1
|
Orihuela-Torres A, Morales-Reyes Z, Hermoso V, Picazo F, Sánchez Fernández D, Pérez-García JM, Botella F, Sánchez-Zapata JA, Sebastián-González E. Carrion ecology in inland aquatic ecosystems: a systematic review. Biol Rev Camb Philos Soc 2024; 99:1425-1443. [PMID: 38509722 DOI: 10.1111/brv.13075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024]
Abstract
Carrion ecology, i.e. the decomposition and recycling of dead animals, has traditionally been neglected as a key process in ecosystem functioning. Similarly, despite the large threats that inland aquatic ecosystems (hereafter, aquatic ecosystems) face, the scientific literature is still largely biased towards terrestrial ecosystems. However, there has been an increasing number of studies on carrion ecology in aquatic ecosystems in the last two decades, highlighting their key role in nutrient recirculation and disease control. Thus, a global assessment of the ecological role of scavengers and carrion in aquatic ecosystems is timely. Here, we systematically reviewed scientific articles on carrion ecology in aquatic ecosystems to describe current knowledge, identify research gaps, and promote future studies that will deepen our understanding in this field. We found 206 relevant studies, which were highly biased towards North America, especially in lotic ecosystems, covering short time periods, and overlooking seasonality, a crucial factor in scavenging dynamics. Despite the low number of studies on scavenger assemblages, we recorded 55 orders of invertebrates from 179 families, with Diptera and Coleoptera being the most frequent orders. For vertebrates, we recorded 114 species from 40 families, with birds and mammals being the most common. Our results emphasise the significance of scavengers in stabilising food webs and facilitating nutrient cycling within aquatic ecosystems. Studies were strongly biased towards the assessment of the ecosystem effects of carrion, particularly of salmon carcasses in North America. The second most common research topic was the foraging ecology of vertebrates, which was mostly evaluated through sporadic observations of carrion in the diet. Articles assessing scavenger assemblages were scarce, and only a limited number of these studies evaluated carrion consumption patterns, which serve as a proxy for the role of scavengers in the ecosystem. The ecological functions performed by carrion and scavengers in aquatic ecosystems were diverse. The main ecological functions were carrion as food source and the role of scavengers in nutrient cycling, which appeared in 52.4% (N = 108) and 46.1% (N = 95) of publications, respectively. Ecosystem threats associated with carrion ecology were also identified, the most common being water eutrophication and carrion as source of pathogens (2.4%; N = 5 each). Regarding the effects of carrion on ecosystems, we found studies spanning all ecosystem components (N = 85), from soil or the water column to terrestrial vertebrates, with a particular focus on aquatic invertebrates and fish. Most of these articles found positive effects of carrion on ecosystems (e.g. higher species richness, abundance or fitness; 84.7%; N = 72), while a minority found negative effects, changes in community composition, or even no effects. Enhancing our understanding of scavengers and carrion in aquatic ecosystems is crucial to assessing their current and future roles amidst global change, mainly for water-land nutrient transport, due to changes in the amount and speed of nutrient movement, and for disease control and impact mitigation, due to the predicted increase in occurrence and magnitude of mortality events in aquatic ecosystems.
Collapse
Affiliation(s)
- Adrian Orihuela-Torres
- Department of Ecology, University of Alicante, Ctra. San Vicente del Raspeig s/n, Alicante, 03690, Spain
- Department of Applied Biology, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Carretera de Beniel km 3.2, Orihuela, 03312, Spain
| | - Zebensui Morales-Reyes
- Instituto de Estudios Sociales Avanzados (IESA), CSIC, Campo Santo de los Mártires, 7, Córdoba, 14004, Spain
| | - Virgilio Hermoso
- Departamento de Biología de la Conservación, Estación Biológica de Doñana (EBD) - CSIC, Américo Vespucio 26, Sevilla, 41092, Spain
| | - Félix Picazo
- Department of Ecology/Research Unit Modeling Nature (MNat), University of Granada, Faculty of Sciences, Campus Fuentenueva s/n, Granada, 18071, Spain
- Water Institute (IdA), University of Granada, Ramón y Cajal 4, Granada, 18003, Spain
| | - David Sánchez Fernández
- Department of Ecology and Hidrology, University of Murcia, Campus de Espinardo, Murcia, 30100, Spain
| | - Juan M Pérez-García
- Department of Applied Biology, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Carretera de Beniel km 3.2, Orihuela, 03312, Spain
| | - Francisco Botella
- Department of Applied Biology, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Carretera de Beniel km 3.2, Orihuela, 03312, Spain
| | - José A Sánchez-Zapata
- Department of Applied Biology, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Carretera de Beniel km 3.2, Orihuela, 03312, Spain
| | - Esther Sebastián-González
- Department of Ecology, University of Alicante, Ctra. San Vicente del Raspeig s/n, Alicante, 03690, Spain
| |
Collapse
|
4
|
Morley SA, Coe HJ, Duda JJ, Dunphy LS, McHenry ML, Beckman BR, Elofson M, Sampson EM, Ward L. Seasonal variation exceeds effects of salmon carcass additions on benthic food webs in the Elwha River. Ecosphere 2016. [DOI: 10.1002/ecs2.1422] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- S. A. Morley
- Fish Ecology Division Northwest Fisheries Science Center National Marine Fisheries Service, NOAA Seattle Washington 98112 USA
| | - H. J. Coe
- Ocean Associates Arlington Virginia 22207 USA
| | - J. J. Duda
- Western Fisheries Research Center U.S. Geological Survey Seattle Washington 98115 USA
| | - L. S. Dunphy
- School of Aquatic and Fishery Sciences University of Washington Seattle Washington 98105 USA
| | - M. L. McHenry
- Natural Resources Department Lower Elwha Klallam Tribe Port Angeles Washington 98363 USA
| | - B. R. Beckman
- Environmental and Fisheries Sciences Division Northwest Fisheries Science Center National Marine Fisheries Service, NOAA Seattle Washington 98112 USA
| | - M. Elofson
- Natural Resources Department Lower Elwha Klallam Tribe Port Angeles Washington 98363 USA
| | - E. M. Sampson
- Natural Resources Department Lower Elwha Klallam Tribe Port Angeles Washington 98363 USA
| | - L. Ward
- Natural Resources Department Lower Elwha Klallam Tribe Port Angeles Washington 98363 USA
| |
Collapse
|
8
|
Kohler AE, Taki D. Macroinvertebrate response to salmon carcass analogue treatments: exploring the relative influence of nutrient enrichment, stream foodweb, and environmental variables. ACTA ACUST UNITED AC 2010. [DOI: 10.1899/09-091.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Andre E. Kohler
- Shoshone Bannock Tribes, Department of Fish and Wildlife, Fort Hall, Idaho 83203 USA
| | - Doug Taki
- Shoshone Bannock Tribes, Department of Fish and Wildlife, Fort Hall, Idaho 83203 USA
| |
Collapse
|
9
|
Moore JW, Schindler DE. Spawning salmon and the phenology of emergence in stream insects. Proc Biol Sci 2010; 277:1695-703. [PMID: 20129980 DOI: 10.1098/rspb.2009.2342] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Phenological dynamics are controlled by environmental factors, disturbance regimes and species interactions that alter growth or mortality risk. Ecosystem engineers can be a key source of disturbance, yet their effects on the phenologies of co-occurring organisms are virtually unexplored. We investigated how the abundance of a dominant ecosystem engineer, spawning sockeye salmon (Oncorhynchus nerka), alters the emergence phenology of stream insects. In streams with high densities of salmon, peak insect emergence occurred in early July, immediately prior to salmon spawning. By contrast, peak insect emergence in streams with low densities of salmon was weeks later and more protracted. The emergence of specific taxa was also significantly related to salmon density. A common rearing experiment revealed that differences in emergence timing are maintained in the absence of spawning salmon. We hypothesize that these patterns are probably driven by predictable and severe disturbance from nest-digging salmon driving local adaptation and being a trait filter of insect emergence. Thus, salmon regulate the timing and duration of aquatic insect emergence, a cross-ecosystem flux from streams to riparian systems.
Collapse
|
10
|
Lessard JAL, Merritt RW, Berg MB. Investigating the effect of marine-derived nutrients from spawning salmon on macroinvertebrate secondary production in southeast Alaskan streams. ACTA ACUST UNITED AC 2009. [DOI: 10.1899/08-141.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jo Anna L. Lessard
- Department of Entomology, Michigan State University, East Lansing, Michigan 48824 USA
| | - Richard W. Merritt
- Department of Entomology, Michigan State University, East Lansing, Michigan 48824 USA
| | - Martin B. Berg
- Department of Biology, Loyola University Chicago, Chicago, Illinois 60626 USA
| |
Collapse
|