1
|
Guijarro-Eguinoa J, Arjona-Hernandez S, Stewart S, Pernia O, Arias P, Losantos-García I, Rubio T, Burdiel M, Rodriguez-Antolin C, Cruz-Castellanos P, Higuera O, Borobia AM, Rodriguez-Novoa S, de Castro-Carpeño J, Ibanez de Caceres I, Rosas-Alonso R. Prognostic Impact of Dihydropyrimidine Dehydrogenase Germline Variants in Unresectable Non-Small Cell Lung Cancer Patients Treated with Platin-Based Chemotherapy. Int J Mol Sci 2023; 24:9843. [PMID: 37372990 DOI: 10.3390/ijms24129843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Platin-based chemotherapy is the standard treatment for patients with non-small cell lung cancer (NSCLC). However, resistance to this therapy is a major obstacle in successful treatment. In this study, we aimed to investigate the impact of several pharmacogenetic variants in patients with unresectable NSCLC treated with platin-based chemotherapy. Our results showed that DPYD variant carriers had significantly shorter progression-free survival and overall survival compared to DPYD wild-type patients, whereas DPD deficiency was not associated with a higher incidence of high-grade toxicity. For the first time, our study provides evidence that DPYD gene variants are associated with resistance to platin-based chemotherapy in NSCLC patients. Although further studies are needed to confirm these findings and explore the underlying mechanisms of this association, our results suggest that genetic testing of DPYD variants may be useful for identifying patients at a higher risk of platin-based chemotherapy resistance and might be helpful in guiding future personalized treatment strategies in NSCLC patients.
Collapse
Affiliation(s)
| | - Sara Arjona-Hernandez
- Laboratory Medicine Department, Puerta Del Mar University Hospital, 11009 Cadiz, Spain
| | - Stefan Stewart
- Clinical Pharmacology Department, La Paz University Hospital, 28046 Madrid, Spain
| | - Olga Pernia
- Cancer Epigenetics Laboratory, Genetics Department, La Paz University Hospital, 28046 Madrid, Spain
- Experimental Therapies and Novel Biomarkers in Cancer, Hospital La Paz Institute for Health Research-IdiPAZ, 28029 Madrid, Spain
| | - Pedro Arias
- Pharmacogenetics Laboratory, Genetics Department, La Paz University Hospital, 28046 Madrid, Spain
| | - Itsaso Losantos-García
- Biostatistics Department, Hospital La Paz Institute for Health Research-IdiPAZ, 28029 Madrid, Spain
| | - Tania Rubio
- Cancer Epigenetics Laboratory, Genetics Department, La Paz University Hospital, 28046 Madrid, Spain
- Experimental Therapies and Novel Biomarkers in Cancer, Hospital La Paz Institute for Health Research-IdiPAZ, 28029 Madrid, Spain
| | - Miranda Burdiel
- Cancer Epigenetics Laboratory, Genetics Department, La Paz University Hospital, 28046 Madrid, Spain
- Experimental Therapies and Novel Biomarkers in Cancer, Hospital La Paz Institute for Health Research-IdiPAZ, 28029 Madrid, Spain
| | - Carlos Rodriguez-Antolin
- Cancer Epigenetics Laboratory, Genetics Department, La Paz University Hospital, 28046 Madrid, Spain
- Experimental Therapies and Novel Biomarkers in Cancer, Hospital La Paz Institute for Health Research-IdiPAZ, 28029 Madrid, Spain
| | - Patricia Cruz-Castellanos
- Experimental Therapies and Novel Biomarkers in Cancer, Hospital La Paz Institute for Health Research-IdiPAZ, 28029 Madrid, Spain
- Oncology Department, La Paz University Hospital, 28046 Madrid, Spain
| | - Oliver Higuera
- Oncology Department, La Paz University Hospital, 28046 Madrid, Spain
| | - Alberto M Borobia
- Clinical Pharmacology Department, La Paz University Hospital, 28046 Madrid, Spain
| | - Sonia Rodriguez-Novoa
- Genetics of Metabolic Diseases Laboratory, Genetics Department, La Paz University Hospital, 28046 Madrid, Spain
| | - Javier de Castro-Carpeño
- Experimental Therapies and Novel Biomarkers in Cancer, Hospital La Paz Institute for Health Research-IdiPAZ, 28029 Madrid, Spain
- Oncology Department, La Paz University Hospital, 28046 Madrid, Spain
| | - Inmaculada Ibanez de Caceres
- Cancer Epigenetics Laboratory, Genetics Department, La Paz University Hospital, 28046 Madrid, Spain
- Experimental Therapies and Novel Biomarkers in Cancer, Hospital La Paz Institute for Health Research-IdiPAZ, 28029 Madrid, Spain
| | - Rocio Rosas-Alonso
- Experimental Therapies and Novel Biomarkers in Cancer, Hospital La Paz Institute for Health Research-IdiPAZ, 28029 Madrid, Spain
- Pharmacogenetics Laboratory, Genetics Department, La Paz University Hospital, 28046 Madrid, Spain
| |
Collapse
|
2
|
Kim W, Cho YA, Kim DC, Lee KE. Association between Genetic Polymorphism of GSTP1 and Toxicities in Patients Receiving Platinum-Based Chemotherapy: A Systematic Review and Meta-Analysis. Pharmaceuticals (Basel) 2022; 15:ph15040439. [PMID: 35455437 PMCID: PMC9030815 DOI: 10.3390/ph15040439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 02/01/2023] Open
Abstract
Platinum-based chemotherapy regimens have been proven to be effective in various cancers; however, considerable toxicities may develop and can even lead to treatment discontinuation. Diverse factors may influence adverse treatment events, with pharmacogenetic variations being one prime example. Polymorphisms within the glutathione S-transferase pi 1 (GSTP1) gene may especially alter enzyme activity and, consequently, various toxicities in patients receiving platinum-based chemotherapy. Due to a lack of consistency in the degree of elevated complication risk, we performed a systematic literature review and meta-analysis to determine the level of platinum-associated toxicity in patients with the GSTP1 rs1695 polymorphism. We conducted a systematic search for eligible studies published before January 2022 from PubMed, Web of Science, and EMBASE based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to evaluate the strength of the association between the rs1695 polymorphism and various toxicities. Ten eligible studies met the inclusion criteria. The pooled ORs for hematological toxicity and neutropenia in the patients with the variant (G) allele were 1.7- and 2.6-times higher than those with the AA genotype (95% CI 1.06–2.73 and 1.07–6.35), respectively. In contrast, the rs1695 polymorphism resulted in a 44% reduced gastrointestinal toxicity compared to wild-type homozygotes. Our study found that the GSTP1 rs1695 polymorphism was significantly correlated with platinum-induced toxicities. The study also revealed that rs1695 expression exhibited tissue-specific patterns and thus yielded opposite effects in different tissues. A personalized chemotherapy treatment based on these polymorphisms may be considered for cancer patients in the future.
Collapse
Affiliation(s)
- Woorim Kim
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea;
| | - Young-Ah Cho
- College of Pharmacy, Gyeongsang National University, Jinju 52828, Korea;
- Department of Pharmacy, The Prime Hospital, Jinju 52642, Korea
| | - Dong-Chul Kim
- Department of Pathology, Gyeongsang National University Hospital, Jinju 52727, Korea
- School of Medicine, Gyeongsang National University, Jinju 52828, Korea
- Correspondence: (D.-C.K.); (K.-E.L.); Tel.: +82-43-261-3590 (K.-E.L.); Fax: +82-43-268-2732 (K.-E.L.)
| | - Kyung-Eun Lee
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea;
- Correspondence: (D.-C.K.); (K.-E.L.); Tel.: +82-43-261-3590 (K.-E.L.); Fax: +82-43-268-2732 (K.-E.L.)
| |
Collapse
|
3
|
Genome-wide analysis identify novel germline genetic variations in ADCY1 influencing platinum-based chemotherapy response in non-small cell lung cancer. Acta Pharm Sin B 2022; 12:1514-1522. [PMID: 35530157 PMCID: PMC9069400 DOI: 10.1016/j.apsb.2021.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/02/2021] [Accepted: 09/14/2021] [Indexed: 11/21/2022] Open
Abstract
To explore the pharmacogenomic markers that affect the platinum-based chemotherapy response in non-small-cell lung carcinoma (NSCLC), we performed a two-cohort of genome-wide association studies (GWAS), including 34 for WES-based and 433 for microarray-based analyses, as well as two independent validation cohorts. After integrating the results of two studies, the genetic variations related to the platinum-based chemotherapy response were further determined by fine-mapping in 838 samples, and their potential functional impact were investigated by eQTL analysis and in vitro cell experiments. We found that a total of 68 variations were significant at P < 1 × 10-3 in cohort 1 discovery stage, of which 3 SNPs were verified in 262 independent samples. A total of 541 SNPs were significant at P < 1 × 10-4 in cohort 2 discovery stage, of which 8 SNPs were verified in 347 independent samples. Comparing the validated SNPs in two GWAS, ADCY1 gene was verified in both independent studies. The results of fine-mapping showed that the G allele carriers of ADCY1 rs2280496 and C allele carriers of rs189178649 were more likely to be resistant to platinum-based chemotherapy. In conclusion, our study found that rs2280496 and rs189178649 in ADCY1 gene were associated the sensitivity of platinum-based chemotherapy in NSCLC patients.
Collapse
|
4
|
Pharmacogenetic Association between XRCC1 Polymorphisms and Response to Platinum-Based Chemotherapy in Asian Patients with NSCLC: A Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3520764. [PMID: 33150172 PMCID: PMC7603545 DOI: 10.1155/2020/3520764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 08/25/2020] [Indexed: 01/18/2023]
Abstract
Background Platinum-based chemotherapy plays an antitumor role by damaging DNA. X-ray repair crosscomplementing protein 1 (XRCC1) participates in DNA repair and thus affects the sensitivity to platinum drugs. Two polymorphisms of XRCC1, rs25487 (Arg399Gln) and rs1799782 (Arg194Trp), have been widely studied for the association with clinical outcomes of platinum-based chemotherapy in Asian patients with non-small-cell lung cancer (NSCLC), but the results remain inconclusive. Thus, we performed the present meta-analysis. Methods Literature search was performed in PubMed, Web of Science, and EMBASE up to June 2019. Odds ratios (ORs) for objective response ratio (ORR), Cox proportional hazard ratios (HRs) of overall survival (OS) and progression-free survival (PFS), and the corresponding 95% confidence intervals (95% CIs) were calculated to assess the association strengths between XRCC1 polymorphisms and clinical outcomes. Comparisons were performed in homozygous, heterozygous, dominant, and recessive models. Results Finally, a total of 23 studies involving 5567 patients were included in the meta-analysis. Compared to ArgArg of rs25487, GlnGln (OR = 1.71, 95% CI: 1.16-2.52, p = .007, I2 = 56.8%) and GlnArg (OR = 1.23, 95% CI: 1.07-1.40, p = .003, I2 = 29.0%) were associated with higher ORR. Meanwhile, GlnGln indicated a favorable OS (HR = 0.60, 95% CI: 0.40-0.88) and PFS (HR = 0.64, 95% CI: 0.46-0.90). We also found positive associations between rs1799782 and ORR in all comparison models with low between-study heterogeneity. The association strength increased with the number of variant alleles (TrpTrp vs. ArgArg: OR = 1.73, 95% CI:1.31-2.27; TrpArg vs. ArgArg: OR = 1.28, 95% CI: 1.06-1.55), suggesting a gene dosage effect. In addition, TrpTrp predicted a longer OS. Conclusion Our results showed that rs25487 and rs1799782 of XRCC1 are potential markers to predict clinical outcomes of platinum-based chemotherapy in Asian patients with NSCLC.
Collapse
|
5
|
Afifah NN, Diantini A, Intania R, Abdulah R, Barliana MI. Genetic Polymorphisms and the Efficacy of Platinum-Based Chemotherapy: Review. Pharmgenomics Pers Med 2020; 13:427-444. [PMID: 33116759 PMCID: PMC7549502 DOI: 10.2147/pgpm.s267625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/07/2020] [Indexed: 11/23/2022] Open
Abstract
Previous studies have indicated that genetic variations in individuals may result in changes in gene expression and amino acids. The effect of these changes may lead to different responses to platinum-based chemotherapy. A vast response rate interval and a short survival rate indicate that the efficacy and efficiency of the selection of chemotherapy have not been optimized. This article aims to illustrate the potential relationship of various genetic polymorphisms in response to platinum-based chemotherapy for several types of cancer. This review was conducted using articles from the last three- and five-year periods (2014-2019) that use gene polymorphism and its relationship to the efficacy of platinum-based chemotherapy as their theme. A total of 26 out of 488 relevant articles were included based on specific criteria. Through various mechanisms, genes, including ERCC1, ERCC2/XPD, XPC, XPA, XRCC1, APE-1, PARP1, OGG1, ABCC2, MRP, GSTP1, GSTM1, GSTT1, MATE1, and OCT2, have been associated with patient response to platinum-based chemotherapy. We conclude that genetic polymorphism analysis is recommended for the management of cancer so that each patient can be administered therapy based on his or her genetic profile to achieve an effective and efficient outcome.
Collapse
Affiliation(s)
- Nadiya Nurul Afifah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Ajeng Diantini
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
| | - Ruri Intania
- Dr. H.A. Rotinsulu Lung Hospital, Bandung, Indonesia
| | - Rizky Abdulah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
| | - Melisa I Barliana
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
6
|
Mertens RT, Parkin S, Awuah SG. Cancer cell-selective modulation of mitochondrial respiration and metabolism by potent organogold(iii) dithiocarbamates. Chem Sci 2020; 11:10465-10482. [PMID: 34094305 PMCID: PMC8162438 DOI: 10.1039/d0sc03628e] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/04/2020] [Indexed: 12/28/2022] Open
Abstract
Metabolic reprogramming is a key cancer hallmark that has led to the therapeutic targeting of glycolysis. However, agents that target dysfunctional mitochondrial respiration for targeted therapy remains underexplored. We report the synthesis and characterization of ten (10) novel, highly potent organometallic gold(iii) complexes supported by dithiocarbamate ligands as selective inhibitors of mitochondrial respiration. The structure of dithiocarbamates employed dictates the biological stability and cellular cytotoxicity. Most of the compounds exhibit 50% inhibitory concentration (IC50) in the low-micromolar (0.50-2.9 μM) range when tested in a panel of aggressive cancer types with significant selectivity for cancer cells over normal cells. Consequently, there is great interest in the mechanism of action of gold chemotherapeutics, particularly, considering that DNA is not the major target of most gold complexes. We investigate the mechanism of action of representative complexes, 1a and 2a in the recalcitrant triple negative breast cancer (TNBC) cell line, MDA-MB-231. Whole-cell transcriptomics sequencing revealed genes related to three major pathways, namely: cell cycle, organelle fission, and oxidative phosphorylation. 2a irreversibly and rapidly inhibits maximal respiration in TNBC with no effect on normal epithelial cells, implicating mitochondrial OXPHOS as a potential target. Furthermore, the modulation of cyclin dependent kinases and G1 cell cycle arrest induced by these compounds is promising for the treatment of cancer. This work contributes to the need for mitochondrial respiration modulators in biomedical research and outlines a systematic approach to study the mechanism of action of metal-based agents.
Collapse
Affiliation(s)
- Randall T Mertens
- Department of Chemistry, University of Kentucky Lexington KY 40506 USA
| | - Sean Parkin
- Department of Chemistry, University of Kentucky Lexington KY 40506 USA
| | - Samuel G Awuah
- Department of Chemistry, University of Kentucky Lexington KY 40506 USA
- Center for Pharmaceutical Research and Innovation, College of Pharmacy and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky Lexington Kentucky 40536 USA
| |
Collapse
|
7
|
Liu JY, Zou T, Yin JY, Wang Z, Wang Y, Liu ZQ, Chen J, Chen ZW. Genetic Variants in DNA Mismatch Repair Pathway predict prognosis of Lung Cancer patients with receiving Platinum-Based Chemotherapy. J Cancer 2020; 11:5281-5288. [PMID: 32742474 PMCID: PMC7391198 DOI: 10.7150/jca.46150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022] Open
Abstract
Objective: To investigate the relationships between genetic variants in DNA mismatch repair pathway genes and the prognosis of platinum-based chemotherapy in lung cancer patients. Methods: 346 lung cancer patients who received at least two cycles of platinum-based chemotherapy were recruited in this study. A total of 35 single nucleotide polymorphisms in 7 DNA mismatch repair genes were genotyped to investigate their associations with platinum-based chemotherapy prognosis. Result: The results revealed that patients carried MSH2 rs4608577 TT genotype had a significantly shorter progression free survival than patients with GG or GT genotypes (Additive model: P=0.003, OR =0.94, 95% CI =0.33-1.57). Patients with SAPCD1 rs707937 TT genotype had a significantly longer overall survival than patients with GG or GT genotypes (Additive model: P=0.0003, OR=0.75, 95% CI =0.35-1.14). Eight SNPs and fourteen SNPs were related to progression free survival and overall survival in subgroup analyses, respectively. Conclusion: Our findings suggest that the MSH2 rs4608577 and SAPCD1 rs707937 may be potential clinical biomarkers for predicting platinum-based chemotherapy prognosis in lung cancer patients.
Collapse
Affiliation(s)
- Jun-Yan Liu
- Department of Orthopaedics, The First Affiliated Hospital of the University of South China, Hengyang 421001, China
| | - Ting Zou
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, Hunan, P.R.China
| | - Ji-Ye Yin
- Departments of Clinical Pharmacology, Xinagya Hospital, Central South University, Changsha 410008, China.,Institute of Clinical Pharmacology and Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China
| | - Zhan Wang
- Department of Medical Oncology, Lung cancer and Gastrointestinal unit, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha 410013, China
| | - Ying Wang
- Hunan clinical research center in gynecologic cancer, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha 410013, China
| | - Zhao-Qian Liu
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, Hunan, P.R.China.,Departments of Clinical Pharmacology, Xinagya Hospital, Central South University, Changsha 410008, China
| | - Juan Chen
- Department of Pharmacy, Xinagya Hospital, Central South University, Changsha 410008, China
| | - Zhi-Wei Chen
- Department of Orthopaedics, The First Affiliated Hospital of the University of South China, Hengyang 421001, China
| |
Collapse
|
8
|
Guo AX, Xiao F, Shao WH, Zhan Y, Zhang L, Xiong J, Gao Y, Yin JY. Sequential Whole Exome Sequencing Reveals Somatic Mutations Associated with Platinum Response in NSCLC. Onco Targets Ther 2020; 13:6485-6496. [PMID: 32753889 PMCID: PMC7342605 DOI: 10.2147/ott.s254747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/28/2020] [Indexed: 12/28/2022] Open
Abstract
Purpose Resistance is one of the main limitations of successful platinum treatment in non-small-cell lung cancer (NSCLC) patients. In this study, we aimed to identify somatic mutations associated with platinum response. Patients and Methods A total of 57 patients who received platinum-based chemotherapy only and 13 patients who received neoadjuvant chemotherapy (NAC) were enrolled. Somatic mutations were obtained from targeted and whole exome sequencing (WES). Results Somatic mutations in a total of 225 genes were observed. Nonsynonymous variants in EGFR, TTN, TP53 and KRAS, and copy number variations (SCNVs) in chromosome 8q24.3 and 22q11.21 were identified to be associated with platinum response. Based on these mutations, the mutational signature associated with the failure of DNA double-strand break and calcium signaling pathways were identified to be associated with platinum response. Besides, we observed a decrease in tumor mutational burden after chemotherapy. We also evaluated the mutation spectrum consistency between cell-free DNA (cfDNA) and tissue DNA. Somatic mutations detected in cfDNA were consistent with that in tDNA, which indicated that plasma might be used for somatic mutation detection. Conclusion These results support that somatic mutations can affect platinum drug response and provide potential clinical biomarkers for NSCLC treatment.
Collapse
Affiliation(s)
- Ao-Xiang Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410078, People's Republic of China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Changsha 410008, Hunan, People's Republic of China
| | - Fan Xiao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410078, People's Republic of China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Changsha 410008, Hunan, People's Republic of China
| | - Wei-Hua Shao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410078, People's Republic of China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Changsha 410008, Hunan, People's Republic of China
| | - Yan Zhan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410078, People's Republic of China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Changsha 410008, Hunan, People's Republic of China
| | - Le Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Jing Xiong
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital, Central South University, Changsha 410011, People's Republic of China
| | - Yang Gao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410078, People's Republic of China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, People's Republic of China.,Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha 410078, People's Republic of China.,Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha 410078, People's Republic of China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410078, People's Republic of China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Changsha 410008, Hunan, People's Republic of China.,Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Changsha 410078, People's Republic of China
| |
Collapse
|
9
|
Bao Y, Yang B, Zhao J, Shen S, Gao J. Role of common ERCC1 polymorphisms in cisplatin-resistant epithelial ovarian cancer patients: A study in Chinese cohort. Int J Immunogenet 2020; 47:443-453. [PMID: 32173978 DOI: 10.1111/iji.12484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/31/2020] [Accepted: 02/25/2020] [Indexed: 12/13/2022]
Abstract
Epithelial ovarian cancer (EOC) contributes the majority of death cases among various ovarian malignancies. Although a standard method of treatment is the surgical removal of malignant tissue followed by platinum-based chemotherapy, a group of patients does not respond appropriately to cisplatin. An appropriate response to cisplatin has been linked with the nucleotide excision repair mechanism. The present study aims to investigate the role of polymorphisms in DNA repair genes, excision repair cross-complementation group 1 (ERCC1) with susceptibility to EOC development and tumour response to platinum-based chemotherapy in Chinese EOC patients. Patients (n = 559) reporting to the Department of Oncology and general surgery, the First Affiliated Hospital of Kunming Medical University, were enrolled in the study. Three hundred twenty-three healthy controls hailing from similar geographical areas without a history of cancer enrolled as healthy controls. Excision repair cross-complementation group 1 polymorphisms (rs11615, rs3212986, rs735482, rs2336219, rs3212980, rs3212964, rs3212961 and rs2298881) were genotyped by appropriate methods. Distribution of genotypes and allele for ERCC1 polymorphisms (rs11615, rs3212986, rs735482, rs2336219, rs3212980, rs3212964, rs3212961 and rs2298881) were comparable among healthy controls and EOC patients. Interestingly, homozygous mutant and the minor allele for rs11615 and rs3212986 polymorphisms were significantly higher in nonresponder EOC patients when compared to those with a proper response to cisplatin treatment. The prevalence of other SNPs was comparable among the two treated clinical categories. Furthermore, combined genotype revealed significant association of rs11615: TT/ rs3212986: AA genotype combination with cisplatin nonresponder. Variants of rs11615, rs3212986 polymorphisms are associated with cisplatin resistance in Chinese EOC patients. Combined rs11615 and rs3212986 genotypes can be used as a predictive biomarker for platinum-based chemotherapy outcomes.
Collapse
Affiliation(s)
- Yuxia Bao
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, China.,Yunnan Institute of Experimental Diagnosis, Kunming, China.,Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
| | - Bin Yang
- Department of General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jingjiao Zhao
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Simin Shen
- Department of Pain treatment, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jianyuan Gao
- Department of General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
10
|
Mao CX, Li M, Zhang W, Zhou HH, Yin JY, Liu ZQ. Pharmacogenomics for the efficacy of platinum-based chemotherapy: Old drugs, new integrated perspective. Biomed Pharmacother 2020; 126:110057. [PMID: 32145590 DOI: 10.1016/j.biopha.2020.110057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/16/2020] [Accepted: 02/25/2020] [Indexed: 01/16/2023] Open
Abstract
Platinum-based chemotherapy remains the cornerstone of treatment for many malignancies. However, although therapeutic efficiency varies greatly among individuals, there is a lack of pharmacogenomic biomarkers that can be used in clinical settings to identify chemosensitive patients and allow stratification. With the development of high-throughput screening techniques and systems biology approaches, a growing body of evidence has shown that platinum resistance is a multifactorial, multi-dimensional, dynamic process incorporating genetic background, tumor evolution and gut microbes. This review critically summarizes potential pharmacogenomic biomarkers for predicting the efficacy of platinum drugs and provides a comprehensive, time-varying perspective that integrates multiple markers.
Collapse
Affiliation(s)
- Chen-Xue Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China
| | - Min Li
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China.
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China.
| |
Collapse
|
11
|
Li YQ, Chen J, Yin JY, Liu ZQ, Li XP. Gene expression and single nucleotide polymorphism of ATP7B are associated with platinum-based chemotherapy response in non-small cell lung cancer patients. J Cancer 2018; 9:3532-3539. [PMID: 30310510 PMCID: PMC6171024 DOI: 10.7150/jca.26286] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 07/26/2018] [Indexed: 02/06/2023] Open
Abstract
Objectives: Platinum-based chemotherapy is first-line treatment for non-small cell lung cancer (NSCLC) patients. The efficacy is limited by drug resistance. Recent studies suggest that ATP7B, a copper efflux transporter, may be involved in platinum resistance. However, the clinical significance of ATP7B expression in NSCLC is controversial. Moreover, the effects of single nucleotide polymorphisms (SNPs) in ATP7B gene on the response to platinum-based chemotherapy are scarcely understood. The aim of our study is to evaluate the clinical value of ATP7B in NSCLC patients and explore the interrelationships between ATP7B SNPs and protein expression, and their association with chemotherapy response. Materials and Methods: A total of 247 NSCLC patients were recruited in this study. Among them, 158 patients who received platinum-based chemotherapy were used to explore the interrelationships between ATP7B SNPs, protein expression and chemotherapy response, while 89 patients who underwent surgical resection were used to further investigate the association between ATP7B SNPs and expression level. We genotyped 15 SNPs of ATP7B by Sequenom MassARRAY and determined ATP7B protein levels by immunohistochemistry. Results: Patients with ATP7B-negative tumors had improved chemotherapeutic response (p=0.025) and better overall survival (p=0.044) compared with the patients with ATP7B-positive tumors. The multivariate Cox regression analysis revealed that ATP7B expression was an independent prognostic factor (HR=0.639, 95%CI=0.424-0.962, p=0.032). Moreover, we found that the rs9526814 GG genotype was significantly associated with favorable response to platinum-based chemotherapy when compared with TT+TG genotypes (OR=0.362, 95CI%=0.140-0.935, p=0.036). Mechanistically, rs9526814 GG genotype showed a strong trend towards reduced expression level of ATP7B compared with the TT+TG genotypes (p= 0.048). Conclusion: Our findings indicate that ATP7B rs9526814 may contribute to platinum resistance by influencing ATP7B gene expression and can be used as a potential biomarker to predict the sensitivity of platinum-based chemotherapy in NSCLC patients.
Collapse
Affiliation(s)
- Yue-Qin Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, P.R. China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - Juan Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, P.R. China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - Xiang-Ping Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, P.R. China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| |
Collapse
|
12
|
Li YQ, Yin JY, Liu ZQ, Li XP. Copper efflux transporters ATP7A and ATP7B: Novel biomarkers for platinum drug resistance and targets for therapy. IUBMB Life 2018; 70:183-191. [PMID: 29394468 DOI: 10.1002/iub.1722] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/12/2018] [Indexed: 12/22/2022]
Abstract
Platinum-based chemotherapy agents are widely used in the treatment of various solid malignancies. However, their efficacy is limited by drug resistance. Recent studies suggest that copper efflux transporters, which are encoded by ATP7A and ATP7B, play an important role in platinum drug resistance. Over-expressions of ATP7A and ATP7B are observed in multiple cancers. Moreover, their expressions are associated with cancer prognosis and treatment outcomes of platinum-based chemotherapy. In our review, we highlight the roles of ATP7A/7B in platinum drug resistance and cancer progression. We also discuss the possible mechanisms of platinum drug resistance mediated by ATP7A/7B and provide novel strategies for overcoming resistance. This review may be helpful for understanding the roles of ATP7A and ATP7B in platinum drug resistance. © 2018 IUBMB Life, 70(3):183-191, 2018.
Collapse
Affiliation(s)
- Yue-Qin Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, People's Republic of China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, People's Republic of China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, People's Republic of China
| | - Xiang-Ping Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, People's Republic of China
| |
Collapse
|
13
|
Xu M, Liu Y, Li D, Wang X, Liang S, Zhang G, Yang X. Chinese C allele carriers of the ERCC5 rs1047768 polymorphism are more sensitive to platinum-based chemotherapy: a meta-analysis. Oncotarget 2018; 9:1248-1256. [PMID: 29416691 PMCID: PMC5787435 DOI: 10.18632/oncotarget.18981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 06/17/2017] [Indexed: 12/11/2022] Open
Abstract
It is suspected that ERCC5 rs1047768 and rs17655 polymorphisms influence the response to platinum-based chemotherapy. This meta-analysis was performed to summarize the scattered evidence regarding the association between these two polymorphisms and sensitivity to platinum-based treatment. Thirteen studies were included after a comprehensive literature search. The pooled odds ratios and 95% confidence intervals suggested that the C allele of the ERCC5 rs1047768 polymorphism is associated with elevated sensitivity to platinating agents, especially for Chinese patients. However, no difference among rs17655 genotypes could be detected.
Collapse
Affiliation(s)
- Meizhen Xu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Yina Liu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Dan Li
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China.,School of Life Science and Technology, Tongji University, Shanghai, China.,Present address: Jiayin BioTechnology Co., Ltd., Shanghai, China
| | | | | | - Gaochuan Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Xiaoqin Yang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
14
|
Işcan M, Ada AO. Cytochrome P-450 Polymorphisms and Clinical Outcome in Patients with Non-Small Cell Lung Cancer. Turk J Pharm Sci 2017; 14:319-323. [PMID: 32454631 DOI: 10.4274/tjps.28291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/19/2017] [Indexed: 12/01/2022]
Abstract
Lung cancer is an increasing worldwide public health problem. Most patients with lung cancer have non-small cell lung cancer (NSCLC). These patients are mainly treated with standard platinum-based chemotherapy. Poor response and great inter-individual variety in treatment response occurs among these patients. There is accumulating evidence to support the hypothesis that genetic polymorphisms alter the drug response and survival. Cytochrome P450 (CYP) enzymes metabolize antineoplastic drugs and are involved in drug resistance. Polymorphic CYPs have altered enzyme activities and thus they may influence the response to chemotherapy and survival in patients with lung cancer. In the current review, recent findings with respect to the role of mainly CYP1A1, CYP1B1, CYP2D6, CYP2E1 and CYP3A4 gene polymorphisms in response to chemotherapy and survival in patients with NSCLC have been provided, which could be useful for clinicians in the prognosis of these patients who are mainly treated with platinum-based chemotherapy.
Collapse
Affiliation(s)
- Mümtaz Işcan
- Ankara University, Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey
| | - Ahmet Oğuz Ada
- Ankara University, Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey
| |
Collapse
|