1
|
Rabone M, Wiethase JH, Simon-Lledó E, Emery AM, Jones DOB, Dahlgren TG, Bribiesca-Contreras G, Wiklund H, Horton T, Glover AG. How many metazoan species live in the world's largest mineral exploration region? Curr Biol 2023; 33:2383-2396.e5. [PMID: 37236182 DOI: 10.1016/j.cub.2023.04.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/22/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023]
Abstract
The global surge in demand for metals such as cobalt and nickel has created unprecedented interest in deep-sea habitats with mineral resources. The largest area of activity is a 6 million km2 region known as the Clarion-Clipperton Zone (CCZ) in the central and eastern Pacific, regulated by the International Seabed Authority (ISA). Baseline biodiversity knowledge of the region is crucial to effective management of environmental impact from potential deep-sea mining activities, but until recently this has been almost completely lacking. The rapid growth in taxonomic outputs and data availability for the region over the last decade has allowed us to conduct the first comprehensive synthesis of CCZ benthic metazoan biodiversity for all faunal size classes. Here we present the CCZ Checklist, a biodiversity inventory of benthic metazoa vital to future assessments of environmental impacts. An estimated 92% of species identified from the CCZ are new to science (436 named species from a total of 5,578 recorded). This is likely to be an overestimate owing to synonyms in the data but is supported by analysis of recent taxonomic studies suggesting that 88% of species sampled in the region are undescribed. Species richness estimators place total CCZ metazoan benthic diversity at 6,233 (+/-82 SE) species for Chao1, and 7,620 (+/-132 SE) species for Chao2, most likely representing lower bounds of diversity in the region. Although uncertainty in estimates is high, regional syntheses become increasingly possible as comparable datasets accumulate. These will be vital to understanding ecological processes and risks of biodiversity loss.
Collapse
Affiliation(s)
- Muriel Rabone
- Deep-Sea Systematics and Ecology Group, Life Sciences Department, Natural History Museum, Cromwell Rd, SW7 5BD London, UK.
| | - Joris H Wiethase
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Erik Simon-Lledó
- National Oceanography Centre, European Way, SO14 3ZH Southampton, UK
| | - Aidan M Emery
- Deep-Sea Systematics and Ecology Group, Life Sciences Department, Natural History Museum, Cromwell Rd, SW7 5BD London, UK
| | - Daniel O B Jones
- National Oceanography Centre, European Way, SO14 3ZH Southampton, UK
| | - Thomas G Dahlgren
- Department of Marine Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden; NORCE, Norwegian Research Centre, 112, 5008 Bergen, Norway
| | - Guadalupe Bribiesca-Contreras
- Deep-Sea Systematics and Ecology Group, Life Sciences Department, Natural History Museum, Cromwell Rd, SW7 5BD London, UK
| | - Helena Wiklund
- Deep-Sea Systematics and Ecology Group, Life Sciences Department, Natural History Museum, Cromwell Rd, SW7 5BD London, UK; Department of Marine Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Tammy Horton
- National Oceanography Centre, European Way, SO14 3ZH Southampton, UK
| | - Adrian G Glover
- Deep-Sea Systematics and Ecology Group, Life Sciences Department, Natural History Museum, Cromwell Rd, SW7 5BD London, UK
| |
Collapse
|
2
|
Buckley HL, Day NJ, Case BS, Lear G. Measuring change in biological communities: multivariate analysis approaches for temporal datasets with low sample size. PeerJ 2021; 9:e11096. [PMID: 33889442 PMCID: PMC8038644 DOI: 10.7717/peerj.11096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 02/22/2021] [Indexed: 12/03/2022] Open
Abstract
Effective and robust ways to describe, quantify, analyse, and test for change in the structure of biological communities over time are essential if ecological research is to contribute substantively towards understanding and managing responses to ongoing environmental changes. Structural changes reflect population dynamics, changes in biomass and relative abundances of taxa, and colonisation and extinction events observed in samples collected through time. Most previous studies of temporal changes in the multivariate datasets that characterise biological communities are based on short time series that are not amenable to data-hungry methods such as multivariate generalised linear models. Here, we present a roadmap for the analysis of temporal change in short-time-series, multivariate, ecological datasets. We discuss appropriate methods and important considerations for using them such as sample size, assumptions, and statistical power. We illustrate these methods with four case-studies analysed using the R data analysis environment.
Collapse
Affiliation(s)
- Hannah L. Buckley
- School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Nicola J. Day
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Bradley S. Case
- School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Gavin Lear
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Long-term change in epibenthic assemblages at the Prince Edward Islands: a comparison between 1988 and 2013. Polar Biol 2017. [DOI: 10.1007/s00300-017-2132-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Jones DOB, Yool A, Wei CL, Henson SA, Ruhl HA, Watson RA, Gehlen M. Global reductions in seafloor biomass in response to climate change. GLOBAL CHANGE BIOLOGY 2014; 20:1861-72. [PMID: 24382828 PMCID: PMC4261893 DOI: 10.1111/gcb.12480] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 11/20/2013] [Indexed: 05/06/2023]
Abstract
Seafloor organisms are vital for healthy marine ecosystems, contributing to elemental cycling, benthic remineralization, and ultimately sequestration of carbon. Deep-sea life is primarily reliant on the export flux of particulate organic carbon from the surface ocean for food, but most ocean biogeochemistry models predict global decreases in export flux resulting from 21st century anthropogenically induced warming. Here we show that decadal-to-century scale changes in carbon export associated with climate change lead to an estimated 5.2% decrease in future (2091-2100) global open ocean benthic biomass under RCP8.5 (reduction of 5.2 Mt C) compared with contemporary conditions (2006-2015). Our projections use multi-model mean export flux estimates from eight fully coupled earth system models, which contributed to the Coupled Model Intercomparison Project Phase 5, that have been forced by high and low representative concentration pathways (RCP8.5 and 4.5, respectively). These export flux estimates are used in conjunction with published empirical relationships to predict changes in benthic biomass. The polar oceans and some upwelling areas may experience increases in benthic biomass, but most other regions show decreases, with up to 38% reductions in parts of the northeast Atlantic. Our analysis projects a future ocean with smaller sized infaunal benthos, potentially reducing energy transfer rates though benthic multicellular food webs. More than 80% of potential deep-water biodiversity hotspots known around the world, including canyons, seamounts, and cold-water coral reefs, are projected to experience negative changes in biomass. These major reductions in biomass may lead to widespread change in benthic ecosystems and the functions and services they provide.
Collapse
Affiliation(s)
- Daniel O B Jones
- National Oceanography Centre, University of Southampton Waterfront Campus, European Way, Southampton, SO14 3ZH, UK
| | | | | | | | | | | | | |
Collapse
|
5
|
Ruhl HA, Bett BJ, Hughes SJM, Alt CHS, Ross EJ, Lampitt RS, Pebody CA, Smith KL, Billett DSM. Links between deep-sea respiration and community dynamics. Ecology 2014; 95:1651-62. [DOI: 10.1890/13-0675.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Wei CL, Rowe GT, Haedrich RL, Boland GS. Long-term observations of epibenthic fish zonation in the deep northern Gulf of Mexico. PLoS One 2012; 7:e46707. [PMID: 23056412 PMCID: PMC3463567 DOI: 10.1371/journal.pone.0046707] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 09/07/2012] [Indexed: 11/18/2022] Open
Abstract
A total of 172 bottom trawl/skimmer samples (183 to 3655-m depth) from three deep-sea studies, R/V Alaminos cruises (1964–1973), Northern Gulf of Mexico Continental Slope (NGoMCS) study (1983–1985) and Deep Gulf of Mexico Benthos (DGoMB) program (2000 to 2002), were compiled to examine temporal and large-scale changes in epibenthic fish species composition. Based on percent species shared among samples, faunal groups (≥10% species shared) consistently reoccurred over time on the shelf-break (ca. 200 m), upper-slope (ca. 300 to 500 m) and upper-to-mid slope (ca. 500 to 1500 m) depths. These similar depth groups also merged when the three studies were pooled together, suggesting that there has been no large-scale temporal change in depth zonation on the upper section of the continental margin. Permutational multivariate analysis of variance (PERMANOVA) also detected no significant species changes on the limited sites and areas that have been revisited across the studies (P>0.05). Based on the ordination of the species shared among samples, species replacement was a continuum along a depth or macrobenthos biomass gradient. Despite the well-known, close, negative relationship between water depth and macrofaunal biomass, the fish species changed more rapidly at depth shallower than 1,000 m, but the rate of change was surprisingly slow at the highest macrofaunal biomass (>100 mg C m−2), suggesting that the composition of epibenthic fishes was not altered in response to the extremely high macrofaunal biomass in the upper Mississippi and De Soto Submarine Canyons. An alternative is that the pattern of fish species turnover is related to the decline in macrofaunal biomass, the presumptive prey of the fish, along the depth gradient.
Collapse
Affiliation(s)
- Chih-Lin Wei
- Ocean Science Centre, Memorial University of Newfoundland, St. John's, Canada.
| | | | | | | |
Collapse
|
7
|
Abstract
With frigid temperatures and virtually no in situ productivity, the deep oceans, Earth's largest ecosystem, are especially energy-deprived systems. Our knowledge of the effects of this energy limitation on all levels of biological organization is very incomplete. Here, we use the Metabolic Theory of Ecology to examine the relative roles of carbon flux and temperature in influencing metabolic rate, growth rate, lifespan, body size, abundance, biomass, and biodiversity for life on the deep seafloor. We show that the relative impacts of thermal and chemical energy change across organizational scales. Results suggest that individual metabolic rates, growth, and turnover proceed as quickly as temperature-influenced biochemical kinetics allow but that chemical energy limits higher-order community structure and function. Understanding deep-sea energetics is a pressing problem because of accelerating climate change and the general lack of environmental regulatory policy for the deep oceans.
Collapse
|
8
|
McClain CR, Stegen JC, Hurlbert AH. Dispersal, environmental niches and oceanic-scale turnover in deep-sea bivalves. Proc Biol Sci 2011; 279:1993-2002. [PMID: 22189399 DOI: 10.1098/rspb.2011.2166] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Patterns of beta-diversity or distance decay at oceanic scales are completely unknown for deep-sea communities. Even when appropriate data exist, methodological problems have made it difficult to discern the relative roles of environmental filtering and dispersal limitation for generating faunal turnover patterns. Here, we combine a spatially extensive dataset on deep-sea bivalves with a model incorporating ecological dynamics and shared evolutionary history to quantify the effects of environmental filtering and dispersal limitation. Both the model and empirical data are used to relate functional, taxonomic and phylogenetic similarity between communities to environmental and spatial distances separating them for 270 sites across the Atlantic Ocean. This study represents the first ocean-wide analysis examining distance decay as a function of a broad suite of explanatory variables. We find that both strong environmental filtering and dispersal limitation drive turnover in taxonomic, functional and phylogenetic composition in deep-sea bivalves, explaining 26 per cent, 34 per cent and 9 per cent of the variation, respectively. This contrasts with previous suggestions that dispersal is not limiting in broad-scale biogeographic and biodiversity patterning in marine systems. However, rates of decay in similarity with environmental distance were eightfold to 44-fold steeper than with spatial distance. Energy availability is the most influential environmental variable evaluated, accounting for 3.9 per cent, 9.4 per cent and 22.3 per cent of the variation in functional, phylogenetic and taxonomic similarity, respectively. Comparing empirical patterns with process-based theoretical predictions provided quantitative estimates of dispersal limitation and niche breadth, indicating that 95 per cent of deep-sea bivalve propagules will be able to persist in environments that deviate from their optimum by up to 2.1 g m(-2) yr(-1) and typically disperse 749 km from their natal site.
Collapse
Affiliation(s)
- Craig R McClain
- National Evolutionary Synthesis Center, Durham, NC 27705, USA.
| | | | | |
Collapse
|
9
|
Wolff GA, Billett DSM, Bett BJ, Holtvoeth J, FitzGeorge-Balfour T, Fisher EH, Cross I, Shannon R, Salter I, Boorman B, King NJ, Jamieson A, Chaillan F. The effects of natural iron fertilisation on deep-sea ecology: the Crozet Plateau, Southern Indian Ocean. PLoS One 2011; 6:e20697. [PMID: 21695118 PMCID: PMC3114783 DOI: 10.1371/journal.pone.0020697] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 05/06/2011] [Indexed: 11/17/2022] Open
Abstract
The addition of iron to high-nutrient low-chlorophyll (HNLC) oceanic waters stimulates phytoplankton, leading to greater primary production. Large-scale artificial ocean iron fertilization (OIF) has been proposed as a means of mitigating anthropogenic atmospheric CO2, but its impacts on ocean ecosystems below the photic zone are unknown. Natural OIF, through the addition of iron leached from volcanic islands, has been shown to enhance primary productivity and carbon export and so can be used to study the effects of OIF on life in the ocean. We compared two closely-located deep-sea sites (∼400 km apart and both at ∼4200 m water depth) to the East (naturally iron fertilized; +Fe) and South (HNLC) of the Crozet Islands in the southern Indian Ocean. Our results suggest that long-term geo-engineering of surface oceanic waters via artificial OIF would lead to significant changes in deep-sea ecosystems. We found that the +Fe area had greater supplies of organic matter inputs to the seafloor, including polyunsaturated fatty acid and carotenoid nutrients. The +Fe site also had greater densities and biomasses of large deep-sea animals with lower levels of evenness in community structuring. The species composition was also very different, with the +Fe site showing similarities to eutrophic sites in other ocean basins. Moreover, major differences occurred in the taxa at the +Fe and HNLC sites revealing the crucial role that surface oceanic conditions play in changing and structuring deep-sea benthic communities.
Collapse
Affiliation(s)
- George A Wolff
- School of Environmental Sciences, University of Liverpool, Liverpool, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Glover AG, Gooday AJ, Bailey DM, Billett DSM, Chevaldonné P, Colaço A, Copley J, Cuvelier D, Desbruyères D, Kalogeropoulou V, Klages M, Lampadariou N, Lejeusne C, Mestre NC, Paterson GLJ, Perez T, Ruhl H, Sarrazin J, Soltwedel T, Soto EH, Thatje S, Tselepides A, Van Gaever S, Vanreusel A. Temporal change in deep-sea benthic ecosystems: a review of the evidence from recent time-series studies. ADVANCES IN MARINE BIOLOGY 2010; 58:1-95. [PMID: 20959156 DOI: 10.1016/b978-0-12-381015-1.00001-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Societal concerns over the potential impacts of recent global change have prompted renewed interest in the long-term ecological monitoring of large ecosystems. The deep sea is the largest ecosystem on the planet, the least accessible, and perhaps the least understood. Nevertheless, deep-sea data collected over the last few decades are now being synthesised with a view to both measuring global change and predicting the future impacts of further rises in atmospheric carbon dioxide concentrations. For many years, it was assumed by many that the deep sea is a stable habitat, buffered from short-term changes in the atmosphere or upper ocean. However, recent studies suggest that deep-seafloor ecosystems may respond relatively quickly to seasonal, inter-annual and decadal-scale shifts in upper-ocean variables. In this review, we assess the evidence for these long-term (i.e. inter-annual to decadal-scale) changes both in biologically driven, sedimented, deep-sea ecosystems (e.g. abyssal plains) and in chemosynthetic ecosystems that are partially geologically driven, such as hydrothermal vents and cold seeps. We have identified 11 deep-sea sedimented ecosystems for which published analyses of long-term biological data exist. At three of these, we have found evidence for a progressive trend that could be potentially linked to recent climate change, although the evidence is not conclusive. At the other sites, we have concluded that the changes were either not significant, or were stochastically variable without being clearly linked to climate change or climate variability indices. For chemosynthetic ecosystems, we have identified 14 sites for which there are some published long-term data. Data for temporal changes at chemosynthetic ecosystems are scarce, with few sites being subjected to repeated visits. However, the limited evidence from hydrothermal vents suggests that at fast-spreading centres such as the East Pacific Rise, vent communities are impacted on decadal scales by stochastic events such as volcanic eruptions, with associated fauna showing complex patterns of community succession. For the slow-spreading centres such as the Mid-Atlantic Ridge, vent sites appear to be stable over the time periods measured, with no discernable long-term trend. At cold seeps, inferences based on spatial studies in the Gulf of Mexico, and data on organism longevity, suggest that these sites are stable over many hundreds of years. However, at the Haakon Mosby mud volcano, a large, well-studied seep in the Barents Sea, periodic mud slides associated with gas and fluid venting may disrupt benthic communities, leading to successional sequences over time. For chemosynthetic ecosystems of biogenic origin (e.g. whale-falls), it is likely that the longevity of the habitat depends mainly on the size of the carcass and the ecological setting, with large remains persisting as a distinct seafloor habitat for up to 100 years. Studies of shallow-water analogs of deep-sea ecosystems such as marine caves may also yield insights into temporal processes. Although it is obvious from the geological record that past climate change has impacted deep-sea faunas, the evidence that recent climate change or climate variability has altered deep-sea benthic communities is extremely limited. This mainly reflects the lack of remote sensing of this vast seafloor habitat. Current and future advances in deep-ocean benthic science involve new remote observing technologies that combine a high temporal resolution (e.g. cabled observatories) with spatial capabilities (e.g. autonomous vehicles undertaking image surveys of the seabed).
Collapse
Affiliation(s)
- A G Glover
- Zoology Department, The Natural History Museum, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Connections between climate, food limitation, and carbon cycling in abyssal sediment communities. Proc Natl Acad Sci U S A 2008; 105:17006-11. [PMID: 18974223 DOI: 10.1073/pnas.0803898105] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diverse faunal groups inhabit deep-sea sediments over much of Earth's surface, but our understanding of how interannual-scale climate variation alters sediment community components and biogeochemical processes remains limited. The vast majority of deep-sea communities depend on a particulate organic carbon food supply that sinks from photosynthetically active surface waters. Variations in food supply depend, in part, on surface climate conditions. Proposed ocean iron fertilization efforts are also intended to alter surface production and carbon export from surface waters. Understanding the ecology of the abyssal sediment community and constituent metazoan macrofauna is important because they influence carbon and nutrient cycle processes at the seafloor through remineralization, bioturbation, and burial of the sunken material. Results from a 10-year study in the abyssal NE Pacific found that climate-driven variations in food availability were linked to total metazoan macrofauna abundance, phyla composition, rank-abundance distributions, and remineralization over seasonal and interannual scales. The long-term analysis suggests that broad biogeographic patterns in deep-sea macrofauna community structure can change over contemporary timescales with changes in surface ocean conditions and provides significant evidence that sediment community parameters can be estimated from atmospheric and upper-ocean conditions. These apparent links between climate, the upper ocean, and deep-sea biogeochemistry need to be considered in determining the long-term carbon storage capacity of the ocean.
Collapse
|
12
|
Drazen JC, Phleger CF, Guest MA, Nichols PD. Lipid, sterols and fatty acid composition of abyssal holothurians and ophiuroids from the North-East Pacific Ocean: Food web implications. Comp Biochem Physiol B Biochem Mol Biol 2008; 151:79-87. [DOI: 10.1016/j.cbpb.2008.05.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 05/29/2008] [Accepted: 05/30/2008] [Indexed: 10/22/2022]
|