1
|
Conowall P, Schreiner KM, Minor EC, Hrabik T, Schoenebeck CW. Variability of microplastic loading and retention in four inland lakes in Minnesota, USA. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121573. [PMID: 37044256 DOI: 10.1016/j.envpol.2023.121573] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023]
Abstract
Microplastic pollution (plastic particles < 5 mm) has potentially harmful impacts on aquatic ecosystems. Understanding the factors that impact microplastic loading and distribution within aquatic ecosystems is crucial for assessing potential threats from microplastics. Here we examine the extent of microplastic pollution in the surface waters and sediments of four small inland lakes in Minnesota, USA that represent a range of human impacts as well as a variety of watershed and lake characteristics. Surface water particulates and benthic sediments were collected in the summers of 2019 and 2020 to examine the loading of microplastics into these lakes and their distribution throughout the ecosystems. Lower size cut offs were set at 330 μm for surface water particulate samples and 250 μm for sediment samples. Watershed to surface area ratio (WS:SA) and urban development were the most influential factors on microplastic loading. Surface water microplastic concentrations ranged from 27,000 microplastics km-2 in Elk Lake (small WS:SA and minimally developed) to 152,000 microplastics km-2 in White Iron Lake (large WS:SA and low development). Concentrations in benthic sediments ranged from 30 microplastics kg-1 dry sediment in White Iron Lake (forested watershed) to 270 microplastics kg-1 dry sediment in Peltier Lake (urbanized watershed) and were not directly correlated to surface water concentrations. Results from this study highlight the characteristics of small lakes that influence spatial and temporal variability in microplastic loading, retention, and deposition of microplastics to sediments. Further, this study demonstrates the difficulties of accurately predicting microplastic loading and the importance of comprehensive sampling to account for the variability of microplastic loading and distribution in smaller inland lakes.
Collapse
Affiliation(s)
- Peter Conowall
- Large Lakes Observatory, University of Minnesota Duluth, 2205 E 5th St, Duluth, MN, 55812, USA
| | - Kathryn M Schreiner
- Large Lakes Observatory, University of Minnesota Duluth, 2205 E 5th St, Duluth, MN, 55812, USA; Department of Chemistry & Biochemistry, University of Minnesota Duluth, 1038 University Dr., Duluth, MN, 55812, USA.
| | - Elizabeth C Minor
- Large Lakes Observatory, University of Minnesota Duluth, 2205 E 5th St, Duluth, MN, 55812, USA; Department of Chemistry & Biochemistry, University of Minnesota Duluth, 1038 University Dr., Duluth, MN, 55812, USA
| | - Thomas Hrabik
- Department of Biology, University of Minnesota Duluth, 1035 Kirby Dr., Duluth, MN, 55812, USA
| | - Casey W Schoenebeck
- Sentinel Lakes Program, Fisheries Research Unit, Minnesota Department of Natural Resources, 23070 North Lakeshore Drive, Glenwood, MN, 56334, USA
| |
Collapse
|
2
|
Copetti D, Guyennon N, Buzzi F. Generation and dispersion of chemical and biological gradients in a large-deep multi-basin lake (Lake Como, north Italy): The joint effect of external drivers and internal wave motions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141587. [PMID: 32818853 DOI: 10.1016/j.scitotenv.2020.141587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/22/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
The formation of chemical and biological heterogeneity in lakes can be favored by physical and morphometric constrains. This study describes the results of four whole-lake field campaigns carried out in Lake Como (north Italy) during thermal stratification. The aim was to analyze the distribution of chemical-biological variables in a multi-basin lake as a result of internal and external physical drivers and constrains. Lake Como has a y-like shape encompassing three main sub-basins: northern, south-eastern, and south-western. Field data underlined: the presence of chemical-biological gradients between the south-western basin and the rest of the lake and the propagation of a fresher water-plume (formed by the two main northern inflows) into the northern basin and then into the south-western closed arm. The use of a three-dimensional hydrodynamic model showed a periodic movement of this plume that tends to enter the south-western basin first and then to return toward north, moving forward and back through the junction of the three arms. The entrance into the eastern basin, instead, occurs only secondarily. Wavelet transform analysis revealed common periodicity between the plume movement and the action of different external and internal lake-stressors, including: the discharge of the main inflow (period centered at 1, 3.3, and 6.5 day), the wind intensity (0.5 and 1 day) and the two main basin-scale internal wave motions: (3.3 day and 7.1 day). The periodic movement of the fresher water-plume enhances the water exchange and reduces the chemical-biological gradients between the western closed basin and the main lake, playing a crucial role in distributing both inorganic and organic materials at the lake basin-scale.
Collapse
Affiliation(s)
- Diego Copetti
- Water Research Institute, National Research Council of Italy, IRSA-CNR, Section of Brugherio, Via del Mulino, 19, 20861 Brugherio, MB, Italy.
| | - Nicolas Guyennon
- Water Research Institute, National Research Council of Italy, IRSA-CNR, Via Salaria km 29.300, 00015 Monterotondo, RM, Italy
| | - Fabio Buzzi
- ARPA Lombardia, Dipartimento di Lecco, Via 1° Maggio, 21/B, 23848 Oggiono, Italy
| |
Collapse
|
3
|
Hoyer AB, Schladow SG, Rueda FJ. A hydrodynamics-based approach to evaluating the risk of waterborne pathogens entering drinking water intakes in a large, stratified lake. WATER RESEARCH 2015; 83:227-236. [PMID: 26162312 DOI: 10.1016/j.watres.2015.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 03/23/2015] [Accepted: 06/08/2015] [Indexed: 06/04/2023]
Abstract
Pathogen contamination of drinking water lakes and reservoirs is a severe threat to human health worldwide. A major source of pathogens in surface sources of drinking waters is from body-contact recreation in the water body. However, dispersion pathways of human waterborne pathogens from recreational beaches, where body-contact recreation is known to occur to drinking water intakes, and the associated risk of pathogens entering the drinking water supply remain largely undocumented. A high spatial resolution, three-dimensional hydrodynamic and particle tracking modeling approach has been developed to analyze the risk and mechanisms presented by pathogen dispersion. The pathogen model represents the processes of particle release, transport and survival. Here survival is a function of both water temperature and cumulative exposure to ultraviolet (UV) radiation. Pathogen transport is simulated using a novel and computationally efficient technique of tracking particle trajectories backwards, from a drinking water intake toward their source areas. The model has been applied to a large, alpine lake - Lake Tahoe, CA-NV (USA). The dispersion model results reveal that for this particular lake (1) the risk of human waterborne pathogens to enter drinking water intakes is low, but significant; (2) this risk is strongly related to the depth of the thermocline in relation to the depth of the intake; (3) the risk increases with the seasonal deepening of the surface mixed layer; and (4) the risk increases at night when the surface mixed layer deepens through convective mixing and inactivation by UV radiation is eliminated. While these risk factors will quantitatively vary in different lakes, these same mechanisms will govern the process of transport of pathogens.
Collapse
Affiliation(s)
- Andrea B Hoyer
- Water Research Institute, University of Granada, C/ Ramón y Cajal 4, 18071 Granada, Spain.
| | - S Geoffrey Schladow
- Department of Civil and Environmental Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA; Tahoe Environmental Research Center, University of California, Davis, 291 Country Club Dr., Incline Village, NV 89451, USA.
| | - Francisco J Rueda
- Water Research Institute, University of Granada, C/ Ramón y Cajal 4, 18071 Granada, Spain; Department of Civil Engineering, University of Granada, Campus Universitario de Fuentenueva (Edificio, Politécnico), 18071 Granada, Spain.
| |
Collapse
|
4
|
Hoyer AB, Wittmann ME, Chandra S, Schladow SG, Rueda FJ. A 3D individual-based aquatic transport model for the assessment of the potential dispersal of planktonic larvae of an invasive bivalve. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2014; 145:330-340. [PMID: 25108183 DOI: 10.1016/j.jenvman.2014.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 05/07/2014] [Accepted: 05/12/2014] [Indexed: 06/03/2023]
Abstract
The unwanted impacts of non-indigenous species have become one of the major ecological and economic threats to aquatic ecosystems worldwide. Assessing the potential dispersal and colonization of non-indigenous species is necessary to prevent or reduce deleterious effects that may lead to ecosystem degradation and a range of economic impacts. A three dimensional (3D) numerical model has been developed to evaluate the local dispersal of the planktonic larvae of an invasive bivalve, Asian clam (Corbicula fluminea), by passive hydraulic transport in Lake Tahoe, USA. The probability of dispersal of Asian clam larvae from the existing high density populations to novel habitats is determined by the magnitude and timing of strong wind events. The probability of colonization of new near-shore areas outside the existing beds is low, but sensitive to the larvae settling velocity ws. High larvae mortality was observed due to settling in unsuitable deep habitats. The impact of UV-radiation during the pelagic stages, on the Asian clam mortality was low. This work provides a quantification of the number of propagules that may be successfully transported as a result of natural processes and in function of population size. The knowledge and understanding of the relative contribution of different dispersal pathways, may directly inform decision-making and resource allocation associated with invasive species management.
Collapse
Affiliation(s)
- Andrea B Hoyer
- Instituto del Agua, Universidad de Granada, C/ Ramón y Cajal 4, Granada 18071, Spain; Department of Civil Engineering, Universidad de Granada, Avda. de Hospicio s/n, Granada 18071, Spain.
| | - Marion E Wittmann
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; Tahoe Environmental Research Center, University of California, Davis, 291 Country Club Dr., Incline Village, NV 89451, USA.
| | - Sudeep Chandra
- Aquatic Ecosystem Analysis Laboratory, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV 89557, USA.
| | - S Geoffrey Schladow
- Tahoe Environmental Research Center, University of California, Davis, 291 Country Club Dr., Incline Village, NV 89451, USA; Department of Civil and Environmental Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| | - Francisco J Rueda
- Instituto del Agua, Universidad de Granada, C/ Ramón y Cajal 4, Granada 18071, Spain; Department of Civil Engineering, Universidad de Granada, Avda. de Hospicio s/n, Granada 18071, Spain.
| |
Collapse
|
5
|
Trolle D, Spigel B, Hamilton DP, Norton N, Sutherland D, Plew D, Allan MG. Application of a three-dimensional water quality model as a decision support tool for the management of land-use changes in the catchment of an oligotrophic lake. ENVIRONMENTAL MANAGEMENT 2014; 54:479-493. [PMID: 24943814 DOI: 10.1007/s00267-014-0306-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 05/29/2014] [Indexed: 06/03/2023]
Abstract
While expansion of agricultural land area and intensification of agricultural practices through irrigation and fertilizer use can bring many benefits to communities, intensifying land use also causes more contaminants, such as nutrients and pesticides, to enter rivers, lakes, and groundwater. For lakes such as Benmore in the Waitaki catchment, South Island, New Zealand, an area which is currently undergoing agricultural intensification, this could potentially lead to marked degradation of water clarity as well as effects on ecological, recreational, commercial, and tourism values. We undertook a modeling study to demonstrate science-based options for consideration of agricultural intensification in the catchment of Lake Benmore. Based on model simulations of a range of potential future nutrient loadings, it is clear that different areas within Lake Benmore may respond differently to increased nutrient loadings. A western arm (Ahuriri) could be most severely affected by land-use changes and associated increases in nutrient loadings. Lake-wide annual averages of an eutrophication indicator, the trophic level index (TLI) were derived from simulated chlorophyll a, total nitrogen, and total phosphorus concentrations. Results suggest that the lake will shift from oligotrophic (TLI = 2-3) to eutrophic (TLI = 4-5) as external loadings are increased eightfold over current baseline loads, corresponding to the potential land-use intensification in the catchment. This study provides a basis for use of model results in a decision-making process by outlining the environmental consequences of a series of land-use management options, and quantifying nutrient load limits needed to achieve defined trophic state objectives.
Collapse
Affiliation(s)
- Dennis Trolle
- Department of Bioscience, Aarhus University, Vejlsøvej 25, PO Box 314, 8600, Silkeborg, Denmark,
| | | | | | | | | | | | | |
Collapse
|
6
|
Thermosolutal Convection in a Rectangular Concentric Annulus: A Comprehensive Study. Transp Porous Media 2013. [DOI: 10.1007/s11242-013-0135-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
|
8
|
Suchanek TH, Richerson PJ, Zierenberg RA, Eagles-Smith CA, Slotton DG, Harner EJ, Osleger DA, Anderson DW, Cech JJ, Schladow SG, Colwell AE, Mount JF, King PS, Adam DP, McElroy KJ. The legacy of mercury cycling from mining sources in an aquatic ecosystem: from ore to organism. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2008; 18:A12-A28. [PMID: 19475916 DOI: 10.1890/08-0363.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Clear Lake is the site of an abandoned mercury (Hg) mine (active intermittently from 1873 to 1957), now a U.S. Environmental Protection Agency Superfund Site. Mining activities, including bulldozing waste rock and tailings into the lake, resulted in approximately 100 Mg of Hg entering the lake's ecosystem. This series of papers represents the culmination of approximately 15 years of Hg-related studies on this ecosystem, following Hg from the ore body to the highest trophic levels. A series of physical, chemical, biological, and limnological studies elucidate how ongoing Hg loading to the lake is influenced by acid mine drainage and how wind-driven currents and baroclinic circulation patterns redistribute Hg throughout the lake. Methylmercury (MeHg) production in this system is controlled by both sulfate-reducing bacteria as well as newly identified iron-reducing bacteria. Sediment cores (dated with dichlorodiphenyldichlorethane [DDD], 210pb, and 14C) to approximately 250 cm depth (representing up to approximately 3000 years before present) elucidate a record of total Hg (TotHg) loading to the lake from natural sources and mining and demonstrate how MeHg remains stable at depth within the sediment column for decades to millenia. Core data also identify other stresses that have influenced the Clear Lake Basin especially over the past 150 years. Although Clear Lake is one of the most Hg-contaminated lakes in the world, biota do not exhibit MeHg concentrations as high as would be predicted based on the gross level of Hg loading. We compare Clear Lake's TotHg and MeHg concentrations with other sites worldwide and suggest several hypotheses to explain why this discrepancy exists. Based on our data, together with state and federal water and sediment quality criteria, we predict potential resulting environmental and human health effects and provide data that can assist remediation efforts.
Collapse
Affiliation(s)
- Thomas H Suchanek
- Department of Wildlife, Fish and Conservation Biology, University of California, Davis, California 95616, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Osleger DA, Zierenberg RA, Suchanek TH, Stoner JS, Morgan S, Adam DP. Clear Lake sediments: anthropogenic changes in physical sedimentology and magnetic response. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2008; 18:A239-A256. [PMID: 19475928 DOI: 10.1890/06-1469.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We analyzed the sedimentological characteristics and magnetic properties of cores from the three basins of Clear Lake, California, USA, to assess the depositional response to a series of land use changes that occurred in the watershed over the 20th century. Results indicate that distinct and abrupt shifts in particle size, magnetic concentration/mineralogy, and redox conditions occur concurrently with a variety of ecological and chemical changes in lake bed sediments. This coincidence of events occurred around 1927, a datum determined by an abrupt increase in total mercury (Hg) in Clear Lake cores and the known initiation of open-pit Hg mining at the Sulphur Bank Mercury Mine, confirmed by 210Pb dating. Ages below the 1927 horizon were determined by accelerator mass spectrometry on 14C of coarse organic debris. Calculated sedimentation rates below the 1927 datum are approximately 1 mm/yr, whereas rates from 1927 to 2000 are up to an order of magnitude higher, with averages of approximately 3.5-19 mm/yr. In both the Oaks and Upper Arms, the post-1927 co-occurrence of abrupt shifts in magnetic signatures with color differences indicative of changing redox conditions is interpreted to reflect a more oxygenated diagenetic regime and rapid burial of sediment below the depth of sulfate diffusion. Post-1927 in the Oaks Arm, grain size exhibits a gradual coarsening-upward pattern that we attribute to the input of mechanically deposited waste rock related to open-pit mining activities at the mine. In contrast, grain size in the Upper Arm exhibits a gradational fining-upward after 1927 that we interpret as human-induced erosion of fine-grained soils and chemically weathered rocks of the Franciscan Assemblage by heavy earthmoving equipment associated with a road- and home-building boom, exacerbated by stream channel mining and wetlands destruction. The flux of fine-grained sediment into the Upper Arm increased the nutrient load to the lake, and that in turn catalyzed profuse cyanobacterial blooms through the 20th century. The resulting organic biomass, in combination with the increased inorganic sediment supply, contributed to the abrupt increase in sedimentation rate after 1927.
Collapse
Affiliation(s)
- David A Osleger
- Department of Geology, University of California, Davis, California 95616, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Suchanek TH, Eagles-Smith CA, Harner EJ. Is Clear Lake methylmercury distribution decoupled from bulk mercury loading? ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2008; 18:A107-27. [PMID: 19475921 DOI: 10.1890/06-1649.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Clear Lake is the site of the abandoned Sulphur Bank Mercury Mine, active periodically from 1873 to 1957, resulting in approximately 100 Mg of mercury (Hg) being deposited into the lake's ecosystem. Concentrations of total (primarily inorganic) Hg (TotHg) in Clear Lake are some of the highest reported worldwide for sediments (up to 4.4 x 10(5) ng/g [ppb dry mass]) and water (up to 4 x 10(-1) microg/L [= ppb]). However, the ratio of methylmercury (MeHg) to TotHg at Clear Lake indicates that the methylation process is mostly decoupled from bulk inorganic Hg loading, with Hg in lower trophic level biota significantly less than anticipated compared with other Hg-contaminated sites worldwide. This may be due to several factors, including: (1) reduced bioavailability of Hg derived from the mine (i.e., cinnabar, metacinnabar, and corderoite), (2) the alkaline nature of the lake water, (3) the shallow depth of the lake, which prevents stratification and subsequent methylation in a stratified hypolimnion, and (4) possible dilution of MeHg by a highly productive system. However, while bulk inorganic Hg loading to the lake may not contribute significantly to the bioaccumulation of Hg, acid mine drainage (AMD) from the mine likely promotes Hg methylation by sulfate-reducing and iron-reducing bacteria, making AMD a vehicle for the production of highly bioavailable Hg. If Clear Lake were deeper, less productive, or less alkaline, biota would likely contain much more MeHg than they do presently. Comparisons of MeHg:TotHg ratios in sediments, water, and biota from sites worldwide suggest that the highest production of MeHg may be found at sites influenced by chloralkali plants, followed by sites influenced by gold and silver mines, with the lowest production of MeHg observed at cinnabar and metacinnabar Hg mines. These data also suggest that the total maximum daily load (TMDL) process for Hg at Clear Lake, as currently implemented to reduce contamination in fishes for the protection of wildlife and humans, may be flawed because the metric used to implement Hg load reduction (i.e., TotHg) is not directly proportional to the critical form of Hg that is being bioaccumulated (i.e., MeHg).
Collapse
Affiliation(s)
- Thomas H Suchanek
- Department of Wildlife, Fish and Conservation Biology, University of California, Davis, California 95616, USA.
| | | | | |
Collapse
|
11
|
Pálmarsson SO, Schladow SG. Exchange flow in a shallow lake embayment. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2008; 18:A89-A106. [PMID: 19475920 DOI: 10.1890/06-1618.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Convectively driven currents can arise in the littoral zones of lakes, as a result of either differential heating or differential cooling of the shallow water. The result of these flows is to produce a surface flow away from shore with a bottom return flow or a bottom flow away from shore with a surface return flow. Measurements taken in a shallow embayment of Clear Lake, California, USA, show the presence of both kinds of convectively driven flows under a large variety of summer conditions. The magnitude of these flows is sufficient to transport material a distance on the order of 0.5 km during such events. Through both advection and dispersion the net result of this process would be to reduce the accumulation of particles and particle-associated contaminants such as mercury in the littoral zone and to move them offshore where they are more prone to permanent burial or further transport.
Collapse
Affiliation(s)
- Sveinn O Pálmarsson
- Department of Civil and Environmental Engineering, University of California, Davis, California 95616, USA
| | | |
Collapse
|
12
|
Suchanek TH, Eagles-Smith CA, Slotton DG, Harner EJ, Colwell AE, Anderson NL, Mullen LH, Flanders JR, Adam DP, McElroy KJ. Spatiotemporal trends in fish mercury from a mine-dominated ecosystem: Clear Lake, California. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2008; 18:A177-A195. [PMID: 19475924 DOI: 10.1890/06-1900.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Clear Lake, California, USA, receives acid mine drainage and mercury (Hg) from the Sulphur Bank Mercury Mine, a U.S. Environmental Protection Agency (U.S. EPA) Superfund Site that was active intermittently from 1873 to 1957 and partially remediated in 1992. Mercury concentrations were analyzed primarily in four species of Clear Lake fishes: inland silversides (Menidia beryllina, planktivore), common carp (Cyprinus carpio, benthic scavenger/omnivore), channel catfish (Ictalurus punctatus, benthic omnivorous predator), and largemouth bass (Micropterus salmoides, piscivorous top predator). These data represent one of the largest fish Hg data sets for a single site, especially in California. Spatially, total Hg (TotHg) in silversides and bass declined with distance from the mine, indicating that the mine site represents a point source for Hg loading to Clear Lake. Temporally, fish Hg has not declined significantly over 12 years since mine site remediation. Mercury concentrations were variable throughout the study period, with no monotonic trends of increase or decrease, except those correlated with boom and bust cycles of an introduced fish, threadfin shad (Dorosoma petenense). However, stochastic events such as storms also influence juvenile largemouth bass Hg as evidenced during an acid mine drainage overflow event in 1995. Compared to other sites regionally and nationally, most fish in Clear Lake exhibit Hg concentrations similar to other Hg-contaminated sites, up to approximately 2.0 mg/kg wet mass (WM) TotHg in largemouth bass. However, even these elevated concentrations are less than would be anticipated from such high inorganic Hg loading to the lake. Mercury in some Clear Lake largemouth bass exceeded all human health fish consumption guidelines established over the past 25 years by the U.S. Food and Drug Administration (1.0 mg/kg WM), the National Academy of Sciences (0.5 mg/kg WM), and the U.S. EPA (0.3 mg/kg WM). Mercury in higher trophic level fishes exceeds ecotoxicological risk assessment estimates for concentrations that would be safe for wildlife, specifically the nonlisted Common Merganser and the recently delisted Bald Eagle. Fish populations of 11 out of 18 species surveyed exhibited a significant decrease in abundance with increasing proximity to the mine; this decrease is correlated with increasing water and sediment Hg. These trends may be related to Hg or other lake-wide gradients such as distribution of submerged aquatic vegetation.
Collapse
Affiliation(s)
- Thomas H Suchanek
- Department of Wildlife, Fish and Conservation Biology, University of California, Davis, California 95616, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Suchanek TH, Richerson PJ, Zierenberg RA, Slotton DG, Mullen LH. Vertical stability of mercury in historic and prehistoric sediments from Clear Lake, California. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2008; 18:A284-A296. [PMID: 19475930 DOI: 10.1890/06-1544.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Clear Lake, California, USA, is the site of the Sulphur Bank Mercury Mine, now a U.S. Environmental Protection Agency Superfund Site. Intermittent mining from 1873 to 1957 resulted in approximately 100 Mg of mercury (Hg) being deposited into the lake's ecosystem. Sediment cores to approximately 2.5 m depth (dated using 210Pb and 14C) represent approximately 3000 years of sedimentation. Clear Lake sediments have experienced Hg deposition from anthropogenic sources (mining) during historic times (to the mid-1900s) and geologic sources during prehistoric times (prior to the mid-1800s). This provides a unique opportunity to evaluate hypotheses relating to (1) the influence of the mine on Hg loading to the lake and (2) the potential upward mobilization of Hg by diagenetic processes proposed by some as an alternative explanation for increased Hg concentrations at the surface of the sediment column believed to be caused by increased global atmospheric deposition. Although Hg mining began in 1873, no significant evidence of anthropogenic Hg loading was detected in cores prior to open-pit mining ca. 1927, which also involved bulldozing mine waste rock and tailings into the lake. Exponential increases in total Hg (TotHg) and methylmercury (MeHg) were observed above the 1927 horizon, where estimated sedimentation rates were 2.2-20.4 mm/yr and peaks of both forms of Hg maintained vertical stability within the sediment column. Below the 1927 horizon, a slow increase in both TotHg and MeHg with depth was observed from approximately 1000 to 3000 years before present, where sedimentation rates ranged from approximately 0.6 to 2.0 mm/yr and elevated Hg profiles appear stable. Vertical stability of Hg in the shallow and deep sediment column suggests that both TotHg and MeHg do not undergo diagenetic upward mobilization within the sediment column under rapid or slow sedimentation rates. Because (1) these data were collected at a site with known anthropogenic and geologic sources and (2) regions of elevated Hg concentrations from both sources remain stable within the sediment column under very different sedimentation regimes, these results also support the hypothesis that elevated Hg at the surface of cores in other worldwide locations likely represents global atmospheric deposition rather than upward diagenetic mobilization.
Collapse
Affiliation(s)
- Thomas H Suchanek
- Department of Wildlife, Fish and Conservation Biology, University of California, Davis, California 95616, USA.
| | | | | | | | | |
Collapse
|
14
|
Schladow SG, Clark JF. Use of tracers to quantify subsurface flow through a mining pit. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2008; 18:A55-A71. [PMID: 19475918 DOI: 10.1890/06-0998.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Three independent tracer experiments were conducted to quantify the through-flow of water from Herman Pit, an abandoned mercury (Hg) mine pit adjacent to Clear Lake, California, USA. The tracers used were Rhodamine-WT, sulfur hexafluoride, and a mixture of sulfur hexafluoride and neon-22. The tracers were injected into Herman Pit, a generally well-mixed water body of approximately 81,000 m2, and the concentrations were monitored in the mine pit, observation wells, and the lake for 2-3 months following each injection. The results for all three experiments showed that the tracer arrived at certain observation wells within days of injection. Comparing all the well data showed a highly heterogeneous response, with a small number of wells showing this near-instantaneous response and others taking months before the tracer was detectable. Tracer was also found in the lake on four occasions over a one-month period, too few to infer any pattern but sufficient to confirm the connection of the two water bodies. Using a simple mass balance model it was possible to determine the effective loss rate through advection for each of the tracers and with this to estimate the through-flow rate. The through-flow rate for all three experiments was approximately 630 L/s, at least 1-2 orders of magnitude larger than previous estimates, all of which had been based on geochemical inferences or other indirect measures of the pit through-flow.
Collapse
Affiliation(s)
- S Geoffrey Schladow
- Department of Civil and Environmental Engineering, University of California, Davis, California 95616, USA.
| | | |
Collapse
|
15
|
Suchanek TH, Eagles-Smith CA, Slotton DG, Harner EJ, Adam DP. Mercury in abiotic matrices of Clear Lake, California: human health and ecotoxicological implications. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2008; 18:A128-A157. [PMID: 19475922 DOI: 10.1890/06-1477.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Mercury (Hg) from Hg mining at Clear Lake, California, USA, has contaminated water and sediments for over 130 years and has the potential to affect human and environmental health. With total mercury (TotHg) concentrations up to 438 mg/kg (dry mass) in surficial sediments and up to 399 ng/L in lake water, Clear Lake is one of the most Hg-contaminated lakes worldwide. Particulate Hg in surface water near the mine ranges from 10,000 to 64,000 ng/g; TotHg declines exponentially with distance from the Sulphur Bank Mercury Mine. From 1992 to 1998, no significant long-term trends for TotHg or methylmercury (MeHg) in sediments or water were observed, but peaks of both TotHg and MeHg occurred following a 1995 flooding event. Sediments and water exhibit summer/fall maxima and winter/spring minima for MeHg, but not TotHg. Sediment TotHg has not declined significantly a decade after remediation in 1992. At the mine site, aqueous TotHg reached 374,000 ng/L in unfiltered groundwater. Pore water sulfate in sediments varies seasonally from 112 mg/L in summer/fall (when Hg methylation is highest) to 3300 mg/L in winter. While TotHg is exceptionally high in both sediments and water, MeHg is substantially lower than would be expected based on the bulk Hg loading to the lake and in comparison with other sites worldwide. Total mercury in Clear Lake water does not exceed the Safe Drinking Water Act criteria, but it sometimes greatly exceeds human health criteria established by the Great Lakes Initiative, U.S. Environmental Protection Agency water quality guidelines, and the California Toxics Rule criterion. Methylmercury concentrations exceed the Great Lakes Initiative criterion for MeHg in water at some sites only during summer/fall. Relative to ecological health, Clear Lake sediments greatly exceed the National Oceanic and Atmospheric Administration's benthic fauna Sediment Quality Guidelines for toxic effects, as well as the more concensus-based Threshold Effects Concentration criteria. Based on these criteria, Hg-contaminated sediments and water from Clear Lake are predicted to have some lethal and sublethal effects on specific resident aquatic species. However, based on unique physical and chemical characteristics of the Clear Lake environment, MeHg toxicity may be significantly less than anticipated from the large inorganic Hg loading.
Collapse
Affiliation(s)
- Thomas H Suchanek
- Department of Wildlife, Fish and Conservation Biology, University of California, Davis, California 95616, USA.
| | | | | | | | | |
Collapse
|
16
|
Wiener JG, Suchanek TH. The basis for ecotoxicological concern in aquatic ecosystems contaminated by historical mercury mining. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2008; 18:A3-A11. [PMID: 19475915 DOI: 10.1890/06-1939.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The Coast Range of California is one of five global regions that dominated historical production of mercury (Hg) until declining demand led to the economic collapse of the Hg-mining industry in the United States. Calcines, waste rock, and contaminated alluvium from inactive mine sites can release Hg (including methylmercury, MeHg) to the environment for decades to centuries after mining has ceased. Soils, water, and sediment near mines often contain high concentrations of total Hg (TotHg), and an understanding of the biogeochemical transformations, transport, and bioaccumulation of this toxic metal is needed to assess effects of these contaminated environments on humans and wildlife. We briefly review the environmental behavior and effects of Hg, providing a prelude to the subsequent papers in this Special Issue. Clear Lake is a northern California lake contaminated by wastes from the abandoned Sulphur Bank Mercury Mine, a U.S. Environmental Protection Agency Superfund Site. The primary toxicological problem with Hg in aquatic ecosystems is biotic exposure to MeHg, a highly toxic compound that readily bioaccumulates. Processes that affect the abundance of MeHg (including methylation and demethylation) strongly affect its concentration in all trophic levels of aquatic food webs. MeHg can biomagnify to high concentrations in aquatic food webs, and consumption of fish is the primary pathway for human exposure. Fish consumption advisories have been issued for many North American waters, including Clear Lake and other mine-impacted waters in California, as a means of decreasing MeHg exposure. Concerns about MeHg exposure in humans focus largely on developmental neurotoxicity to the fetus and children. Aquatic food webs are also an important pathway for MeHg exposure of wildlife, which can accumulate high, sometimes harmful, concentrations. In birds, wild mammals, and humans, MeHg readily passes to the developing egg, embryo, or fetus, life stages that are much more sensitive than the adult. The papers in this issue examine the origin, transport, transformations, bioaccumulation, and trophic transfer of Hg in Clear Lake, assess its potential effects on biota and humans, and provide information relevant to remediation of mine-impacted aquatic ecosystems.
Collapse
Affiliation(s)
- James G Wiener
- University of Wisconsin-La Crosse, River Studies Center, 1725 State Street, La Crosse, Wisconsin 54601, USA.
| | | |
Collapse
|
17
|
Suchanek TH, Eagles-Smith CA, Slotton DG, Harner EJ, Adam DP, Colwell AE, Anderson NL, Woodward DL. Mine-derived mercury: effects on lower trophic species in Clear Lake, California. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2008; 18:A158-A176. [PMID: 19475923 DOI: 10.1890/06-1485.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Considerable ecological research on mercury (Hg) has focused on higher trophic level species (e.g., fishes and birds), but less on lower trophic species. Clear Lake, site of the abandoned Sulphur Bank Mercury Mine, provides a unique opportunity to study a system influenced by mine-derived Hg. An exponentially decreasing gradient of total Hg (TotHg) away from the mine allowed us to evaluate Hg bioaccumulation in planktonic and benthic invertebrates and evaluate population- and community-level parameters that might be influenced by Hg. Studies from 1992-1998 demonstrated that TotHg in lower trophic species typically decreased exponentially away from the mine, similar to trends observed in water and sediments. However, a significant amount of invertebrate TotHg (approximately 60% for sediment-dwelling chironomid insect larvae) likely derives from Hg-laden particles in their guts. Spatially, whole-body methylmercury (MeHg) did not typically exhibit a significant decrease with increasing distance from the mine. Temporally, TotHg concentrations in plankton and chironomids did not exhibit any short-term (seasonal or annual) or long-term (multiyear) trends. Methylmercury, however, was elevated during late summer/fall in both plankton and chironomids, but it exhibited no long-term increase or decrease during this study. Although data from a 50-yr monitoring program for benthic chaoborid and chironomid larvae documented significant population fluctuations, they did not demonstrate population-level trends with respect to Hg concentrations. Littoral invertebrates also exhibited no detectable population- or community-level trends associated with the steep Hg gradient. Although sediment TotHg concentrations (1-1200 mg/kg dry mass) exceed sediment quality guidelines by up to 7000 times, it is notable that no population- or community-level effects were detected for benthic and planktonic taxa. In comparison with other sites worldwide, Clear Lake's lower trophic species typically have significantly higher TotHg concentrations, but comparable or lower MeHg concentrations, which may be responsible for the discrepancy between highly elevated TotHg concentrations and the general lack of observed population- or community-level effects. These data suggest that MeHg, as well as TotHg, should be used when establishing sediment quality guidelines. In addition, site-specific criteria should be established using the observed relationship between MeHg and observed ecological responses.
Collapse
Affiliation(s)
- Thomas H Suchanek
- Department of Wildlife, Fish and Conservation Biology, University of California, Davis, California 95616, USA.
| | | | | | | | | | | | | | | |
Collapse
|