1
|
Naim W, Manetsberger J, Lavilla Lerma L, Benomar N, Caballero Gómez N, Cuesta-Bertomeu IS, Gata Díaz JÁ, Abriouel H. Impact of disinfection methods used in the slaughterhouse environment on microbiome diversity throughout the meat production chain. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 8:100336. [PMID: 39844919 PMCID: PMC11751542 DOI: 10.1016/j.crmicr.2024.100336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025] Open
Abstract
Slaughterhouse environments are prone to microbial contamination, influenced by factors like set-up, size and area as well as disinfection practices. Thus, effective control measures are crucial to prevent the spread of pathogens and their contaminant genes (antimicrobial resistance genes and virulence factors) throughout the food chain. In the present study, we assessed the microbial contamination in environmental surfaces of three slaughterhouses located in the Jaén province (Spain). We also evaluated the impact of different disinfection strategies on microbial loads and diversity by means of culture dependent and independent methods. The results revealed a statistically significant inter- and intra-specific differences in microbial loads including the most important pathogens such as pseudomonads, staphylococci, Escherichia coli, Salmonella sp. and Campylobacter jejuni. Disinfection strategies using routine disinfectant (used by the slaughterhouse), HLE disinfectant, UV, or combinations thereof showed varying effectiveness. The newly developed sustainable HLE disinfectant was most effective, while UV had the lowest disinfection strength, and routine disinfectants failed to eradicate all pathogens. Metagenomic analysis identified Pseudomonadota as the dominant phylum, followed by Actinomycetota and Bacteroidota. Results furthermore indicated shifts from sacrifice to cold rooms, with an increase in Gammaproteobacteria, particularly Moraxellaceae (represented by Psychrobacter cryohalolentis) over Acinetobacter sp. In conclusion, this study highlights the potential of HLE disinfectant (alone or in combination with the routine disinfectant) as a more effective disinfection measure on environmental surfaces, particularly for combating multi-drug resistant pathogens compared to other disinfection methods currently used.
Collapse
Affiliation(s)
- Wissal Naim
- Area of Microbiology, Department of Health Sciences, Faculty of Experimental sciences, University of Jaén, Jaén, Spain
| | - Julia Manetsberger
- Area of Microbiology, Department of Health Sciences, Faculty of Experimental sciences, University of Jaén, Jaén, Spain
| | - Leyre Lavilla Lerma
- Area of Human Anatomy and Embryology, Department of Health Sciences, Faculty of Experimental sciences, University of Jaén, Jaén, Spain
| | - Nabil Benomar
- Area of Microbiology, Department of Health Sciences, Faculty of Experimental sciences, University of Jaén, Jaén, Spain
| | - Natacha Caballero Gómez
- Area of Microbiology, Department of Health Sciences, Faculty of Experimental sciences, University of Jaén, Jaén, Spain
| | | | | | - Hikmate Abriouel
- Area of Microbiology, Department of Health Sciences, Faculty of Experimental sciences, University of Jaén, Jaén, Spain
| |
Collapse
|
2
|
Zhang L, Wang B, Li K, Su Y, Wu D, Zhan M, Xie B. The dynamics and assembly patterns of airborne pathogen communities in the municipal food waste treatment system and its risk implications. ENVIRONMENT INTERNATIONAL 2024; 194:109143. [PMID: 39566443 DOI: 10.1016/j.envint.2024.109143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/16/2024] [Accepted: 11/10/2024] [Indexed: 11/22/2024]
Abstract
While municipal solid waste (MSW) provides an ideal habitat for pathogen propagation, the dynamics and assembly of airborne pathogen communities in these environments remain largely unknown. Here, we combined amplicon and metagenomics with spatiotemporal sampling to study inhalable particulate matter-carried potential pathogenic bacteria at full-scale food waste treatment plants (FWTPs), alongside comparisons to urban air in the area. The results showed that pathogenic bacteria constituted a notable portion (64.5 % ± 20.6 %, n = 75) of the total bacterial communities in FWTPs-impacted air, with species and relative abundance 2-4 times higher than that of urban air, and contributed over 50 % of pathogens to the outdoor air. Airborne pathogen community structures were highly shaped by sampling sites (i.e. treatment units), but conserved across seasons (summer vs. winter) and particle sizes (PM2.5vs. PM10). Notably, Acinetobacter johnsonii-dominated pathogens (i.e. biofilm-related species) presented high levels of aerosolization and consistently occupied the upper-representative niches in all neutral models, highlighting their persistent exposure risk. Furthermore, pathogen community assembly was strongly driven by stochastic processes (58.8 %-96.8 %), while environmental variables explained only limited variations (3.4 %-28.7 %). In particular, the relative importance of stochastic processes clearly increased along an outdoor-to-indoor gradient (84.9 %-96.5 % vs. 71.3 %-76 %), which might be related to indoor anthropogenic activities that weaken microbial network stability and environmental filtering effects. This work enhances our knowledge of the dynamic behaviors and risk of airborne pathogen communities in MSW disposal and underscores the role of FWTPs in disseminating airborne pathogens.
Collapse
Affiliation(s)
- Liangmao Zhang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; College of Resource Environment and Tourism, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Binghan Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; College of Resource Environment and Tourism, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Kaiyi Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Min Zhan
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
3
|
Nguyen TQ, Dao TK, Nguyen HD, Phung TBT, Pham TTN, Nguyen TVH, Trinh TH, Le HC, Le TTH, Do TH. Application of PCR-Based Techniques for the Identification of Genetic Fingerprint Diversity of Dominant Bacteria in Fecal Samples of Children with Diarrhea in Vietnam. Infect Dis Rep 2024; 16:932-951. [PMID: 39452160 PMCID: PMC11506915 DOI: 10.3390/idr16050075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/26/2024] Open
Abstract
In Vietnam, diarrhea, especially persistent diarrhea, is one of the most common diseases in children, while a significant proportion of cases are negative with pathogens; thus, there is an urgent need to understand gut bacterial dysbiosis. In this study, bacteria in the fecal samples of five healthy and ten diarrheal children were separated from other residues, then adopted to extract their metagenomic DNA for evaluating their diversity based on V3 and V6-V8 regions and the 16S rRNA gene by PCR-RFLP and PCR-DGGE. As a result, bacterial metagenomic DNAs with high quality, quantity and diversity were successfully extracted using a GeneJET kit and a chemical protocol. A sequence analysis of 73 representative DNA fragments from gels indicated a remarkable bacterial dysbiosis in all groups of diarrhea. Viral diarrhea was characterized by extremely reduced bacterial diversity with the blossom of Bifidobacterium and Streptococcus. Streptococcus was also the most abundant in persistent diarrhea. Beneficial bacteria that may play a role in the self- rebalance in intestinal bacterial communities, such as Bifidobacterium, Lactobacillus, and Enterococcus, were seen in all diarrheal groups, while Bacteroides and Akkermansia muciniphila were seen in the healthy group but absent in the diarrheal groups. This study provides additional evidence for a relationship between intestinal bacterial dysbiosis and diarrhea in children, emphasizing an increase in Streptococcus.
Collapse
Affiliation(s)
- Thi Quy Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology (VAST), 18-Hoang Quoc Viet, Cau Giay, Ha Noi 10072, Vietnam; (T.Q.N.); (T.K.D.); (H.D.N.); (T.T.H.L.)
| | - Trong Khoa Dao
- Institute of Biotechnology, Vietnam Academy of Science and Technology (VAST), 18-Hoang Quoc Viet, Cau Giay, Ha Noi 10072, Vietnam; (T.Q.N.); (T.K.D.); (H.D.N.); (T.T.H.L.)
| | - Hong Duong Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology (VAST), 18-Hoang Quoc Viet, Cau Giay, Ha Noi 10072, Vietnam; (T.Q.N.); (T.K.D.); (H.D.N.); (T.T.H.L.)
| | - Thi Bich Thuy Phung
- Department of Molecular Biology for Infectious Disease, Vietnam National Children’s Hospital, 18/879 La Thanh, Dong Da, Ha Noi 11500, Vietnam; (T.B.T.P.); (T.H.T.)
| | - Thi Thanh Nga Pham
- Department of Gastroenterology, Vietnam National Children’s Hospital, 18/879 La Thanh, Dong Da, Ha Noi 11500, Vietnam; (T.T.N.P.); (T.V.H.N.)
| | - Thi Viet Ha Nguyen
- Department of Gastroenterology, Vietnam National Children’s Hospital, 18/879 La Thanh, Dong Da, Ha Noi 11500, Vietnam; (T.T.N.P.); (T.V.H.N.)
- Department of Pediatrics, Hanoi Medical University, 1-Ton That Tung, Dong Da, Ha Noi 11500, Vietnam
| | - Thi Huong Trinh
- Department of Molecular Biology for Infectious Disease, Vietnam National Children’s Hospital, 18/879 La Thanh, Dong Da, Ha Noi 11500, Vietnam; (T.B.T.P.); (T.H.T.)
| | - Huu Cuong Le
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 18-Hoang Quoc Viet, Cau Giay, Ha Noi 10072, Vietnam;
| | - Thi Thu Hong Le
- Institute of Biotechnology, Vietnam Academy of Science and Technology (VAST), 18-Hoang Quoc Viet, Cau Giay, Ha Noi 10072, Vietnam; (T.Q.N.); (T.K.D.); (H.D.N.); (T.T.H.L.)
| | - Thi Huyen Do
- Institute of Biotechnology, Vietnam Academy of Science and Technology (VAST), 18-Hoang Quoc Viet, Cau Giay, Ha Noi 10072, Vietnam; (T.Q.N.); (T.K.D.); (H.D.N.); (T.T.H.L.)
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), 18-Hoang Quoc Viet, Cau Giay, Ha Noi 10072, Vietnam
| |
Collapse
|
4
|
Gekenidis MT, Vollenweider V, Joyce A, Murphy S, Walser JC, Ju F, Bürgmann H, Hummerjohann J, Walsh F, Drissner D. Unde venis? Bacterial resistance from environmental reservoirs to lettuce: tracking microbiome and resistome over a growth period. FEMS Microbiol Ecol 2024; 100:fiae118. [PMID: 39216995 PMCID: PMC11418651 DOI: 10.1093/femsec/fiae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/05/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024] Open
Abstract
Fresh produce is suggested to contribute highly to shaping the gut resistome. We investigated the impact of pig manure and irrigation water quality on microbiome and resistome of field-grown lettuce over an entire growth period. Lettuce was grown under four regimes, combining soil amendment with manure (with/without) with sprinkler irrigation using river water with an upstream wastewater input, disinfected by UV (with/without). Lettuce leaves, soil, and water samples were collected weekly and analysed by bacterial cultivation, 16S rRNA gene amplicon sequencing, and shotgun metagenomics from total community DNA. Cultivation yielded only few clinically relevant antibiotic-resistant bacteria (ARB), but numbers of ARB on lettuce increased over time, while no treatment-dependent changes were observed. Microbiome analysis confirmed a temporal trend. Antibiotic resistance genes (ARGs) unique to lettuce and water included multidrug and β-lactam ARGs, whereas lettuce and soil uniquely shared mainly glycopeptide and tetracycline ARGs. Surface water carried clinically relevant ARB (e.g. ESBL-producing Escherichia coli or Serratia fonticola) without affecting the overall lettuce resistome significantly. Resistance markers including biocide and metal resistance were increased in lettuce grown with manure, especially young lettuce (increased soil contact). Overall, while all investigated environments had their share as sources of the lettuce resistome, manure was the main source especially on young plants. We therefore suggest minimizing soil-vegetable contact to minimize resistance markers on fresh produce.
Collapse
Affiliation(s)
| | - Vera Vollenweider
- Department of Quantitative Biomedicine, University of Zurich, 8057 Zurich, Switzerland
| | - Aoife Joyce
- Department of Biology, Maynooth University, W23 F2H6 Maynooth, Ireland
| | - Sinéad Murphy
- Department of Biology, Maynooth University, W23 F2H6 Maynooth, Ireland
| | - Jean-Claude Walser
- Genetic Diversity Centre (GDC), Department of Environmental System Sciences (D-USYS), Swiss Federal Institute of Technology (ETH), 8092 Zurich, Switzerland
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Helmut Bürgmann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
| | | | - Fiona Walsh
- Department of Biology, Maynooth University, W23 F2H6 Maynooth, Ireland
| | - David Drissner
- Department of Life Sciences, Albstadt-Sigmaringen University, 72488 Sigmaringen, Germany
| |
Collapse
|
5
|
Iglesias A, Martínez L, Torrent D, Porcar M. The microwave bacteriome: biodiversity of domestic and laboratory microwave ovens. Front Microbiol 2024; 15:1395751. [PMID: 39176272 PMCID: PMC11338789 DOI: 10.3389/fmicb.2024.1395751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/19/2024] [Indexed: 08/24/2024] Open
Abstract
Microwaves have become an essential part of the modern kitchen, but their potential as a reservoir for bacterial colonization and the microbial composition within them remain largely unexplored. In this study, we investigated the bacterial communities in microwave ovens and compared the microbial composition of domestic microwaves, microwaves used in shared large spaces, and laboratory microwaves, using next-generation sequencing and culturing techniques. The microwave oven bacterial population was dominated by Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes, similar to the bacterial composition of human skin. Comparison with other environments revealed that the bacterial composition of domestic microwaves was similar to that of kitchen surfaces, whereas laboratory microwaves had a higher abundance of taxa known for their ability to withstand microwave radiation, high temperatures and desiccation. These results suggest that different selective pressures, such as human contact, nutrient availability and radiation levels, may explain the differences observed between domestic and laboratory microwaves. Overall, this study provides valuable insights into microwave ovens bacterial communities and their potential biotechnological applications.
Collapse
Affiliation(s)
- Alba Iglesias
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Valencia, Spain
| | - Lorena Martínez
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Valencia, Spain
| | | | - Manuel Porcar
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Valencia, Spain
- Darwin Bioprospecting Excellence S.L., Valencia, Spain
| |
Collapse
|
6
|
Lee AWT, Ng ICF, Wong EYK, Wong ITF, Sze RPP, Chan KY, So TY, Zhang Z, Ka-Yee Fung S, Choi-Ying Wong S, Tam WY, Lao HY, Lee LK, Leung JSL, Chan CTM, Ng TTL, Zhang J, Chow FWN, Leung PHM, Siu GKH. Comprehensive identification of pathogenic microbes and antimicrobial resistance genes in food products using nanopore sequencing-based metagenomics. Food Microbiol 2024; 121:104493. [PMID: 38637066 DOI: 10.1016/j.fm.2024.104493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 04/20/2024]
Abstract
Foodborne pathogens, particularly antimicrobial-resistant (AMR) bacteria, remain a significant threat to global health. Given the limitations of conventional culture-based approaches, which are limited in scope and time-consuming, metagenomic sequencing of food products emerges as a promising solution. This method provides a fast and comprehensive way to detect the presence of pathogenic microbes and antimicrobial resistance genes (ARGs). Notably, nanopore long-read sequencing provides more accurate bacterial taxonomic classification in comparison to short-read sequencing. Here, we revealed the impact of food types and attributes (origin, retail place, and food processing methods) on microbial communities and the AMR profile using nanopore metagenomic sequencing. We analyzed a total of 260 food products, including raw meat, sashimi, and ready-to-eat (RTE) vegetables. Clostridium botulinum, Acinetobacter baumannii, and Vibrio parahaemolyticus were identified as the top three foodborne pathogens in raw meat and sashimi. Importantly, even with low pathogen abundance, higher percentages of samples containing carbapenem and cephalosporin resistance genes were identified in chicken and RTE vegetables, respectively. In parallel, our results demonstrated that fresh, peeled, and minced foods exhibited higher levels of pathogenic bacteria. In conclusion, this comprehensive study offers invaluable data that can contribute to food safety assessments and serve as a basis for quality indicators.
Collapse
Affiliation(s)
- Annie Wing-Tung Lee
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Iain Chi-Fung Ng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Evelyn Yin-Kwan Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Ivan Tak-Fai Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Rebecca Po-Po Sze
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Kit-Yu Chan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Tsz-Yan So
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Zhipeng Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Sharon Ka-Yee Fung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Sally Choi-Ying Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Wing-Yin Tam
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Hiu-Yin Lao
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Lam-Kwong Lee
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Jake Siu-Lun Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Chloe Toi-Mei Chan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Timothy Ting-Leung Ng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Jiaying Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Franklin Wang-Ngai Chow
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Polly Hang-Mei Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Gilman Kit-Hang Siu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.
| |
Collapse
|
7
|
Ahuatzin-Flores OE, Torres E, Chávez-Bravo E. Acinetobacter baumannii, a Multidrug-Resistant Opportunistic Pathogen in New Habitats: A Systematic Review. Microorganisms 2024; 12:644. [PMID: 38674589 PMCID: PMC11051781 DOI: 10.3390/microorganisms12040644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, humanity has begun to face a growing challenge posed by a rise in the prevalence of antibiotic-resistant bacteria. This has resulted in an alarming surge in fatalities and the emergence of increasingly hard-to-manage diseases. Acinetobacter baumannii can be seen as one of these resilient pathogens due to its increasing prevalence in hospitals, its resistance to treatment, and its association with elevated mortality rates. Despite its clinical significance, the scientific understanding of this pathogen in non-hospital settings remains limited. Knowledge of its virulence factors is also lacking. Therefore, in this review, we seek to shed light on the latest research regarding the ecological niches, microbiological traits, and antibiotic resistance profiles of Acinetobacter baumannii. Recent studies have revealed the presence of this bacterium in a growing range of environmental niches, including rivers, treatment plants, and soils. It has also been discovered in diverse food sources such as meat and vegetables, as well as in farm animals and household pets such as dogs and cats. This broader presence of Acinetobacter baumannii, i.e., outside of hospital environments, indicates a significant risk of environmental contamination. As a result, greater levels of awareness and new preventive measures should be promoted to address this potential threat to public health.
Collapse
Affiliation(s)
- Omar E. Ahuatzin-Flores
- Posgrado en Ciencias Ambientales, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edificio IC 6. Ciudad Universitaria, Puebla 72570, Mexico;
| | - Eduardo Torres
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| | - Edith Chávez-Bravo
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
| |
Collapse
|
8
|
Li X, Wang H, Abdelrahman H, Kelly A, Roy L, Wang L. Profiling and source tracking of the microbial populations and resistome present in fish products. Int J Food Microbiol 2024; 413:110591. [PMID: 38306774 DOI: 10.1016/j.ijfoodmicro.2024.110591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
Microorganisms in processing environments significantly impact the quality and safety of food products and can serve as potential reservoirs for antibiotic-resistant genes, contributing to public health concerns about antimicrobial resistance (AMR). Fish processing plants represent an understudied environment for microbiome mapping. This study investigated the microbial composition, prevalence of Listeria spp., and resistome structures in three catfish processing facilities in the southeastern United States. The 16S rRNA gene sequencing revealed that the observed richness and Shannon diversity index increased significantly from fish to fillet. Beta diversity analysis showed distinct clustering of microbial communities between fish, environment, and fillet samples. Fast expectation-maximization microbial source tracking (FEAST) algorithm demonstrated that the microbiota presents in the processing environment contributed 48.2 %, 62.4 %, and 53.7 % to the microbiota present on fillet in Facility 1 (F1), F2, and F3, respectively. Food contact surfaces made larger contributions compared to the non-food contact surfaces. The linear discriminant analysis of effect size (LEfSe) identified specific microbial genera (e.g., Plesiomohas, Brochothrix, Chryseobacterium and Cetobacterium) that significantly varied between Listeria spp. positive and negative samples in all three processing plants. The metagenomic sequencing results identified 212 antimicrobial resistance genes (ARGs) belonging to 72 groups from the raw fish and fish fillet samples collected from three processing plants. Although there was a significant decrease in the overall diversity of ARGs from fish to fillet samples, the total abundance of ARGs did not change significantly (P > 0.05). ARGs associated with resistance to macrolide-lincosamide-streptogramin (MLS), cationic antimicrobial peptides, aminoglycosides, and beta-lactams were found to be enriched in the fillet samples when compared to fish samples. Results of this study highlight the profound impact of processing environment on shaping the microbial populations present on the final fish product and the need for additional strategies to mitigate AMR in fish products.
Collapse
Affiliation(s)
- Xiran Li
- Department of Food Science and Technology, University of California Davis, Davis, CA 95616, United States
| | - Hongye Wang
- Department of Food Science and Technology, University of California Davis, Davis, CA 95616, United States
| | - Hisham Abdelrahman
- Alabama Fish Farming Center, Greensboro, AL 36744, United States; School of Fisheries, Aquaculture & Aquatic Sciences, Auburn University, Auburn, AL 3684, United States
| | - Anita Kelly
- Alabama Fish Farming Center, Greensboro, AL 36744, United States; School of Fisheries, Aquaculture & Aquatic Sciences, Auburn University, Auburn, AL 3684, United States
| | - Luke Roy
- Alabama Fish Farming Center, Greensboro, AL 36744, United States; School of Fisheries, Aquaculture & Aquatic Sciences, Auburn University, Auburn, AL 3684, United States
| | - Luxin Wang
- Department of Food Science and Technology, University of California Davis, Davis, CA 95616, United States.
| |
Collapse
|
9
|
Van Wyk CL, Mtshali S, Ramatla T, Lekota KE, Xuan X, Thekisoe O. Distribution of Rhipicephalus sanguineus and Heamaphysalis elliptica dog ticks and pathogens they are carrying: A systematic review. Vet Parasitol Reg Stud Reports 2024; 47:100969. [PMID: 38199685 DOI: 10.1016/j.vprsr.2023.100969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/14/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024]
Abstract
The role of ixodid ticks especially Rhipicephalus sanguineus and Heamaphysalis elliptica in the epidemiology of several diseases of veterinary and public health importance have been documented. This study conducted a systematic review focusing on the distribution of R. sanguineus and H. elliptica, as well as the common tick-borne pathogens they harbour. The Scopus, ScienceDirect, PubMed, and Web of Science databases were used to search for English journal articles published between January 1990 and June 2021. The articles were assessed by following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. This systematic review was registered on PROSPERO [(ID no: CRD42022327372). Of the studies included in the systematic review, 247 and 19 articles had identified R. sanguineus and H. elliptica respectively, whereas 15 articles had identified both tick species. There is a reported worldwide distribution of R. sanguineus from 64 countries, whereas H. elliptica was only reported in the African continent from 6 countries. In total, 120 articles that were included in this systematic review reported detection of tick-borne pathogens from R. sanguineus (n = 118 articles) and/or H. elliptica (n = 2 articles) ticks. According to the studies tick-borne pathogens harboured by R. sanguineus included protozoa such as Babesia spp., Hepatozoon spp., Leishmania spp., and Theileria spp., as well as bacteria such as Acinetobacter spp. Anaplasma spp., Bacillus spp., Borrelia spp., Brucella spp., Coxiella spp., and Staphylococcus spp. The H. elliptica was reported to be harbouring Babesia spp., Ehrlichia spp. and Rickettsia spp. Most of the studies (50%) used the conventional polymerase chain reaction (PCR) technique for the detection of tick-borne pathogens, followed by real-time PCR (qPCR) (n = 26), and nested PCR (n = 22). This systematic review has shed light on the distribution of two common dog ticks as well as the tick-borne pathogens of veterinary and zoonotic importance they are harbouring. This data will enable surveillance studies that can report whether the distribution of these ticks and their associated tick-borne pathogens is expanding or shrinking or is stable.
Collapse
Affiliation(s)
- Clara-Lee Van Wyk
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - Senzo Mtshali
- National Institute of Communicable Diseases, Sandringham 2131, South Africa
| | - Tsepo Ramatla
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa.
| | - Kgaugelo E Lekota
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Oriel Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| |
Collapse
|
10
|
Rossi F, Santonicola S, Amadoro C, Marino L, Colavita G. Recent Records on Bacterial Opportunistic Infections via the Dietary Route. Microorganisms 2023; 12:69. [PMID: 38257896 PMCID: PMC10819555 DOI: 10.3390/microorganisms12010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
This narrative review was aimed at identifying the opportunistic bacterial pathogens that can be transmitted by contaminated food and represent a current threat for patients particularly susceptible to infections because of underlying conditions or predisposing factors. The analysis was focused on recent case or outbreak reports and systematic reviews published in the years 2019 to 2023 and resulted in sorting 24 bacterial groups comprising the genera or species able to cause a variety of systemic or invasive infections if ingested with food or drinking water. These included both bacteria known to cause mild infections in immunocompetent persons and bacteria considered to be innocuous, which are used in food fermentation or as probiotics. No recent cases of infections transmitted through dietary routes were reported for the critical nosocomial pathogens widely found in food products, primarily Acinetobacter baumannii and Klebsiella pneumoniae. However, the very first sources of their introduction into the clinical environment still need to be established. In many instances, risky dietary habits, such as eating raw fish, seafood, raw meat, unpasteurized milk, and their derived products or the lack of control in fermentation processes, has led to the reported illnesses, pointing out the necessity to improve the hygiene of production and consumer awareness of the risks.
Collapse
Affiliation(s)
- Franca Rossi
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), Teramo, Diagnostic Laboratory, 86100 Campobasso, Italy;
| | - Serena Santonicola
- Dipartimento di Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy; (S.S.); (C.A.); (G.C.)
| | - Carmela Amadoro
- Dipartimento di Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy; (S.S.); (C.A.); (G.C.)
| | - Lucio Marino
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), Teramo, Diagnostic Laboratory, 86100 Campobasso, Italy;
| | - Giampaolo Colavita
- Dipartimento di Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy; (S.S.); (C.A.); (G.C.)
| |
Collapse
|
11
|
Mohamed HMA, Abd-Elhafeez HH, Al-Jabr OA, El-Zamkan MA. Characterization of Acinetobacter baumannii Isolated from Raw Milk. BIOLOGY 2022; 11:biology11121845. [PMID: 36552354 PMCID: PMC9775129 DOI: 10.3390/biology11121845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Acinetobacter baumannii (A. baumannii) is an opportunistic pathogen associated with nosocomial infections. In this study, 100 raw milk samples were collected from Qena, Egypt, and subjected to conventional and molecular assays to determine the presence of A. baumannii and investigate their antimicrobial resistance and biofilm formation. Our findings revealed that, among the 100 samples, Acinetobacter spp. were found in 13 samples based on CHROM agar results. We further characterized them using rpoB and 16S-23SrRNA sequencing and gyrB multiplex PCR analysis and confirmed that 9 out of the 13 Acinetobacter spp. isolates were A. baumannii and 4 were other species. The A. baumannii isolates were resistant to β-lactam drugs, including cefotaxime (44%), ampicillin-sulbactam and levofloxacin (33.3% for each), imipenem, meropenem and aztreonam (22.2% for each). We observed different antimicrobial resistance patterns, with a multi-antibiotic resistant (MAR) index ranging from 0.2 to 0.3. According to the PCR results, blaOXA-51 and blaOXA-23 genes were amplified in 100% and 55.5% of the A. baumannii isolates, respectively, while the blaOXA-58 gene was not amplified. Furthermore, the metallo-β-lactamases (MBL) genes blaIMP and blaNDM were found in 11.1% and 22.2% of isolates, respectively, while blaVIM was not amplified. Additionally, eight A. baumannii isolates (88.8%) produced black-colored colonies on Congo red agar, demonstrating their biofilm production capacity. These results showed that, besides other foodborne pathogens, raw milk should also be examined for A. baumannii, which could be a public health concern.
Collapse
Affiliation(s)
- Hams M. A. Mohamed
- Department of Microbiology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Hanan H. Abd-Elhafeez
- Department of Cells and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
- Correspondence:
| | - Omar A. Al-Jabr
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Mona A. El-Zamkan
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| |
Collapse
|
12
|
Yadav M, Dhyani S, Joshi P, Awasthi S, Tanwar S, Gupta V, Rathore DK, Chaudhuri S. Formic acid, an organic acid food preservative, induces viable-but-non-culturable state, and triggers new Antimicrobial Resistance traits in Acinetobacter baumannii and Klebsiella pneumoniae. Front Microbiol 2022; 13:966207. [PMID: 36504816 PMCID: PMC9730046 DOI: 10.3389/fmicb.2022.966207] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
Numerous human pathogens, especially Gram-negative bacteria, are able to enter the viable-but-non-culturable (VBNC) state when they are exposed to environmental stressors and pose the risk of being resuscitated and causing infection after the removal of the trigger. Widely used food preservatives like weak organic acids are potential VBNC inducers in food processing and packaging facilities but have only been reported for food-borne pathogens. In the present study, it is demonstrated for the first time that one such agent, formic acid (FA), can induce a VBNC state at food processing, storage, and distribution temperatures (4, 25, and 37°C) with a varied time of treatment (days 4-10) in pathogenic Gram-negative bacteria Acinetobacter baumannii and Klebsiella pneumoniae. The use of hospital-associated pathogens is critical based on the earlier reports that demonstrated the presence of these bacteria in hospital kitchens and commonly consumed foods. VBNC induction was validated by multiple parameters, e.g., non-culturability, metabolic activity as energy production, respiratory markers, and membrane integrity. Furthermore, it was demonstrated that the removal of FA was able to resuscitate VBNC with an increased expression of multiple virulence and Antimicrobial Resistance (AMR) genes in both pathogens. Since food additives/preservatives are significantly used in most food manufacturing facilities supplying to hospitals, contamination of these packaged foods with pathogenic bacteria and the consequence of exposure to food additives emerge as pertinent issues for infection control, and control of antimicrobial resistance in the hospital setting.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Susmita Chaudhuri
- Department of Multidisciplinary Clinical and Translational Research, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| |
Collapse
|
13
|
Lynch JP, Clark NM, Zhanel GG. Infections Due to Acinetobacter baumannii-calcoaceticus Complex: Escalation of Antimicrobial Resistance and Evolving Treatment Options. Semin Respir Crit Care Med 2022; 43:97-124. [PMID: 35172361 DOI: 10.1055/s-0041-1741019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Bacteria within the genus Acinetobacter (principally A. baumannii-calcoaceticus complex [ABC]) are gram-negative coccobacilli that most often cause infections in nosocomial settings. Community-acquired infections are rare, but may occur in patients with comorbidities, advanced age, diabetes mellitus, chronic lung or renal disease, malignancy, or impaired immunity. Most common sites of infections include blood stream, skin/soft-tissue/surgical wounds, ventilator-associated pneumonia, orthopaedic or neurosurgical procedures, and urinary tract. Acinetobacter species are intrinsically resistant to multiple antimicrobials, and have a remarkable ability to acquire new resistance determinants via plasmids, transposons, integrons, and resistance islands. Since the 1990s, antimicrobial resistance (AMR) has escalated dramatically among ABC. Global spread of multidrug-resistant (MDR)-ABC strains reflects dissemination of a few clones between hospitals, geographic regions, and continents; excessive antibiotic use amplifies this spread. Many isolates are resistant to all antimicrobials except colistimethate sodium and tetracyclines (minocycline or tigecycline); some infections are untreatable with existing antimicrobial agents. AMR poses a serious threat to effectively treat or prevent ABC infections. Strategies to curtail environmental colonization with MDR-ABC require aggressive infection-control efforts and cohorting of infected patients. Thoughtful antibiotic strategies are essential to limit the spread of MDR-ABC. Optimal therapy will likely require combination antimicrobial therapy with existing antibiotics as well as development of novel antibiotic classes.
Collapse
Affiliation(s)
- Joseph P Lynch
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology; Department of Medicine; The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Nina M Clark
- Division of Infectious Diseases, Department of Medicine, Loyola University Medical Center, Maywood, Illinois
| | - George G Zhanel
- Department of Medical Microbiology/Infectious Diseases, University of Manitoba, Max Rady College of Medicine, Winnipeg, Manitoba, Canada
| |
Collapse
|
14
|
Complete Genome Sequence of Acinetobacter pittii BHS4, Isolated from Air-Conditioning Condensate in Hong Kong. Microbiol Resour Announc 2021; 10:e0088021. [PMID: 34672711 PMCID: PMC8530085 DOI: 10.1128/mra.00880-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acinetobacter pittii is widespread in the environment, and the Acinetobacter calcoaceticus-baumannii complex, to which it belongs, is a major cause of hospital-acquired pneumonia and bacteremia. A. pitti BHS4 was isolated from an air-conditioning unit in Hong Kong and its complete genome sequence (3,901,980 bp; GC content, 38.79%) established through hybrid assembly.
Collapse
|
15
|
Patil A, Banerji R, Kanojiya P, Saroj SD. Foodborne ESKAPE Biofilms and Antimicrobial Resistance: lessons Learned from Clinical Isolates. Pathog Glob Health 2021; 115:339-356. [PMID: 33851566 PMCID: PMC8592604 DOI: 10.1080/20477724.2021.1916158] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The ESKAPE pathogens (Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) are identified to be multidrug-resistant (MDR), extensively drug-resistant (XDR), and pan drug-resistant (PDR); thereby, imposing severe challenges in the treatment of associated infections. ESKAPE pathogens colonize on various biotic and abiotic surfaces; biofilms formed by these pathogens are a potential source for food contamination. Moreover, biofilms play a pivotal role in the development of antimicrobial-resistant (AMR) strains. Hence, the frequent isolation of antimicrobial-resistant ESKAPE pathogens from food products across the globe imposes a threat to public health. A comprehensive understanding of the adhesion signaling involved in the polymicrobial and single-species biofilm will assist in developing alternative preservation techniques and novel therapeutic strategies to combat ESKAPE pathogens. The review provides a comprehensive overview of the signaling mechanisms that prevail in the ESKAPE pathogens for adhesion to abiotic and biotic surfaces and molecular mechanisms associated with poly-microbial biofilm-assisted AMR in ESKAPE.
Collapse
Affiliation(s)
- Amrita Patil
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, PuneMaharashtra, India
| | - Rajashri Banerji
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, PuneMaharashtra, India
| | - Poonam Kanojiya
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, PuneMaharashtra, India
| | - Sunil D. Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, PuneMaharashtra, India
| |
Collapse
|