1
|
Li Y, Li J, Xieripu G, Rizk MA, Macalanda AMC, Gan L, Ren J, Mohanta UK, El-Sayed SAES, Chahan B, Xuan X, Guo Q. Molecular Detection of Theileria ovis, Anaplasma ovis, and Rickettsia spp. in Rhipicephalus turanicus and Hyalomma anatolicum Collected from Sheep in Southern Xinjiang, China. Pathogens 2024; 13:680. [PMID: 39204280 PMCID: PMC11356840 DOI: 10.3390/pathogens13080680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 09/03/2024] Open
Abstract
The Xinjiang Uygur Autonomous Region (Xinjiang) borders eight countries and has a complex geographic environment. There are almost 45.696 million herded sheep in Xinjiang, which occupies 13.80% of China's sheep farming industry. However, there is a scarcity of reports investigating the role of sheep or ticks in Xinjiang in transmitting tick-borne diseases (TBDs). A total of 894 ticks (298 tick pools) were collected from sheep in southern Xinjiang. Out of the 298 tick pools investigated in this study, Rhipicephalus turanicus (Rh. turanicus) and Hyalomma anatolicum (H. anatolicum) were identified through morphological and molecular sequencing. In the southern part of Xinjiang, 142 (47.65%), 86 (28.86%), and 60 (20.13%) tick pools were positive for Rickettsia spp., Theileria spp., and Anaplasma spp., respectively. Interestingly, the infection rate of Rickettsia spp. (73%, 35.10%, and 28.56-41.64%) was higher in Rh. turanicus pools than in H. anatolicum pools (4%, 4.44%, and 0.10-8.79%) in this study. Fifty-one tick pools were found to harbor two pathogens, while nineteen tick pools were detected to have the three pathogens. Our findings indicate the presence of Rickettsia spp., Theileria spp., and Anaplasma spp. potentially transmitted by H. anatolicum and Rh. turanicus in sheep in southern Xinjiang, China.
Collapse
Affiliation(s)
- Yongchang Li
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi 830011, China; (Y.L.); (J.L.); (G.X.); (L.G.); (J.R.); (B.C.)
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (M.A.R.); (A.M.C.M.); (U.K.M.); (S.A.E.-S.E.-S.)
| | - Jianlong Li
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi 830011, China; (Y.L.); (J.L.); (G.X.); (L.G.); (J.R.); (B.C.)
| | - Gulaimubaier Xieripu
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi 830011, China; (Y.L.); (J.L.); (G.X.); (L.G.); (J.R.); (B.C.)
| | - Mohamed Abdo Rizk
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (M.A.R.); (A.M.C.M.); (U.K.M.); (S.A.E.-S.E.-S.)
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Adrian Miki C. Macalanda
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (M.A.R.); (A.M.C.M.); (U.K.M.); (S.A.E.-S.E.-S.)
- Department of Immunopathology and Microbiology, College of Veterinary Medicine and Biomedical Sciences, Cavite State University, Indang 4122, Philippines
| | - Lu Gan
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi 830011, China; (Y.L.); (J.L.); (G.X.); (L.G.); (J.R.); (B.C.)
| | - Jichao Ren
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi 830011, China; (Y.L.); (J.L.); (G.X.); (L.G.); (J.R.); (B.C.)
| | - Uday Kumar Mohanta
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (M.A.R.); (A.M.C.M.); (U.K.M.); (S.A.E.-S.E.-S.)
- Department of Microbiology and Parasitology, Sher–e–Bangla Agricultural University, Sher–e–Bangla Nagar, Dhaka 1207, Bangladesh
| | - Shimaa Abd El-Salam El-Sayed
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (M.A.R.); (A.M.C.M.); (U.K.M.); (S.A.E.-S.E.-S.)
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Bayin Chahan
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi 830011, China; (Y.L.); (J.L.); (G.X.); (L.G.); (J.R.); (B.C.)
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (M.A.R.); (A.M.C.M.); (U.K.M.); (S.A.E.-S.E.-S.)
| | - Qingyong Guo
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi 830011, China; (Y.L.); (J.L.); (G.X.); (L.G.); (J.R.); (B.C.)
| |
Collapse
|
2
|
Shiri A, Kheirandish F, Sazmand A, Kayedi MH, Hosseini-Chegeni A. Molecular identification of hemoparasites in ixodid ticks in Iran. Vet Parasitol Reg Stud Reports 2024; 47:100967. [PMID: 38199703 DOI: 10.1016/j.vprsr.2023.100967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 01/12/2024]
Abstract
A total of 386 ticks were processed in order to investigate the occurrence of selected tick transmitted pathogens (i.e., Theileria, Babesia, Hepatozoon and Cytauxzoon) in ixodid ticks in six provinces of Iran (East Azerbaijan, Gilan, Kermanshah, Khuzestan, Sistan & Baluchestan and Tehran). Ticks identified as Dermacentor marginatus, Hyalomma aegyptium, Hy. anatolicum, Hy. asiaticum, Hy. marginatum, Ixodes ricinus, Rhipicephalus annulatus and R. sanguineus sensu lato were collected from sheep and cattle. Conventional PCR and sequencing results revealed DNA of Theileria ovis in three R. sanguineus sensu lato pools and one D. marginatus pool from sheep in Kermanshah and East Azerbaijan, T. annulata in one Hy. asiaticum pool from cattle in Kermanshah, and He. canis in an individual female Hy. aegyptium in Kermanshah. Data herein indicate the role of R. sanguineus complex and D. marginatus in the epidemiology of ovine theileriosis in western and northwestern Iran. Potential role of Hyalomma aegyptium in the transmission of He. canis is discussed. Considering non-principled movement of livestock across the country and increasing reports about the resistance of ticks to common acaricides, test-and-treatment of infected livestock, vaccination of the livestock against endemic tick-borne pathogens, and the use of non-chemical tick management strategies are recommended.
Collapse
Affiliation(s)
- Aioub Shiri
- Department of Parasitology and Mycology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran; Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Farnaz Kheirandish
- Department of Parasitology and Mycology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran; Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Alireza Sazmand
- Department of Pathobiology, Faculty of Veterinary Medicine, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Hassan Kayedi
- Department of Parasitology and Mycology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran; Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | | |
Collapse
|
3
|
Remesar S, Castro-Scholten S, Morrondo P, Díaz P, Jiménez-Martín D, Rouco C, Camacho-Sillero L, Cano-Terriza D, García-Bocanegra I. Molecular detection of Ehrlichia spp. in ticks parasitizing wild lagomorphs from Spain: characterization of a novel Ehrlichia species. Parasit Vectors 2022; 15:467. [DOI: 10.1186/s13071-022-05600-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
Several species belonging to the genus Ehrlichia are considered pathogenic for animals and humans. Although wildlife are known to play an important role in the epidemiology of these bacteria, information on the role of wild lagomorphs in their sylvatic cycle is limited. Thus, the objective of the present study was to assess the occurrence of Ehrlichia spp. in ticks collected from wild lagomorphs in Spanish Mediterranean ecosystems.
Methods
A total of 1122 pooled ticks (254 pools) collected from 506 wild rabbits (Oryctolagus cuniculus) and 29 Iberian hares (Lepus granatensis) were analysed using a nested PCR assay targeting the partial groEL gene. Ehrlichia spp.-positive samples were further subjected to a second PCR assay targeting 16S rRNA.
Results
Three (1.2%) tick pools comprising Rhipicephalus pusillus collected from nine wild rabbits were positive for Ehrlichia spp. All the Ehrlichia DNA sequences were identical, and use of sequence and phylogenetic analyses allowed us to identify a novel Ehrlichia species.
Conclusions
We provide evidence that a novel Ehrlichia species, named herein as ‘Candidatus Ehrlichia andalusi’, which may be of concern for animal and public health, is circulating in R. pusillus in Spanish Mediterranean ecosystems. Further studies are warranted to assess the epidemiology, pathogenicity and zoonotic potential of this Ehrlichia species.
Graphical Abstract
Collapse
|
4
|
Korobitsyn IG, Moskvitina NS, Tyutenkov OY, Gashkov SI, Kononova YV, Moskvitin SS, Romanenko VN, Mikryukova TP, Protopopova EV, Kartashov MY, Chausov EV, Konovalova SN, Tupota NL, Sementsova AO, Ternovoi VA, Loktev VB. Detection of tick-borne pathogens in wild birds and their ticks in Western Siberia and high level of their mismatch. Folia Parasitol (Praha) 2021; 68. [PMID: 34825655 DOI: 10.14411/fp.2021.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 07/18/2021] [Indexed: 11/19/2022]
Abstract
The Tomsk region located in the south of Western Siberia is one of the most high-risk areas for tick-borne diseases due to elevated incidence of tick-borne encephalitis and Lyme disease in humans. Wild birds may be considered as one of the reservoirs for tick-borne pathogens and hosts for infected ticks. A high mobility of wild birds leads to unpredictable possibilities for the dissemination of tick-borne pathogens into new geographical regions. The primary goal of this study was to evaluate the prevalence of tick-borne pathogens in wild birds and ticks that feed on them as well as to determine the role of different species of birds in maintaining the tick-borne infectious foci. We analysed the samples of 443 wild birds (60 species) and 378 ticks belonging to the genus Ixodes Latraille, 1795 collected from the wild birds, for detecting occurrence of eight tick-borne pathogens, the namely tick-borne encephalitis virus (TBEV), West Nile virus (WNV), and species of Borrelia, Rickettsia, Ehrlichia, Anaplasma, Bartonella and Babesia Starcovici, 1893, using RT-PCR/or PCR and enzyme immunoassay. One or more tick-borne infection markers were detected in 43 species of birds. All markers were detected in samples collected from fieldfare Turdus pilaris Linnaeus, Blyth's reed warbler Acrocephalus dumetorum Blyth, common redstart Phoenicurus phoenicurus (Linnaeus), and common chaffinch Fringilla coelebs Linnaeus. Although all pathogens have been identified in birds and ticks, we found that in the majority of cases (75.5 %), there were mismatches of pathogens in birds and ticks collected from them. Wild birds and their ticks may play an extremely important role in the dissemination of tick-borne pathogens into different geographical regions.
Collapse
Affiliation(s)
| | | | | | | | - Yulia V Kononova
- State Research Centre of Virology and Biotechnology 'Vector', World-Class Genomic Research Center for Biological Safety and Technological Independence, Koltsovo, Novosibirsk Region, Russia
| | | | | | - Tamara P Mikryukova
- State Research Centre of Virology and Biotechnology 'Vector', World-Class Genomic Research Center for Biological Safety and Technological Independence, Koltsovo, Novosibirsk Region, Russia
| | - Elena V Protopopova
- State Research Centre of Virology and Biotechnology 'Vector', World-Class Genomic Research Center for Biological Safety and Technological Independence, Koltsovo, Novosibirsk Region, Russia
| | - Mikhail Yu Kartashov
- State Research Centre of Virology and Biotechnology 'Vector', World-Class Genomic Research Center for Biological Safety and Technological Independence, Koltsovo, Novosibirsk Region, Russia
| | - Eugene V Chausov
- State Research Centre of Virology and Biotechnology 'Vector', World-Class Genomic Research Center for Biological Safety and Technological Independence, Koltsovo, Novosibirsk Region, Russia
| | - Svetlana N Konovalova
- State Research Centre of Virology and Biotechnology 'Vector', World-Class Genomic Research Center for Biological Safety and Technological Independence, Koltsovo, Novosibirsk Region, Russia
| | - Natalia L Tupota
- State Research Centre of Virology and Biotechnology 'Vector', World-Class Genomic Research Center for Biological Safety and Technological Independence, Koltsovo, Novosibirsk Region, Russia
| | - Alexandra O Sementsova
- State Research Centre of Virology and Biotechnology 'Vector', World-Class Genomic Research Center for Biological Safety and Technological Independence, Koltsovo, Novosibirsk Region, Russia
| | - Vladimir A Ternovoi
- State Research Centre of Virology and Biotechnology 'Vector', World-Class Genomic Research Center for Biological Safety and Technological Independence, Koltsovo, Novosibirsk Region, Russia
| | - Valery B Loktev
- State Research Centre of Virology and Biotechnology 'Vector', World-Class Genomic Research Center for Biological Safety and Technological Independence, Koltsovo, Novosibirsk Region, Russia
| |
Collapse
|
5
|
Félix ML, Muñoz-Leal S, Carvalho LA, Queirolo D, Remesar S, Armúa-Fernández MT, Venzal JM. Characterization of " Candidatus Ehrlichia Pampeana" in Haemaphysalis juxtakochi Ticks and Gray Brocket Deer ( Mazama gouazoubira) from Uruguay. Microorganisms 2021; 9:2165. [PMID: 34683486 PMCID: PMC8538733 DOI: 10.3390/microorganisms9102165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 11/16/2022] Open
Abstract
Human ehrlichiosis are scantily documented in Uruguay. The aim of this study was to investigate the presence of Ehrlichia spp. in Haemaphysalis juxtakochi and in a gray brocket deer (Mazama gouazoubira) from Uruguay. The presence of Ehrlichia DNA was investigated in free-living H. juxtakochi in five localities of southeast and northeast Uruguay, as well as blood, spleen, and ticks retrieved from a M. gouazoubira. Ehrlichia spp. DNA was detected in six out of 99 tick pools from vegetation, in the spleen of M. gouazoubira, and in one out of five pools of ticks feeding on this cervid. Bayesian inference analyses for three loci (16S rRNA, dsb, and groEL) revealed the presence of a new rickettsial organism, named herein as "Candidatus Ehrlichia pampeana". This new detected Ehrlichia is phylogenetically related to those found in ticks from Asia, as well as Ehrlichia ewingii from USA and Cameroon. Although the potential pathogenicity of "Ca. E. pampeana" for humans is currently unknown, some eco-epidemiological factors may be relevant to its possible pathogenic role, namely: (i) the phylogenetic closeness with the zoonotic agent E. ewingii, (ii) the evidence of H. juxtakochi parasitizing humans, and (iii) the importance of cervids as reservoirs for zoonotic Ehrlichia spp. The molecular detection of "Ca. E. pampeana" represents the third Ehrlichia genotype described in Uruguay.
Collapse
Affiliation(s)
- María Laura Félix
- Laboratorio de Vectores y Enfermedades Transmitidas, Departamento de Ciencias Biológicas, CENUR Litoral Norte—Salto, Universidad de la República, Rivera 1350, Salto 50000, Uruguay; (M.T.A.-F.); (J.M.V.)
| | - Sebastián Muñoz-Leal
- Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Av. Vicente Méndez 595, Casilla 537, Chillán 3780000, Chile;
| | - Luis Andrés Carvalho
- AgResearch, Grasslands Research Centre, Private Bag 11008, Palmerston North 4442, New Zealand;
| | - Diego Queirolo
- Laboratorio de Ecología de Vertebrados, CENUR Noreste, Universidad de la República, Ituzaingó 667, Rivera 40000, Uruguay;
| | - Susana Remesar
- INVESAGA Group, Department of Animal Pathology, Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, 27002 Lugo, Spain;
| | - María Teresa Armúa-Fernández
- Laboratorio de Vectores y Enfermedades Transmitidas, Departamento de Ciencias Biológicas, CENUR Litoral Norte—Salto, Universidad de la República, Rivera 1350, Salto 50000, Uruguay; (M.T.A.-F.); (J.M.V.)
| | - José Manuel Venzal
- Laboratorio de Vectores y Enfermedades Transmitidas, Departamento de Ciencias Biológicas, CENUR Litoral Norte—Salto, Universidad de la República, Rivera 1350, Salto 50000, Uruguay; (M.T.A.-F.); (J.M.V.)
| |
Collapse
|