1
|
Dutta TK, Phani V. The pervasive impact of global climate change on plant-nematode interaction continuum. FRONTIERS IN PLANT SCIENCE 2023; 14:1143889. [PMID: 37089646 PMCID: PMC10118019 DOI: 10.3389/fpls.2023.1143889] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Pest profiles in today's global food production system are continually affected by climate change and extreme weather. Under varying climatic conditions, plant-parasitic nematodes (PPNs) cause substantial economic damage to a wide variety of agricultural and horticultural commodities. In parallel, their herbivory also accredit to diverse ecosystem services such as nutrient cycling, allocation and turnover of plant biomass, shaping of vegetation community, and alteration of rhizospheric microorganism consortium by modifying the root exudation pattern. Thus PPNs, together with the vast majority of free-living nematodes, act as ecological drivers. Because of direct exposure to the open environment, PPN biology and physiology are largely governed by environmental factors including temperature, precipitation, humidity, atmospheric and soil carbon dioxide level, and weather extremes. The negative effects of climate change such as global warming, elevated CO2, altered precipitation and the weather extremes including heat waves, droughts, floods, wildfires and storms greatly influence the biogeographic range, distribution, abundance, survival, fitness, reproduction, and parasitic potential of the PPNs. Changes in these biological and ecological parameters associated to the PPNs exert huge impact on agriculture. Yet, depending on how adaptable the species are according to their geo-spatial distribution, the consequences of climate change include both positive and negative effects on the PPN communities. While assorting the effects of climate change as a whole, it can be estimated that the changing environmental factors, on one hand, will aggravate the PPN damage by aiding to abundance, distribution, reproduction, generation, plant growth and reduced plant defense, but the phenomena like sex reversal, entering cryptobiosis, and reduced survival should act in counter direction. This seemingly creates a contraposition effect, where assessing any confluent trend is difficult. However, as the climate change effects will differ according to space and time it is apprehensible that the PPNs will react and adapt according to their location and species specificity. Nevertheless, the bio-ecological shifts in the PPNs will necessitate tweaking their management practices from the agri-horticultural perspective. In this regard, we must aim for a 'climate-smart' package that will take care of the food production, pest prevention and environment protection. Integrated nematode management involving precise monitoring and modeling-based studies of population dynamics in relation to climatic fluctuations with escalated reliance on biocontrol, host resistance, and other safer approaches like crop rotation, crop scheduling, cover cropping, biofumigation, use of farmyard manure (FYM) would surely prove to be viable options. Although the novel nematicidal molecules are target-specific and relatively less harmful to the environment, their application should not be promoted following the global aim to reduce pesticide usage in future agriculture. Thus, having a reliable risk assessment with scenario planning, the adaptive management strategies must be designed to cope with the impending situation and satisfy the farmers' need.
Collapse
Affiliation(s)
- Tushar K. Dutta
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Victor Phani
- Department of Agricultural Entomology, College of Agriculture, Uttar Banga Krishi Viswavidyalaya, West Bengal, India
| |
Collapse
|
2
|
Qu J, Bonte D, Vandegehuchte ML. Hydrogen cyanide, a key plant defense, as a potential driver of root-associated nematode communities along urbanization gradients. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1113671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
IntroductionPlant chemical defenses can influence the distribution, community composition, and abundance of soil biota. Urbanization plays a key role in shaping soil biotic communities either directly through changes in soil properties or indirectly via changes in plant characteristics such as defense traits. The effects of urbanization and plant defenses on the abundance and structure of aboveground plant-associated communities have been studied, yet their effects on belowground root-associated communities are poorly understood.MethodsHere we sampled white clover (Trifolium repens L.) leaves and roots along urban–rural gradients in the cities of Antwerp and Ghent, Belgium. We measured production of hydrogen cyanide (HCN) in leaves, a known defense trait against herbivores, and abundances of different feeding guilds of nematodes associated with the roots.ResultsWe found that HCN production decreased with increasing levels of urbanization in both cities. Urbanization was significantly correlated with shifts in root-associated nematode community structure in Antwerp but not in Ghent. Responses of nematode feeding guilds and trophic groups to urbanization were highly dependent on the clovers’ HCN production, especially in Ghent. Changes in nematode channel ratio in Antwerp indicated that urban root-associated nematode communities of white clover were more strongly dominated by fungivorous nematodes.DiscussionOur results demonstrate that urbanization is driving changes in a plant phenotypic trait and in the community structure of root-associated nematodes, as well as that both changes interact. Plant defense mechanisms could thus help elucidate the effects of urbanization on root-associated biota communities. As strong differences existed between the two studied cities, the particular properties of cities should be taken into account to better understand the direction and strength of phenotypic trait changes driven by urbanization.
Collapse
|
3
|
Bristol D, Hassan K, Blankinship JC, Nielsen UN. Responses of nematode abundances to increased and reduced rainfall under field conditions: A meta‐analysis. Ecosphere 2023. [DOI: 10.1002/ecs2.4364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Dylan Bristol
- Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales Australia
| | - Kamrul Hassan
- Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales Australia
- Department of Entomology Sylhet Agricultural University Sylhet Bangladesh
| | | | - Uffe N. Nielsen
- Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales Australia
| |
Collapse
|
4
|
Cui S, Han X, Xiao Y, Wu P, Zhang S, Abid A, Zheng G. Increase in rainfall intensity promotes soil nematode diversity but offset by nitrogen addition in a temperate grassland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154039. [PMID: 35202692 DOI: 10.1016/j.scitotenv.2022.154039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Precipitation regime in arid and semi-arid regions is exhibiting a trend of increase in rainfall intensity but reduction in frequency under global climate change. In addition, nitrogen (N) deposition occurs simultaneously in the same regions. Nematodes are the dominant soil biota in terrestrial ecosystems and are involved in various underground processes. How the diversity of nematode communities responds to changing precipitation regime and how N deposition regulates the responses remain unclear. Here, we performed a field experiment initiated in 2012 to examine the effect of changes in the precipitation regime (2 mm precipitation intensity, 5 mm precipitation intensity, 10 mm precipitation intensity, 20 mm precipitation intensity, and 40 mm precipitation intensity) and N addition (10 g N m-2 yr-1) on soil nematode community in a semi-arid grassland in Inner Mongolia of China. We found that the abundance and diversity of nematodes increased under the treatments with fewer but stronger precipitation events (the largest abundance of total nematodes was 1458.37 individuals/100 g dry soil occurred under 40 mm intensity treatment). However, N addition reduced nematode diversity under these treatments, which largely offset the positive effects of increased rainfall intensity alone. Soil pH and plant belowground biomass were the main factors affecting nematode diversity. Our results imply that, as a consequence of global climate change, an increase in the intensity of rainfall events in the coming decades may favor the nematode communities within arid and semi-arid ecosystems. However, this positive effect may be largely offset by soil acidification in the regions experiencing heavy N deposition.
Collapse
Affiliation(s)
- Shuyan Cui
- College of Life Science, Shenyang Normal University, Shenyang 110016, China
| | - Xu Han
- Forestry College, Beihua University, Jilin 132013, China; Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yushan Xiao
- College of Life Science, Shenyang Normal University, Shenyang 110016, China
| | - Pengfeng Wu
- College of Life Science, Shenyang Normal University, Shenyang 110016, China
| | - Shixiu Zhang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130012, China
| | - Ali Abid
- College of Life Science, Shenyang Normal University, Shenyang 110016, China; Department of Entomology, University of Agriculture, Faisalabad 38040, Punjab, Pakistan
| | - Guo Zheng
- College of Life Science, Shenyang Normal University, Shenyang 110016, China.
| |
Collapse
|
5
|
Soil Nematodes as the Silent Sufferers of Climate-Induced Toxicity: Analysing the Outcomes of Their Interactions with Climatic Stress Factors on Land Cover and Agricultural Production. Appl Biochem Biotechnol 2022; 195:2519-2586. [PMID: 35593954 DOI: 10.1007/s12010-022-03965-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/10/2022] [Indexed: 11/02/2022]
Abstract
Unsustainable anthropogenic activities over the last few decades have resulted in alterations of the global climate. It can be perceived through changes in the rainfall patterns and rise in mean annual temperatures. Climatic stress factors exert their effects on soil health mainly by modifying the soil microenvironments where the soil fauna reside. Among the members of soil fauna, the soil nematodes have been found to be sensitive to these stress factors primarily because of their low tolerance limits. Additionally, because of their higher and diverse trophic positions in the soil food web they can integrate the effects of many stress factors acting together. This is important because under natural conditions the climatic stress factors do not exert their effect individually. Rather, they interact amongst themselves and other abiotic stress factors in the soil to generate their impacts. Some of these interactions may be synergistic while others may be antagonistic. As such, it becomes very difficult to assess their impacts on soil health by simply analysing the physicochemical properties of soil. This makes soil nematodes outstanding candidates for studying the effects of climatic stress factors on soil biology. The knowledge obtained therefrom can be used to design sustainable agricultural practices because most of the conventional techniques aim at short-term benefits with complete disregard of soil biology. This can partly ensure food security in the coming decades for the expanding population. Moreover, understanding soil biology can help to preserve landscapes that have developed over long periods of climatic stability and belowground soil biota interactions.
Collapse
|
6
|
Franco ALC, Guan P, Cui S, de Tomasel CM, Gherardi LA, Sala OE, Wall DH. Precipitation effects on nematode diversity and carbon footprint across grasslands. GLOBAL CHANGE BIOLOGY 2022; 28:2124-2132. [PMID: 34936166 DOI: 10.1111/gcb.16055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/09/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Free-living nematodes are one of the most diverse metazoan taxa in terrestrial ecosystems and are critical to the global soil carbon (C) cycling through their role in organic matter decomposition. They are highly dependent on water availability for movement, feeding, and reproduction. Projected changes in precipitation across temporal and spatial scales will affect free-living nematodes and their contribution to C cycling with unforeseen consequences. We experimentally reduced and increased growing season precipitation for 2 years in 120 field plots at arid, semiarid, and mesic grasslands and assessed precipitation controls on nematode genus diversity, community structure, and C footprint. Increasing annual precipitation reduced nematode diversity and evenness over time at all sites, but the mechanism behind these temporal responses differed for dry and moist grasslands. In arid and semiarid sites, there was a loss of drought-adapted rare taxa with increasing precipitation, whereas in mesic conditions increases in the population of predaceous taxa with increasing precipitation may have caused the observed reductions in dominant colonizer taxa and yielded the negative precipitation-diversity relationship. The effects of temporal changes in precipitation on all aspects of the nematode C footprint (respiration, production, and biomass C) were all dependent on the site (significant spatial × temporal precipitation interaction) and consistent with diversity responses at mesic, but not at arid and semiarid, grasslands. These results suggest that free-living nematode biodiversity and their C footprint will respond to climate change-driven shifts in water availability and that more frequent extreme wet years may accelerate decomposition and C turnover in semiarid and arid grasslands.
Collapse
Affiliation(s)
- André L C Franco
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Pingting Guan
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, China
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Shuyan Cui
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | | | - Laureano A Gherardi
- School of Life Sciences & Global Drylands Center, Arizona State University, Tempe, Arizona, USA
| | - Osvaldo E Sala
- School of Life Sciences, School of Sustainability & Global Drylands Center, Arizona State University, Tempe, Arizona, USA
| | - Diana H Wall
- Department of Biology & School of Global Environmental Sustainability, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
7
|
Biswal D. Nematodes as Ghosts of Land Use Past: Elucidating the Roles of Soil Nematode Community Studies as Indicators of Soil Health and Land Management Practices. Appl Biochem Biotechnol 2022; 194:2357-2417. [PMID: 35037168 DOI: 10.1007/s12010-022-03808-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2021] [Indexed: 11/30/2022]
Abstract
Soil health is a matter of growing concern because of its degradation due to unsustainable anthropogenic activities over the last few decades. It is maintained by interactions among the components of the soil food web commonly concentrated in the vicinity of the plant roots, called the rhizosphere. The soil food web is dominated by nematodes. They occupy various trophic positions because of their diverse feeding habits. The free-living forms are mainly dependent on soil bacteria and fungi for their nutrition, while the parasitic forms feed on plant roots. The population of these two groups is regulated by the activities of predatory nematodes which can be carnivorous or omnivorous. The soil nematodes thereby partake responsibilities in nutrient cycling, mineralization and decomposition pathways which, in turn, affects the aboveground productivity. This intricately connected food web structure is vulnerable to disturbances like increased soil salinity, acidity, nitrogen enrichment, tillage, crop rotations, fertilizers, pesticides, soil amendment techniques and heavy metal pollution. The effects are reflected by alterations in the abundance and diversity of soil nematodes belonging to various trophic groups. These alterations have been formulated into measurable indices like maturity index (MI), structure index (SI), enrichment index (EI) and channel index (CI). The faunal profile and metabolic footprints of soil nematodes are latest developments in the field of nematode community analyses. Though these indices cannot replace the conventional soil ecotoxicological assays, they can give added information about soil biology which can be utilized to design sustainable land use practices.
Collapse
Affiliation(s)
- Debraj Biswal
- Department of Zoology, Government General Degree College at Mangalkote, Burdwan, West Bengal, 713132, India.
| |
Collapse
|
8
|
Ankrom KE, Franco ALC, Fonte SJ, Gherardi LA, de Tomasel CM, Andriuzzi WS, Shaw EA, Sala OE, Wall DH. Ecto- and endoparasitic nematodes respond differently across sites to changes in precipitation. Oecologia 2020; 193:761-771. [PMID: 32656605 DOI: 10.1007/s00442-020-04708-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 07/08/2020] [Indexed: 11/29/2022]
Abstract
Plant parasitic nematodes are among the greatest consumers of primary production in terrestrial ecosystems. Their feeding strategies can be divided into endoparasites and ectoparasites that differ substantially, not only in their damage potential to host tissue and primary production, but also in their susceptibility to environmental changes. Climate change is predicted to increase variability of precipitation in many systems, yet the effects on belowground biodiversity and associated impacts on primary productivity remain poorly understood. To examine the impact of altered precipitation on endo- and ectoparasitic soil nematodes, we conducted a 2-year precipitation manipulation study across an arid, a semiarid, and a mesic grassland. Plant parasite feeding type abundance, functional guilds, and herbivory index in response to precipitation were evaluated. Responses of endo- and ectoparasites to increased precipitation varied by grassland type. There was little response of ectoparasites to increased precipitation although their population declined at the mesic site with increased precipitation. The abundance of endoparasites remained unchanged with increasing precipitation at the arid site, increased at the semiarid, and decreased at the mesic site. The herbivory index followed closely the trends seen in the endoparasites response by stagnating at the arid site, increasing at the semiarid, and decreasing at the mesic site. Our findings suggest that altered precipitation has differing effects on plant parasite feeding strategies as well as functional guilds. This may have important implications for grassland productivity, as plant parasite pressure may exacerbate the effects of climate change on host plants.
Collapse
Affiliation(s)
- Katharine E Ankrom
- Department of Biology, Colorado State University, 1878 Biology, Fort Collins, CO, 80523, USA.
| | - André L C Franco
- Department of Biology, Colorado State University, 1878 Biology, Fort Collins, CO, 80523, USA
| | - Steven J Fonte
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Laureano A Gherardi
- School of Life Sciences and Global Drylands Center, Arizona State University, Tempe, AZ, 85287, USA
| | | | - Walter S Andriuzzi
- Department of Biology, Colorado State University, 1878 Biology, Fort Collins, CO, 80523, USA
| | - E Ashley Shaw
- Department of Biology, Colorado State University, 1878 Biology, Fort Collins, CO, 80523, USA
| | - Osvaldo E Sala
- School of Life Sciences, School of Sustainability and Global Drylands Center, Arizona State University, Tempe, AZ, 85287, USA
| | - Diana H Wall
- Department of Biology and School of Global Environmental Sustainability, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
9
|
Drought suppresses soil predators and promotes root herbivores in mesic, but not in xeric grasslands. Proc Natl Acad Sci U S A 2019; 116:12883-12888. [PMID: 31186355 DOI: 10.1073/pnas.1900572116] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Precipitation changes among years and locations along gradients of mean annual precipitation (MAP). The way those changes interact and affect populations of soil organisms from arid to moist environments remains unknown. Temporal and spatial changes in precipitation could lead to shifts in functional composition of soil communities that are involved in key aspects of ecosystem functioning such as ecosystem primary production and carbon cycling. We experimentally reduced and increased growing-season precipitation for 2 y in field plots at arid, semiarid, and mesic grasslands to investigate temporal and spatial precipitation controls on the abundance and community functional composition of soil nematodes, a hyper-abundant and functionally diverse metazoan in terrestrial ecosystems. We found that total nematode abundance decreased with greater growing-season precipitation following increases in the abundance of predaceous nematodes that consumed and limited the abundance of nematodes lower in the trophic structure, including root feeders. The magnitude of these nematode responses to temporal changes in precipitation increased along the spatial gradient of long-term MAP, and significant effects only occurred at the mesic site. Contrary to the temporal pattern, nematode abundance increased with greater long-term MAP along the spatial gradient from arid to mesic grasslands. The projected increase in the frequency of extreme dry years in mesic grasslands will therefore weaken predation pressure belowground and increase populations of root-feeding nematodes, potentially leading to higher levels of plant infestation and plant damage that would exacerbate the negative effect of drought on ecosystem primary production and C cycling.
Collapse
|
10
|
Andriuzzi WS, Adams BJ, Barrett JE, Virginia RA, Wall DH. Observed trends of soil fauna in the Antarctic Dry Valleys: early signs of shifts predicted under climate change. Ecology 2018; 99:312-321. [PMID: 29315515 DOI: 10.1002/ecy.2090] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 11/09/2022]
Abstract
Long-term observations of ecological communities are necessary for generating and testing predictions of ecosystem responses to climate change. We investigated temporal trends and spatial patterns of soil fauna along similar environmental gradients in three sites of the McMurdo Dry Valleys, Antarctica, spanning two distinct climatic phases: a decadal cooling trend from the early 1990s through the austral summer of February 2001, followed by a shift to the current trend of warming summers and more frequent discrete warming events. After February 2001, we observed a decline in the dominant species (the nematode Scottnema lindsayae) and increased abundance and expanded distribution of less common taxa (rotifers, tardigrades, and other nematode species). Such diverging responses have resulted in slightly greater evenness and spatial homogeneity of taxa. However, total abundance of soil fauna appears to be declining, as positive trends of the less common species so far have not compensated for the declining numbers of the dominant species. Interannual variation in the proportion of juveniles in the dominant species was consistent across sites, whereas trends in abundance varied more. Structural equation modeling supports the hypothesis that the observed biological trends arose from dissimilar responses by dominant and less common species to pulses of water availability resulting from enhanced ice melt. No direct effects of mean summer temperature were found, but there is evidence of indirect effects via its weak but significant positive relationship with soil moisture. Our findings show that combining an understanding of species responses to environmental change with long-term observations in the field can provide a context for validating and refining predictions of ecological trends in the abundance and diversity of soil fauna.
Collapse
Affiliation(s)
- W S Andriuzzi
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - B J Adams
- Department of Biology, Evolutionary Ecology Laboratories, and Monte L. Bean Museum, Brigham Young University, Provo, Utah, 84602, USA
| | - J E Barrett
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, 24061, USA
| | - R A Virginia
- Environmental Studies Program, Dartmouth College, Hanover, New Hampshire, 03755, USA
| | - D H Wall
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA.,School of Global Environmental Sustainability, Colorado State University, Fort Collins, Colorado, 80523, USA
| |
Collapse
|
11
|
Ortiz V, Phelan S, Mullins E. A temporal assessment of nematode community structure and diversity in the rhizosphere of cisgenic Phytophthora infestans-resistant potatoes. BMC Ecol 2016; 16:55. [PMID: 27905931 PMCID: PMC5134073 DOI: 10.1186/s12898-016-0109-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/17/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nematodes play a key role in soil processes with alterations in the nematode community structure having the potential to considerably influence ecosystem functioning. As a result fluctuations in nematode diversity and/or community structure can be gauged as a 'barometer' of a soil's functional biodiversity. However, a deficit exists in regards to baseline knowledge and on the impact of specific GM crops on soil nematode populations and in particular in regard to the impact of GM potatoes on the diversity of nematode populations in the rhizosphere. The goal of this project was to begin to address this knowledge gap in regards to a GM potato line, cisgenically engineered for resistance to Phytophthora infestans (responsible organism of the Irish potato famine causing late blight disease). For this, a 3 year (2013, 2014, 2015) field experimental study was completed, containing two conventional genotypes (cvs. Desiree and Sarpo Mira) and a cisgenic genotype (cv. Desiree + Rpi-vnt1). Each potato genotype was treated with different disease management strategies (weekly chemical applications and corresponding no spray control). Hence affording the opportunity to investigate the temporal impact of potato genotype, disease management strategy (and their interaction) on the potato rhizosphere nematode community. RESULTS Nematode structure and diversity were measured through established indices, accounts and taxonomy with factors recording a significant effect limited to the climatic conditions across the three seasons of the study and chemical applications associated with the selected disease management strategy. Based on the metrics studied, the cultivation of the cisgenic potato genotype exerted no significant effect (P > 0.05) on nematode community diversity or structure. The disease management treatments led to a reduction of specific trophic groups (e.g. Predacious c-p = 4), which of interest appeared to be counteracted by a potato genotype with vigorous growth phenotype e.g. cv. Sarpo Mira. The fluctuating climates led to disparate conditions, with enrichment conditions (bacterial feeding c-p = 1) dominating during the wet seasons of 2014 and 2015 versus the dry season of 2013 which induced an environmental stress (functional guild c-p = 2) on nematode communities. CONCLUSIONS Overall the functional guild indices in comparison to other indices or absolutes values, delivered the most accurate quantitative measurement with which to determine the occurrence of a specific disturbance relative to the cultivation of the studied cisgenic P. infestans-resistant potatoes.
Collapse
Affiliation(s)
- Vilma Ortiz
- Dept. Crop Science, Teagasc, Oak Park, Carlow, Ireland
- Plant Biology and Crop Science, Rothamsted Research Station, West Common, Harpenden, Hertfordshire AL5 2JQ UK
| | - Sinead Phelan
- Dept. Crop Science, Teagasc, Oak Park, Carlow, Ireland
| | - Ewen Mullins
- Dept. Crop Science, Teagasc, Oak Park, Carlow, Ireland
| |
Collapse
|
12
|
Wilson LR, Gibson DJ, Baer SG, Johnson LC. Plant community response to regional sources of dominant grasses in grasslands restored across a longitudinal gradient. Ecosphere 2016. [DOI: 10.1002/ecs2.1329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Laurel R. Wilson
- Department of Plant Biology; Center for Ecology; Southern Illinois University Carbondale; Carbondale Illinois 62901-6509 USA
| | - David J. Gibson
- Department of Plant Biology; Center for Ecology; Southern Illinois University Carbondale; Carbondale Illinois 62901-6509 USA
| | - Sara G. Baer
- Department of Plant Biology; Center for Ecology; Southern Illinois University Carbondale; Carbondale Illinois 62901-6509 USA
| | - Loretta C. Johnson
- Division of Biology; Kansas State University; Manhattan Kansas 66506 USA
| |
Collapse
|