1
|
Maute K, Story P, Hose GC, Warden A, Dojchinov G, French K. Observations on populations of a small insectivorous bird,. AUST J ZOOL 2022. [DOI: 10.1071/zo22006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The use of chemical pesticides to manage locust populations in natural ecosystems is likely to impact non-target arthropods and their predators. However, the relative effects of different locust control applications on Australian birds are unknown. Aerial applications of fipronil and fenitrothion are examples of two pesticides used in locust control in semiarid Australia. To test the relative impacts of pesticides on non-target fauna, pesticides were applied to replicate sites using aerial ultra-low-volume application methods. The body condition and biomarkers of pesticide exposure in resident white-winged fairy wrens (Malurus leucopterus leuconotus) at treatment and control sites were measured for two weeks before and after treatments. No measures suggested negative impacts of pesticide applications. However, birds monitored at treatment sites gained mass, possibly due to indirect impacts of pesticides on bird feeding patterns or the availability or behaviour of insect prey. Bird mass measures remained high at fipronil sites, whereas the mass of birds at fenitrothion sites returned to baseline levels within one week. As this study was conducted during dry conditions, when locust plagues are less likely, future insecticide research should also consider the availability of insect prey, its effect on insectivore feeding behaviour and the interaction of rainfall events.
Collapse
|
2
|
Larras F, Charles S, Chaumot A, Pelosi C, Le Gall M, Mamy L, Beaudouin R. A critical review of effect modeling for ecological risk assessment of plant protection products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43448-43500. [PMID: 35391640 DOI: 10.1007/s11356-022-19111-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
A wide diversity of plant protection products (PPP) is used for crop protection leading to the contamination of soil, water, and air, which can have ecotoxicological impacts on living organisms. It is inconceivable to study the effects of each compound on each species from each compartment, experimental studies being time consuming and cost prohibitive, and animal testing having to be avoided. Therefore, numerous models are developed to assess PPP ecotoxicological effects. Our objective was to provide an overview of the modeling approaches enabling the assessment of PPP effects (including biopesticides) on the biota. Six categories of models were inventoried: (Q)SAR, DR and TKTD, population, multi-species, landscape, and mixture models. They were developed for various species (terrestrial and aquatic vertebrates and invertebrates, primary producers, micro-organisms) belonging to diverse environmental compartments, to address different goals (e.g., species sensitivity or PPP bioaccumulation assessment, ecosystem services protection). Among them, mechanistic models are increasingly recognized by EFSA for PPP regulatory risk assessment but, to date, remain not considered in notified guidance documents. The strengths and limits of the reviewed models are discussed together with improvement avenues (multigenerational effects, multiple biotic and abiotic stressors). This review also underlines a lack of model testing by means of field data and of sensitivity and uncertainty analyses. Accurate and robust modeling of PPP effects and other stressors on living organisms, from their application in the field to their functional consequences on the ecosystems at different scales of time and space, would help going toward a more sustainable management of the environment. Graphical Abstract Combination of the keyword lists composing the first bibliographic query. Columns were joined together with the logical operator AND. All keyword lists are available in Supplementary Information at https://doi.org/10.5281/zenodo.5775038 (Larras et al. 2021).
Collapse
Affiliation(s)
- Floriane Larras
- INRAE, Directorate for Collective Scientific Assessment, Foresight and Advanced Studies, Paris, 75338, France
| | - Sandrine Charles
- University of Lyon, University Lyon 1, CNRS UMR 5558, Laboratory of Biometry and Evolutionary Biology, Villeurbanne Cedex, 69622, France
| | - Arnaud Chaumot
- INRAE, UR RiverLy, Ecotoxicology laboratory, Villeurbanne, F-69625, France
| | - Céline Pelosi
- Avignon University, INRAE, UMR EMMAH, Avignon, 84000, France
| | - Morgane Le Gall
- Ifremer, Information Scientifique et Technique, Bibliothèque La Pérouse, Plouzané, 29280, France
| | - Laure Mamy
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, Thiverval-Grignon, 78850, France
| | - Rémy Beaudouin
- Ineris, Experimental Toxicology and Modelling Unit, UMR-I 02 SEBIO, Verneuil en Halatte, 65550, France.
| |
Collapse
|
3
|
Kalwij JM, Robertson MP, Ronk A, Zobel M, Pärtel M. Spatially-explicit estimation of geographical representation in large-scale species distribution datasets. PLoS One 2014; 9:e85306. [PMID: 24454840 PMCID: PMC3893194 DOI: 10.1371/journal.pone.0085306] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 11/26/2013] [Indexed: 11/18/2022] Open
Abstract
Much ecological research relies on existing multispecies distribution datasets. Such datasets, however, can vary considerably in quality, extent, resolution or taxonomic coverage. We provide a framework for a spatially-explicit evaluation of geographical representation within large-scale species distribution datasets, using the comparison of an occurrence atlas with a range atlas dataset as a working example. Specifically, we compared occurrence maps for 3773 taxa from the widely-used Atlas Florae Europaeae (AFE) with digitised range maps for 2049 taxa of the lesser-known Atlas of North European Vascular Plants. We calculated the level of agreement at a 50-km spatial resolution using average latitudinal and longitudinal species range, and area of occupancy. Agreement in species distribution was calculated and mapped using Jaccard similarity index and a reduced major axis (RMA) regression analysis of species richness between the entire atlases (5221 taxa in total) and between co-occurring species (601 taxa). We found no difference in distribution ranges or in the area of occupancy frequency distribution, indicating that atlases were sufficiently overlapping for a valid comparison. The similarity index map showed high levels of agreement for central, western, and northern Europe. The RMA regression confirmed that geographical representation of AFE was low in areas with a sparse data recording history (e.g., Russia, Belarus and the Ukraine). For co-occurring species in south-eastern Europe, however, the Atlas of North European Vascular Plants showed remarkably higher richness estimations. Geographical representation of atlas data can be much more heterogeneous than often assumed. Level of agreement between datasets can be used to evaluate geographical representation within datasets. Merging atlases into a single dataset is worthwhile in spite of methodological differences, and helps to fill gaps in our knowledge of species distribution ranges. Species distribution dataset mergers, such as the one exemplified here, can serve as a baseline towards comprehensive species distribution datasets.
Collapse
Affiliation(s)
- Jesse M. Kalwij
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
- Department of Zoology, University of Johannesburg, Auckland Park, South Africa
- * E-mail:
| | - Mark P. Robertson
- Centre for Invasion Biology and Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Argo Ronk
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Martin Zobel
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Meelis Pärtel
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
4
|
Story PG, Mineau P, Mullié WC. Insecticide residues in Australian plague locusts (Chortoicetes terminifera Walker) after ultra-low volume aerial application of the organophosphorus insecticide fenitrothion. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:2792-2799. [PMID: 24038429 DOI: 10.1002/etc.2366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 08/10/2012] [Accepted: 08/19/2013] [Indexed: 06/02/2023]
Abstract
The need for locust control throughout eastern Australia during spring 2010 provided an opportunity to quantify residues of the organophosphorus insecticide fenitrothion on nymphs of the Australian plague locust, Chortoicetes terminifera Walker. Residues were collected across the different physiological states--live, dead, and debilitated (characterized by ease of capture, erratic hopping, and the inability to remain upright)--of locust nymphs observed following exposure to fenitrothion. The time course of residue depletion for 72 h after spraying was quantified, and residue-per-unit dose values in the present study were compared with previous research. Fenitrothion residue-per-unit dose values ranged from 0.2 µg/g to 31.2 µg/g (mean ± standard error [SE] = 6.3 ± 1.3 µg/g) in live C. terminifera nymps, from 0.5 µg/g to 25.5 µg/g (7.8 ± 1.3 µg/g) in debilitated nymphs, and from 2.3 µg/g to 39.8 µg/g (16.5 ± 2.8 µg/g) in dead nymphs. Residues of the oxidative derivative of fenitrothion, fenitrooxon, were generally below the limit of quantitation for the analysis (0.02 µg/g), with 2 exceptions--1 live and 1 debilitated sample returned residues at the limit of quantitation. The results of the present study suggest that sampling of acridids for risk assessment should include mimicking predatory behavior and be over a longer time course (preferably 3-24 h postspray) than sampling of vegetation (typically 1-2 h postspray) and that current regulatory frameworks may underestimate the risk of pesticides applied for locust or grasshopper control.
Collapse
Affiliation(s)
- Paul G Story
- Australian Plague Locust Commission, Canberra, Australian Capital Territory, Australia
| | | | | |
Collapse
|
5
|
Kitulagodage M, Buttemer WA, Astheimer LB. Adverse effects of fipronil on avian reproduction and development: maternal transfer of fipronil to eggs in zebra finch Taeniopygia guttata and in ovo exposure in chickens Gallus domesticus. ECOTOXICOLOGY (LONDON, ENGLAND) 2011; 20:653-660. [PMID: 21327488 DOI: 10.1007/s10646-011-0605-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/27/2011] [Indexed: 05/26/2023]
Abstract
Two studies were carried out to examine the impact of maternal fipronil exposure on embryonic and offspring development. In the first study, breeding female zebra finches were orally dosed with single sublethal levels of fipronil (1, 5, and 10 mg/kg body weight) to determine behavioural and developmental consequences on chicks following maternal pesticide exposure. Significant levels of fipronil and fipronil-sulfone residues were detected in eggs laid by females in all dosed groups, however, these were undetectable in eggs laid 13 days after treatment. The level of sulfone detected in eggs was consistently higher than that of the parent fipronil compound. Of the seven eggs laid in the treatment groups, only one (14%) chick hatched and this was from the lowest dose group. This chick was severely underdeveloped at 10 days of age in comparison to control chicks and fiproles were detected in brain, liver, and adipose tissues collected following euthanasia of this individual. In contrast, there was 100% hatchability of control group eggs and all chicks fledged nests on schedule. In the second study, domestic chicken eggs were injected with 5.5, 17.5, and 37.5 mg/kg egg weight of fipronil directly into the yolk sac on day 12 of incubation. Treatment did not affect hatching success, however, behavioural and developmental abnormalities were observed in hatchlings from the highest dose group. These chicks also demonstrated reduced feeding rates, as indicated by reduced body mass at 48 h period post hatch. Both fipronil and fipronil-sulfone residues were detected in brain and liver tissue of hatchlings at all pesticide dose levels tested.
Collapse
Affiliation(s)
- Malsha Kitulagodage
- Institute for Conservation Biology and Law, University of Wollongong, Wollongong, NSW, Australia.
| | | | | |
Collapse
|
6
|
Kitulagodage M, Isanhart J, Buttemer WA, Hooper MJ, Astheimer LB. Fipronil toxicity in northern bobwhite quail Colinus virginianus: reduced feeding behaviour and sulfone metabolite formation. CHEMOSPHERE 2011; 83:524-530. [PMID: 21227481 DOI: 10.1016/j.chemosphere.2010.12.057] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 12/06/2010] [Accepted: 12/13/2010] [Indexed: 05/30/2023]
Abstract
Fipronil is a phenyl pyrazole insecticide registered for agricultural use in many countries. Avian exposure to fipronil occurs mainly by ingesting contaminated insects or seeds. There is little information regarding the toxicological effects of fipronil in avian species and even less research documenting avian behavioural responses to fipronil ingestion. We examined the effects of a single oral dose of fipronil in northern bobwhite quail, the most fipronil-sensitive species tested to date, in respect to signs of intoxication and the metabolic fate of fipronil. Fipronil-treated birds did not eat or drink following pesticide administration, and as a result lost a significant amount of body mass. Treated birds also appeared withdrawn and did not respond to disturbance within the first hour after treatment. Identifiable signs of fipronil toxicity were not observed until at least 2d after treatment. Chemical analyses indicated a difference between fipronil and fipronil-sulfone residue distribution and bioaccumulation, with significantly higher (30- to 1000-fold) tissue concentrations of the sulfone detected at all time points from 8 to 96 h post-dose in brain, liver and adipose tissues. Tissue sulfone concentrations increased significantly in fipronil-treated birds, peaking at 72 h post-dose. Body mass decreased at all time points in dosed birds. The coincidence of the particular intoxication symptoms with the time course of rise in brain sulfone levels after fipronil dosing gives insight into possible mechanisms of toxicity in this highly sensitive species.
Collapse
Affiliation(s)
- Malsha Kitulagodage
- Institute for Conservation Biology & Law, University of Wollongong, Wollongong, NSW, Australia.
| | | | | | | | | |
Collapse
|