1
|
Common LK, Kleindorfer S, Colombelli-Négrel D, Dudaniec RY. Genetics reveals shifts in reproductive behaviour of the invasive bird parasite Philornis downsi collected from Darwin’s finch nests. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02935-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractDue to novel or dynamic fluctuations in environmental conditions and resources, host and parasite relationships can be subject to diverse selection pressures that may lead to significant changes during and after invasion of a parasite. Genomic analyses are useful for elucidating evolutionary processes in invasive parasites following their arrival to a new area and host. Philornis downsi (Diptera: Muscidae), the avian vampire fly, was introduced to the Galápagos Islands circa 1964 and has since spread across the archipelago, feeding on the blood of developing nestlings of endemic land birds. Since its discovery, there have been significant changes to the dynamics of P. downsi and its novel hosts, such as shifting mortality rates and changing oviposition behaviour, however no temporal genetic studies have been conducted. We collected P. downsi from nests and traps from a single island population over a 14-year period, and genotyped flies at 469 single nucleotide polymorphisms (SNPs) using restriction-site associated DNA sequencing (RADSeq). Despite significant genetic differentiation (FST) between years, there was no evidence for genetic clustering within or across four sampling years between 2006 and 2020, suggesting a lack of population isolation. Sibship reconstructions from P. downsi collected from 10 Darwin’s finch nests sampled in 2020 showed evidence for shifts in reproductive behaviour compared to a similar genetic analysis conducted in 2004–2006. Compared with this previous study, females mated with fewer males, individual females oviposited fewer offspring per nest, but more unique females oviposited per nest. These findings are important to consider within reproductive control techniques, and have fitness implications for both parasite evolution and host fitness.
Collapse
|
2
|
Group-size effects on virus prevalence depend on the presence of an invasive species. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03040-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Brown CR, Hannebaum SL, O’Brien VA, Page CE, Rannala B, Roche EA, Wagnon GS, Knutie SA, Moore AT, Brown MB. The cost of ectoparasitism in Cliff Swallows declines over 35 years. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Charles R. Brown
- Department of Biological Sciences University of Tulsa 800 S. Tucker Dr. Tulsa Oklahoma 74104 USA
| | - Stacey L. Hannebaum
- Department of Biological Sciences University of Tulsa 800 S. Tucker Dr. Tulsa Oklahoma 74104 USA
| | - Valerie A. O’Brien
- Department of Biological Sciences University of Tulsa 800 S. Tucker Dr. Tulsa Oklahoma 74104 USA
| | - Catherine E. Page
- Department of Biological Sciences University of Tulsa 800 S. Tucker Dr. Tulsa Oklahoma 74104 USA
| | - Bruce Rannala
- Department of Evolution and Ecology University of California Davis California 95616 USA
| | - Erin A. Roche
- Department of Biological Sciences University of Tulsa 800 S. Tucker Dr. Tulsa Oklahoma 74104 USA
| | - Gigi S. Wagnon
- Department of Biological Sciences University of Tulsa 800 S. Tucker Dr. Tulsa Oklahoma 74104 USA
| | - Sarah A. Knutie
- Department of Ecology and Evolutionary Biology University of Connecticut 75 N. Eagleville Rd. Storrs Connecticut 06269 USA
| | - Amy T. Moore
- Department of Biological Sciences University of Tulsa 800 S. Tucker Dr. Tulsa Oklahoma 74104 USA
| | - Mary B. Brown
- Department of Biological Sciences University of Tulsa 800 S. Tucker Dr. Tulsa Oklahoma 74104 USA
| |
Collapse
|
4
|
Fassbinder-Orth CA, Barak VA, Brown CR. Immune responses of a native and an invasive bird to Buggy Creek Virus (Togaviridae: Alphavirus) and its arthropod vector, the swallow bug (Oeciacus vicarius). PLoS One 2013; 8:e58045. [PMID: 23460922 PMCID: PMC3584039 DOI: 10.1371/journal.pone.0058045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 01/29/2013] [Indexed: 02/06/2023] Open
Abstract
Invasive species often display different patterns of parasite burden and virulence compared to their native counterparts. These differences may be the result of variability in host-parasite co-evolutionary relationships, the occurrence of novel host-parasite encounters, or possibly innate differences in physiological responses to infection between invasive and native hosts. Here we examine the adaptive, humoral immune responses of a resistant, native bird and a susceptible, invasive bird to an arbovirus (Buggy Creek virus; Togaviridae: Alphavirus) and its ectoparasitic arthropod vector (the swallow bug; Oeciacus vicarius). Swallow bugs parasitize the native, colonially nesting cliff swallow (Petrochelidon pyrrhonota) and the introduced house sparrow (Passer domesticus) that occupies nests in cliff swallow colonies. We measured levels of BCRV-specific and swallow bug-specific IgY levels before nesting (prior to swallow bug exposure) and after nesting (after swallow bug exposure) in house sparrows and cliff swallows in western Nebraska. Levels of BCRV-specific IgY increased significantly following nesting in the house sparrow but not in the cliff swallow. Additionally, house sparrows displayed consistently higher levels of swallow bug-specific antibodies both before and after nesting compared to cliff swallows. The higher levels of BCRV and swallow bug specific antibodies detected in house sparrows may be reflective of significant differences in both antiviral and anti-ectoparasite immune responses that exist between these two avian species. To our knowledge, this is the first study to compare the macro- and microparasite-specific immune responses of an invasive and a native avian host exposed to the same parasites.
Collapse
|
5
|
Affiliation(s)
- Sandra Telfer
- Institute of Biological and Environmental Sciences; University of Aberdeen; Aberdeen AB24 2TZ UK
| | - Kevin Bown
- School of Environment and Life Sciences; University of Salford; Salford M5 4WT UK
| |
Collapse
|
6
|
O'Brien VA, Brown CR. Group size and nest spacing affect Buggy Creek virus (Togaviridae: Alphavirus) infection in nestling house sparrows. PLoS One 2011; 6:e25521. [PMID: 21966539 PMCID: PMC3180461 DOI: 10.1371/journal.pone.0025521] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 09/07/2011] [Indexed: 11/19/2022] Open
Abstract
The transmission of parasites and pathogens among vertebrates often depends on host population size, host species diversity, and the extent of crowding among potential hosts, but little is known about how these variables apply to most vector-borne pathogens such as the arboviruses (arthropod-borne viruses). Buggy Creek virus (BCRV; Togaviridae: Alphavirus) is an RNA arbovirus transmitted by the swallow bug (Oeciacus vicarius) to the cliff swallow (Petrochelidon pyrrhonota) and the introduced house sparrow (Passer domesticus) that has recently invaded swallow nesting colonies. The virus has little impact on cliff swallows, but house sparrows are seriously affected by BCRV. For house sparrows occupying swallow nesting colonies in western Nebraska, USA, the prevalence of BCRV in nestling sparrows increased with sparrow colony size at a site but decreased with the number of cliff swallows present. If one nestling in a nest was infected with the virus, there was a greater likelihood that one or more of its nest-mates would also be infected than nestlings chosen at random. The closer a nest was to another nest containing infected nestlings, the greater the likelihood that some of the nestlings in the focal nest would be BCRV-positive. These results illustrate that BCRV represents a cost of coloniality for a vertebrate host (the house sparrow), perhaps the first such demonstration for an arbovirus, and that virus infection is spatially clustered within nests and within colonies. The decreased incidence of BCRV in sparrows as cliff swallows at a site increased reflects the "dilution effect," in which virus transmission is reduced when a vector switches to feeding on a less competent vertebrate host.
Collapse
Affiliation(s)
- Valerie A. O'Brien
- Department of Biological Sciences, University of Tulsa, Tulsa, Oklahoma, United States of America
| | - Charles R. Brown
- Department of Biological Sciences, University of Tulsa, Tulsa, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
7
|
Brown CR, Moore AT, O'Brien VA. Prevalence of Buggy Creek virus (Togaviridae: Alphavirus) in insect vectors increases over time in the presence of an invasive avian host. Vector Borne Zoonotic Dis 2011; 12:34-41. [PMID: 21923265 DOI: 10.1089/vbz.2011.0677] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Invasive species can disrupt natural disease dynamics by altering pathogen transmission among native hosts and vectors. The relatively recent occupancy of cliff swallow (Petrochelidon pyrrhonota) nesting colonies in western Nebraska by introduced European house sparrows (Passer domesticus) has led to yearly increases in the prevalence of an endemic arbovirus, Buggy Creek virus (BCRV), in its native swallow bug (Oeciacus vicarius) vector at sites containing both the invasive sparrow host and the native swallow host. At sites without the invasive host, no long-term changes in prevalence have occurred. The percentage of BCRV isolates exhibiting cytopathicity in Vero-cell culture assays increased significantly with year at sites with sparrows but not at swallow-only sites, suggesting that the virus is becoming more virulent to vertebrates in the presence of the invasive host. Increased BCRV prevalence in bug vectors at mixed-species colonies may reflect high virus replication rates in house sparrow hosts, resulting in frequent virus transmission between sparrows and swallow bugs. This case represents a rare empirical example of a pathogen effectively switching to an invasive host, documented in the early phases of the host's arrival in a specialized ecosystem and illustrating how an invasive species can promote long-term changes in host-parasite transmission dynamics.
Collapse
Affiliation(s)
- Charles R Brown
- Department of Biological Sciences, University of Tulsa, Tulsa, Oklahoma 74104, USA.
| | | | | |
Collapse
|
8
|
Brown CR, O'Brien VA. Are Wild Birds Important in the Transport of Arthropod-borne Viruses? ACTA ACUST UNITED AC 2011. [DOI: 10.1525/om.2011.71.1.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
9
|
O'Brien VA, Moore AT, Young GR, Komar N, Reisen WK, Brown CR. An enzootic vector-borne virus is amplified at epizootic levels by an invasive avian host. Proc Biol Sci 2011; 278:239-46. [PMID: 20685711 PMCID: PMC3013387 DOI: 10.1098/rspb.2010.1098] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Accepted: 07/14/2010] [Indexed: 11/12/2022] Open
Abstract
Determining the effect of an invasive species on enzootic pathogen dynamics is critical for understanding both human epidemics and wildlife epizootics. Theoretical models suggest that when a naive species enters an established host-parasite system, the new host may either reduce ('dilute') or increase ('spillback') pathogen transmission to native hosts. There are few empirical data to evaluate these possibilities, especially for animal pathogens. Buggy Creek virus (BCRV) is an arthropod-borne alphavirus that is enzootically transmitted by the swallow bug (Oeciacus vicarius) to colonially nesting cliff swallows (Petrochelidon pyrrhonota). In western Nebraska, introduced house sparrows (Passer domesticus) invaded cliff swallow colonies approximately 40 years ago and were exposed to BCRV. We evaluated how the addition of house sparrows to this host-parasite system affected the prevalence and amplification of a bird-associated BCRV lineage. The infection prevalence in house sparrows was eight times that of cliff swallows. Nestling house sparrows in mixed-species colonies were significantly less likely to be infected than sparrows in single-species colonies. Infected house sparrows circulated BCRV at higher viraemia titres than cliff swallows. BCRV detected in bug vectors at a site was positively associated with virus prevalence in house sparrows but not with virus prevalence in cliff swallows. The addition of a highly susceptible invasive host species has led to perennial BCRV epizootics at cliff swallow colony sites. The native cliff swallow host confers a dilution advantage to invasive sparrow hosts in mixed colonies, while at the same sites house sparrows may increase the likelihood that swallows become infected.
Collapse
Affiliation(s)
- Valerie A O'Brien
- Department of Biological Sciences, University of Tulsa, Tulsa, OK 74104, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Padhi A, Moore AT, Brown MB, Foster JE, Pfeffer M, Brown CR. Isolation by distance explains genetic structure of Buggy Creek virus, a bird-associated arbovirus. Evol Ecol 2010. [DOI: 10.1007/s10682-010-9419-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Brown CR, Strickler SA, Moore AT, Knutie SA, Padhi A, Brown MB, Young GR, O'Brien VA, Foster JE, Komar N. Winter ecology of Buggy Creek virus (Togaviridae, Alphavirus) in the Central Great Plains. Vector Borne Zoonotic Dis 2010; 10:355-63. [PMID: 19725760 DOI: 10.1089/vbz.2009.0031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A largely unanswered question in the study of arboviruses is the extent to which virus can overwinter in adult vectors during the cold winter months and resume the transmission cycle in summer. Buggy Creek virus (BCRV; Togaviridae, Alphavirus) is an unusual arbovirus that is vectored primarily by the swallow bug (Hemiptera: Cimicidae: Oeciacus vicarius) and amplified by the ectoparasitic bug's main avian hosts, the migratory cliff swallow (Petrochelidon pyrrhonota) and resident house sparrow (Passer domesticus). Bugs are sedentary and overwinter in the swallows' mud nests. We evaluated the prevalence of BCRV and extent of infection in swallow bugs collected at different times in winter (October-early April) in Nebraska and explored other ecological aspects of this virus's overwintering. BCRV was detected in 17% of bug pools sampled in winter. Virus prevalence in bugs in winter at a site was significantly correlated with virus prevalence at that site the previous summer, but winter prevalence did not predict BCRV prevalence there the following summer. Prevalence was higher in bugs taken from house sparrow nests in winter and (in April) at colony sites where sparrows had been present all winter. Virus detected by reverse transcription (RT)-polymerase chain reaction in winter was less cytopathic than in summer, but viral RNA concentrations of samples in winter were not significantly different from those in summer. Both of the BCRV lineages (A, B) overwintered successfully, with lineage A more common at sites with house sparrows and (in contrast to summer) generally more prevalent in winter than lineage B. BCRV's ability to overwinter in its adult vector probably reflects its adaptation to the sedentary, long-lived bug and the ecology of the cliff swallow and swallow bug host-parasite system. Its overwintering mechanisms may provide insight into those of other alphaviruses of public health significance for which such mechanisms are poorly known.
Collapse
Affiliation(s)
- Charles R Brown
- Department of Biological Sciences, University of Tulsa, Tulsa, Oklahoma 74104, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
O'Brien VA, Meteyer CU, Reisen WK, Ip HS, Brown CR. Prevalence and pathology of West Nile virus in naturally infected house sparrows, western Nebraska, 2008. Am J Trop Med Hyg 2010; 82:937-44. [PMID: 20439979 DOI: 10.4269/ajtmh.2010.09-0515] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Nestling birds are rarely sampled in the field for most arboviruses, yet they may be important in arbovirus amplification cycles. We sampled both nestling and adult house sparrows (Passer domesticus) in western Nebraska for West Nile virus (WNV) or WNV-specific antibodies throughout the summer of 2008 and describe pathology in naturally infected nestlings. Across the summer, 4% of nestling house sparrows were WNV-positive; for the month of August alone, 12.3% were positive. Two WNV-positive nestlings exhibited encephalitis, splenomegaly, hepatic necrosis, nephrosis, and myocarditis. One nestling sparrow had large mural thrombi in the atria and ventricle and immunohistochemical staining of WNV antigen in multiple organs including the wall of the aorta and pulmonary artery; cardiac insufficiency thus may have been a cause of death. Adult house sparrows showed an overall seroprevalence of 13.8% that did not change significantly across the summer months. The WNV-positive nestlings and the majority of seropositive adults were detected within separate spatial clusters. Nestling birds, especially those reared late in the summer when WNV activity is typically greatest, may be important in virus amplification.
Collapse
Affiliation(s)
- Valerie A O'Brien
- Department of Biological Sciences, University of Tulsa, Tulsa, Oklahoma, USA.
| | | | | | | | | |
Collapse
|
13
|
Brown CR, Moore AT, Young GR, Komar N. Persistence of Buggy Creek virus (Togaviridae, Alphavirus) for two years in unfed swallow bugs (Hemiptera: Cimicidae: Oeciacus vicarius). JOURNAL OF MEDICAL ENTOMOLOGY 2010; 47:436-41. [PMID: 20496591 PMCID: PMC2903633 DOI: 10.1603/me09288] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Alphaviruses (Togaviridae) have rarely been found to persist for long in the adult insects that serve as their vectors. The ectoparasitic swallow bug (Hemiptera: Cimicidae: Oeciacus vicarius Horvath), the vector for Buggy Creek virus (BCRV; Togaviridae, Alphavirus), lives year-round in the mud nests of its host, the cliff swallow (Petrochelidon pyrrhonota Vieillot). We measured the prevalence of BCRV in swallow bugs at sites with cliff swallows present and at the same sites after cliff swallows had been absent for 2 yr. We collected bugs directly from cliff swallow nests in the field and screened bug pools with BCRV-specific real-time-polymerase chain reaction (RT-PCR) and plaque assay. At two colony sites last occupied by birds 2 yr earlier, we found 12.5 and 55.6% of bug pools positive for BCRV RNA by RT-PCR. Infection rates (per 1,000 bugs) for these sites were 1.32 and 7.39. RNA prevalence in the unfed bugs was not significantly different from that in fed bugs 2 yr earlier at the same sites. The RNA-positive samples from unfed bugs failed to yield cytopathic BCRV by Vero-cell plaque assay. However, viral RNA concentrations did not differ between unfed bugs and bugs at active sites, and over 84% of positive bug pools were cytopathic to Vero cells 4-5 wk later, after cliff swallows moved into one of the colony sites. These data demonstrate the persistence of potentially infectious BCRV in unfed swallow bugs for at least 2 yr in nature.
Collapse
Affiliation(s)
- Charles R Brown
- Department of Biological Sciences, University of Tulsa, Tulsa, OK 74104, USA.
| | | | | | | |
Collapse
|
14
|
Brown CR, Moore AT, O'Brien VA, Padhi A, Knutie SA, Young GR, Komar N. Natural infection of vertebrate hosts by different lineages of Buggy Creek virus (family Togaviridae, genus Alphavirus). Arch Virol 2010; 155:745-9. [PMID: 20229115 DOI: 10.1007/s00705-010-0638-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 02/09/2010] [Indexed: 11/26/2022]
Abstract
Buggy Creek virus (BCRV; family Togaviridae, genus Alphavirus) is an arbovirus transmitted by the ectoparasitic swallow bug (Hemiptera: Cimicidae: Oeciacus vicarius) to cliff swallows (Petrochelidon pyrrhonota) and house sparrows (Passer domesticus). BCRV occurs in two lineages (A and B) that are sympatric in bird nesting colonies in the central Great Plains, USA. Previous work on lineages isolated exclusively from swallow bugs suggested that lineage A relies on amplification by avian hosts, in contrast to lineage B, which is maintained mostly among bugs. We report the first data on the BCRV lineages isolated from vertebrate hosts under natural conditions. Lineage A was overrepresented among isolates from nestling house sparrows, relative to the proportions of the two lineages found in unfed bug vectors at the same site at the start of the summer transmission season. Haplotype diversity of each lineage was higher in bugs than in sparrows, indicating reduced genetic diversity of virus amplified in the vertebrate host. BCRV appears to have diverged into two lineages based on different modes of transmission.
Collapse
Affiliation(s)
- Charles R Brown
- Department of Biological Sciences, University of Tulsa, Tulsa, OK 74104, USA.
| | | | | | | | | | | | | |
Collapse
|