF-β induced extracellular matrix genes production in pulmonary fibroblasts via modulating the activities of p38 MAPK and Akt. SHI might serve as a therapeutically candidate for IPF patients.
Collapse
|
13
|
Wang D, Xin L, Lin JH, Liao Z, Ji JT, Du TT, Jiang F, Li ZS, Hu LH. Identifying miRNA-mRNA regulation network of chronic pancreatitis based on the significant functional expression. Medicine (Baltimore) 2017; 96:e6668. [PMID: 28538367 PMCID: PMC5457847 DOI: 10.1097/md.0000000000006668] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The aim of this study was to explore the underlying molecular mechanism and potential molecular biomarkers of chronic pancreatitis (CP) and construct a miRNA-mRNA regulation network. METHODS To explore the involvement of miRNAs in CP, we downloaded the miRNA and mRNA expression profiles of CP patients and healthy controls and identified the differentially expressed miRNAs and genes. Functional analysis was conducted and significant pathways were utilized. Finally, the miRNA-mRNA regulation network of CP was constructed. RESULTS A total of 44 miRNA risk gene pathway relationships were identified, and a complex regulation network was constructed with 3 genes (ABL1, MYC, and ANAPC13) having the highest degree in affecting the network of CP. Importantly, 4 risk genes (NOTCH3, COX5A, THBS1, and KARS) and 1 risk miRNA (hsa-miR-324-5p) were identified with high prediction accuracy. CONCLUSIONS In conclusion, we analyzed miRNAs and mRNAs expression profiles in CP, 1 risk miRNA, and 4 risk genes were identified with high prediction accuracy as biomarkers of CP. Although further evaluation in clinical study is needed, our findings provide new insights into the pathogenesis of CP and may improve the diagnosis and therapy by identifying novel targets.
Collapse
Affiliation(s)
| | - Lei Xin
- Digestive Endoscopy Center, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | | | - Zhuan Liao
- Digestive Endoscopy Center, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | | | | | - Fei Jiang
- Digestive Endoscopy Center, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Zhao-Shen Li
- Digestive Endoscopy Center, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | | |
Collapse
|