1
|
Holland JG, Prior KF, O'Donnell AJ, Reece SE. Testing the evolutionary drivers of malaria parasite rhythms and their consequences for host-parasite interactions. Evol Appl 2024; 17:e13752. [PMID: 39006006 PMCID: PMC11246599 DOI: 10.1111/eva.13752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 06/05/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Undertaking certain activities at the time of day that maximises fitness is assumed to explain the evolution of circadian clocks. Organisms often use daily environmental cues such as light and food availability to set the timing of their clocks. These cues may be the environmental rhythms that ultimately determine fitness, act as proxies for the timing of less tractable ultimate drivers, or are used simply to maintain internal synchrony. While many pathogens/parasites undertake rhythmic activities, both the proximate and ultimate drivers of their rhythms are poorly understood. Explaining the roles of rhythms in infections offers avenues for novel interventions to interfere with parasite fitness and reduce the severity and spread of disease. Here, we perturb several rhythms in the hosts of malaria parasites to investigate why parasites align their rhythmic replication to the host's feeding-fasting rhythm. We manipulated host rhythms governed by light, food or both, and assessed the fitness implications for parasites, and the consequences for hosts, to test which host rhythms represent ultimate drivers of the parasite's rhythm. We found that alignment with the host's light-driven rhythms did not affect parasite fitness metrics. In contrast, aligning with the timing of feeding-fasting rhythms may be beneficial for the parasite, but only when the host possess a functional canonical circadian clock. Because parasites in clock-disrupted hosts align with the host's feeding-fasting rhythms and yet derive no apparent benefit, our results suggest cue(s) from host food act as a proxy rather than being a key selective driver of the parasite's rhythm. Alternatively, parasite rhythmicity may only be beneficial because it promotes synchrony between parasite cells and/or allows parasites to align to the biting rhythms of vectors. Our results also suggest that interventions can disrupt parasite rhythms by targeting the proxies or the selective factors driving them without impacting host health.
Collapse
Affiliation(s)
- Jacob G. Holland
- Institute of Ecology and EvolutionUniversity of EdinburghEdinburghUK
| | | | | | - Sarah E. Reece
- Institute of Ecology and EvolutionUniversity of EdinburghEdinburghUK
- Institute of Immunology and Infection ResearchUniversity of EdinburghEdinburghUK
| |
Collapse
|
2
|
Usinowicz J, O'Connor MI. The fitness value of ecological information in a variable world. Ecol Lett 2023; 26:621-639. [PMID: 36849871 DOI: 10.1111/ele.14166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 03/01/2023]
Abstract
Information processing is increasingly recognized as a fundamental component of life in variable environments, including the evolved use of environmental cues, biomolecular networks, and social learning. Despite this, ecology lacks a quantitative framework for understanding how population, community, and ecosystem dynamics depend on information processing. Here, we review the rationale and evidence for 'fitness value of information' (FVOI), and synthesize theoretical work in ecology, information theory, and probability behind this general mathematical framework. The FVOI quantifies how species' per capita population growth rates can depend on the use of information in their environment. FVOI is a breakthrough approach to linking information processing and ecological and evolutionary outcomes in a changing environment, addressing longstanding questions about how information mediates the effects of environmental change and species interactions.
Collapse
Affiliation(s)
- Jacob Usinowicz
- Department of Zoology, University of British Columbia, Vancouver, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | - Mary I O'Connor
- Department of Zoology, University of British Columbia, Vancouver, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| |
Collapse
|
3
|
Oliver A, Cavalheri HB, Lima TG, Jones NT, Podell S, Zarate D, Allen E, Burton RS, Shurin JB. Phenotypic and transcriptional response of Daphnia pulicaria to the combined effects of temperature and predation. PLoS One 2022; 17:e0265103. [PMID: 35834446 PMCID: PMC9282536 DOI: 10.1371/journal.pone.0265103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022] Open
Abstract
Daphnia, an ecologically important zooplankton species in lakes, shows both genetic adaptation and phenotypic plasticity in response to temperature and fish predation, but little is known about the molecular basis of these responses and their potential interactions. We performed a factorial experiment exposing laboratory-propagated Daphnia pulicaria clones from two lakes in the Sierra Nevada mountains of California to normal or high temperature (15°C or 25°C) in the presence or absence of fish kairomones, then measured changes in life history and gene expression. Exposure to kairomones increased upper thermal tolerance limits for physiological activity in both clones. Cloned individuals matured at a younger age in response to higher temperature and kairomones, while size at maturity, fecundity and population intrinsic growth were only affected by temperature. At the molecular level, both clones expressed more genes differently in response to temperature than predation, but specific genes involved in metabolic, cellular, and genetic processes responded differently between the two clones. Although gene expression differed more between clones from different lakes than experimental treatments, similar phenotypic responses to predation risk and warming arose from these clone-specific patterns. Our results suggest that phenotypic plasticity responses to temperature and kairomones interact synergistically, with exposure to fish predators increasing the tolerance of Daphnia pulicaria to stressful temperatures, and that similar phenotypic responses to temperature and predator cues can be produced by divergent patterns of gene regulation.
Collapse
Affiliation(s)
- Aaron Oliver
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, United States of America
| | - Hamanda B. Cavalheri
- Department of Biological Sciences, Ecology Behavior and Evolution Section, University of California, San Diego, La Jolla, California, United States of America
| | - Thiago G. Lima
- Department of Biological Sciences, Ecology Behavior and Evolution Section, University of California, San Diego, La Jolla, California, United States of America
| | - Natalie T. Jones
- Department of Biological Sciences, Ecology Behavior and Evolution Section, University of California, San Diego, La Jolla, California, United States of America
| | - Sheila Podell
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, United States of America
| | - Daniela Zarate
- Department of Biological Sciences, Ecology Behavior and Evolution Section, University of California, San Diego, La Jolla, California, United States of America
| | - Eric Allen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, United States of America
| | - Ronald S. Burton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, United States of America
| | - Jonathan B. Shurin
- Department of Biological Sciences, Ecology Behavior and Evolution Section, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
4
|
Environmental conditions as proximate cues of predation risk inducing defensive response in Daphnia pulex. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00583-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Nagano M, Doi H. Ecological and evolutionary factors of intraspecific variation in inducible defenses: Insights gained from Daphnia experiments. Ecol Evol 2020; 10:8554-8562. [PMID: 32884639 PMCID: PMC7452781 DOI: 10.1002/ece3.6599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 06/30/2020] [Indexed: 11/22/2022] Open
Abstract
Phenotypic variation among individuals and species is a fundamental principle of natural selection. In this review, we focus on numerous experiments involving the model species Daphnia (Crustacea) and categorize the factors, especially secondary ones, affecting intraspecific variations in inducible defense. Primary factors, such as predator type and density, determine the degree to which inducible defense expresses and increases or decreases. Secondary factors, on the other hand, act together with primary factors to inducible defense or without primary factors on inducible defense. The secondary factors increase intraspecies variation in inducible defense, and thus, the level of adaptation of organisms varies within species. Future research will explore the potential for new secondary factors, as well as the relative importance between factors needs to be clarified.
Collapse
Affiliation(s)
- Mariko Nagano
- Graduate School of Simulation StudiesUniversity of HyogoKobeJapan
| | - Hideyuki Doi
- Graduate School of Simulation StudiesUniversity of HyogoKobeJapan
| |
Collapse
|
6
|
Ramos-Rodríguez E, Moreno E, Conde-Porcuna JM. Intraspecific variation in sensitivity to food availability and temperature-induced phenotypic plasticity in the rotifer Keratella cochlearis. J Exp Biol 2020; 223:jeb209676. [PMID: 32107306 DOI: 10.1242/jeb.209676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 02/23/2020] [Indexed: 11/20/2022]
Abstract
Organisms with wide environmentally induced morphological plasticity and cosmopolitan distribution, e.g. the common freshwater rotifer Keratella cochlearis, are ideal models to study the evolution of plastic polymorphisms and the capacity of zooplankton to adapt to local selection conditions. We investigated population-level differences (population-by-environment interaction) in sensitivity to food availability and temperature-induced phenotypic plasticity between two clones of K. cochlearis isolated from neighboring populations in Ruidera Natural Park (Spain) with different trophic statuses: Tinaja lake (mesotrophic) and Cueva Morenilla lake (eutrophic). Using common-garden experiments, each clone proved to have a different sensitivity to food availability, with substantial phenotypic differences between them. When rotifers grew at moderate temperature (15.6°C), low food levels were more efficiently used by the Tinaja versus Cueva Morenilla clone, whereas high food levels were more efficiently used by the Cueva Morenilla versus Tinaja clone. The posterior spine was much longer and the lorica wider in the Tinaja versus Cueva Morenilla clone, with no difference in lorica length. Phylogenetic analysis based on cytochrome c oxidase subunit I (COI) gene sequences showed that the two populations have the same haplotype. This is the first study to show possible local adaptation by a rotifer species to habitats that consistently differ in food availability. We also detected an intriguing deviation from the expected negative relationship between posterior spine length and temperature. Our experimental results indicate that intermediate temperatures may activate the gene responsible for spine elongation in K. cochlearis This suggests that rotifers in nature could use water temperature as proxy signal of a change in predation risk before defense is needed.
Collapse
Affiliation(s)
- Eloísa Ramos-Rodríguez
- Departamento de Ecología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
- Instituto del Agua, Universidad de Granada, 18003 Granada, Spain
| | - Emilio Moreno
- Departamento de Ecología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
- Instituto del Agua, Universidad de Granada, 18003 Granada, Spain
| | - José María Conde-Porcuna
- Departamento de Ecología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
- Instituto del Agua, Universidad de Granada, 18003 Granada, Spain
| |
Collapse
|
7
|
Fiorino GE, McAdam AG. Local differentiation in the defensive morphology of an invasive zooplankton species is not genetically based. Biol Invasions 2017. [DOI: 10.1007/s10530-017-1530-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Ergon T, Ergon R. When three traits make a line: evolution of phenotypic plasticity and genetic assimilation through linear reaction norms in stochastic environments. J Evol Biol 2016; 30:486-500. [PMID: 27862551 DOI: 10.1111/jeb.13003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 10/17/2016] [Indexed: 01/17/2023]
Abstract
Genetic assimilation emerges from selection on phenotypic plasticity. Yet, commonly used quantitative genetics models of linear reaction norms considering intercept and slope as traits do not mimic the full process of genetic assimilation. We argue that intercept-slope reaction norm models are insufficient representations of genetic effects on linear reaction norms and that considering reaction norm intercept as a trait is unfortunate because the definition of this trait relates to a specific environmental value (zero) and confounds genetic effects on reaction norm elevation with genetic effects on environmental perception. Instead, we suggest a model with three traits representing genetic effects that, respectively, (i) are independent of the environment, (ii) alter the sensitivity of the phenotype to the environment and (iii) determine how the organism perceives the environment. The model predicts that, given sufficient additive genetic variation in environmental perception, the environmental value at which reaction norms tend to cross will respond rapidly to selection after an abrupt environmental change, and eventually becomes equal to the new mean environment. This readjustment of the zone of canalization becomes completed without changes in genetic correlations, genetic drift or imposing any fitness costs of maintaining plasticity. The asymptotic evolutionary outcome of this three-trait linear reaction norm generally entails a lower degree of phenotypic plasticity than the two-trait model, and maximum expected fitness does not occur at the mean trait values in the population.
Collapse
Affiliation(s)
- T Ergon
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | - R Ergon
- University College of Southeast Norway, Porsgrunn, Norway
| |
Collapse
|
9
|
Miehls ALJ, Peacor SD, Valliant L, McAdam AG. Evolutionary stasis despite selection on a heritable trait in an invasive zooplankton. J Evol Biol 2015; 28:1091-102. [PMID: 25833682 DOI: 10.1111/jeb.12632] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/24/2015] [Accepted: 03/26/2015] [Indexed: 11/26/2022]
Abstract
Invasive species are one of the greatest threats to ecosystems, and there is evidence that evolution plays an important role in the success or failure of invasions. Yet, few studies have measured natural selection and evolutionary responses to selection in invasive species, particularly invasive animals. We quantified the strength of natural selection on the defensive morphology (distal spine) of an invasive zooplankton, Bythotrephes longimanus, in Lake Michigan across multiple months during three growing seasons. We used multiple lines of evidence, including historic and contemporary wild-captured individuals and palaeoecology of retrieved spines, to assess phenotypic change in distal spine length since invasion. We found evidence of temporally variable selection, with selection for decreased distal spine length early in the growing season and selection for increased distal spine length later in the season. This trend in natural selection is consistent with seasonal changes in the relative strength of non-gape-limited and gape-limited fish predation. Yet, despite net selection for increased distal spine length and a known genetic basis for distal spine length, we observed little evidence of an evolutionary response to selection. Multiple factors likely limit an evolutionary response to selection, including genetic correlations, trade-offs between components of fitness, and phenotypic plasticity.
Collapse
Affiliation(s)
- A L J Miehls
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA.,NOAA Great Lakes Environmental Research Laboratory, Ann Arbor, MI, USA
| | - S D Peacor
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - L Valliant
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - A G McAdam
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
10
|
Miehls ALJ, Peacor SD, McAdam AG. GAPE-LIMITED PREDATORS AS AGENTS OF SELECTION ON THE DEFENSIVE MORPHOLOGY OF AN INVASIVE INVERTEBRATE. Evolution 2014; 68:2633-43. [PMID: 24916281 DOI: 10.1111/evo.12472] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 06/02/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Andrea L. J. Miehls
- Department of Fisheries and Wildlife; Michigan State University; 480 Wilson Road East Lansing Michigan 48824
- NOAA Great Lakes Environmental Research Laboratory; 4840 South State Road Ann Arbor Michigan 48108
| | - Scott D. Peacor
- Department of Fisheries and Wildlife; Michigan State University; 480 Wilson Road East Lansing Michigan 48824
| | - Andrew G. McAdam
- Department of Integrative Biology; University of Guelph; Guelph Ontario N1G 2W1 Canada
| |
Collapse
|
11
|
Koch LK, Meunier J. Mother and offspring fitness in an insect with maternal care: phenotypic trade-offs between egg number, egg mass and egg care. BMC Evol Biol 2014; 14:125. [PMID: 24913927 PMCID: PMC4061511 DOI: 10.1186/1471-2148-14-125] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/03/2014] [Indexed: 11/21/2022] Open
Abstract
Background Oviparous females have three main options to increase their reproductive success: investing into egg number, egg mass and/or egg care. Although allocating resources to either of these three components is known to shape offspring number and size, potential trade-offs among them may have key impacts on maternal and offspring fitness. Here, we tested the occurrence of phenotypic trade-offs between egg number, egg mass and maternal expenditure on egg care in the European earwig, Forficula auricularia, an insect with pre- and post-hatching forms of maternal care. In particular, we used a series of laboratory observations and experiments to investigate whether these three components non-additively influenced offspring weight and number at hatching, and whether they were associated with potential costs to females in terms of future reproduction. Results We found negative associations between egg number and mass as well as between egg number and maternal expenditure on egg care. However, these trade-offs could only be detected after statistically correcting for female weight at egg laying. Hatchling number was not determined by single or additive effects among the three life-history traits, but instead by pairwise interactions among them. In particular, offspring number was positively associated with the number of eggs only in clutches receiving high maternal care or consisting of heavy eggs, and negatively associated with mean egg mass in clutches receiving low care. In contrast, offspring weight was positively associated with egg mass only. Finally, maternal expenditure on egg care reduced their future reproduction, but this effect was only detected when mothers were experimentally isolated from their offspring at egg hatching. Conclusions Overall, our study reveals simultaneous trade-offs between the number, mass and care of eggs. It also demonstrates that these factors interact in their impact on offspring production, and that maternal expenditure on egg care possibly shapes female future reproduction. These findings emphasize that studying reproductive success requires consideration of phenotypic trade-offs between egg-number, egg mass and egg care in oviparous species.
Collapse
Affiliation(s)
| | - Joël Meunier
- Department of Evolutionary Biology, Institute of Zoology, Johannes Gutenberg University of Mainz, Mainz, Germany.
| |
Collapse
|