1
|
Huang Y, Wang J, Zeng L, Wang S, Zhang X. Case Report: A novel DLL4 variant in a neonate with Adams-Oliver syndrome. Front Pediatr 2025; 13:1532561. [PMID: 40098638 PMCID: PMC11911370 DOI: 10.3389/fped.2025.1532561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Adams-Oliver syndrome is a rare congenital disorder with six subtypes that have been identified. Subtypes 1, 3, 5, and 6 have an autosomal dominant inheritance pattern, whereas subtypes 2 and 4 have an autosomal recessive inheritance pattern. The clinical phenotype of Adams-Oliver syndrome is heterogeneous and can be accompanied by abnormalities in other organs, especially the cardiovascular system, such as cutis marmorata telangiectatica congenita, pulmonary hypertension, vascular abnormalities in other organs, and congenital heart defects. Herein, we report a case of Adams-Oliver syndrome caused by a de novo variant in DLL4. The patient was a neonate with clinical manifestations of skin defects who was diagnosed with Adams-Oliver syndrome on the basis of genetic testing.
Collapse
Affiliation(s)
- Yanping Huang
- Department of Neonatology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Jin Wang
- Department of Neonatology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Lingkong Zeng
- Department of Neonatology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Shi Wang
- Department of Neonatology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Xuechen Zhang
- Department of Neonatology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, China
| |
Collapse
|
2
|
Wang XC, Tang YL, Liang XH. Tumour follower cells: A novel driver of leader cells in collective invasion (Review). Int J Oncol 2023; 63:115. [PMID: 37615176 PMCID: PMC10552739 DOI: 10.3892/ijo.2023.5563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Abstract
Collective cellular invasion in malignant tumours is typically characterized by the cooperative migration of multiple cells in close proximity to each other. Follower cells are led away from the tumour by specialized leader cells, and both cell populations play a crucial role in collective invasion. Follower cells form the main body of the migration system and depend on intercellular contact for migration, whereas leader cells indicate the direction for the entire cell population. Although collective invasion can occur in epithelial and non‑epithelial malignant neoplasms, such as medulloblastoma and rhabdomyosarcoma, the present review mainly provided an extensive analysis of epithelial tumours. In the present review, the cooperative mechanisms of contact inhibition locomotion between follower and leader cells, where follower cells coordinate and direct collective movement through physical (mechanical) and chemical (signalling) interactions, is summarised. In addition, the molecular mechanisms of follower cell invasion and metastasis during remodelling and degradation of the extracellular matrix and how chemotaxis and lateral inhibition mediate follower cell behaviour were analysed. It was also demonstrated that follower cells exhibit genetic and metabolic heterogeneity during invasion, unlike leader cells.
Collapse
Affiliation(s)
- Xiao-Chen Wang
- Departments of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ya-Ling Tang
- Departments of Oral Pathology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xin-Hua Liang
- Departments of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
3
|
Barua R, Mizuno K, Tashima Y, Ogawa M, Takeuchi H, Taguchi A, Okajima T. Bioinformatics and Functional Analyses Implicate Potential Roles for EOGT and L-fringe in Pancreatic Cancers. Molecules 2021; 26:molecules26040882. [PMID: 33562410 PMCID: PMC7915272 DOI: 10.3390/molecules26040882] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Notch signaling receptors, ligands, and their downstream target genes are dysregulated in pancreatic ductal adenocarcinoma (PDAC), suggesting a role of Notch signaling in pancreatic tumor development and progression. However, dysregulation of Notch signaling by post-translational modification of Notch receptors remains poorly understood. Here, we analyzed the Notch-modifying glycosyltransferase involved in the regulation of the ligand-dependent Notch signaling pathway. Bioinformatic analysis revealed that the expression of epidermal growth factor (EGF) domain-specific O-linked N-acetylglucosamine (EOGT) and Lunatic fringe (LFNG) positively correlates with a subset of Notch signaling genes in PDAC. The lack of EOGT or LFNG expression inhibited the proliferation and migration of Panc-1 cells, as observed by the inhibition of Notch activation. EOGT expression is significantly increased in the basal subtype, and low expression of both EOGT and LFNG predicts better overall survival in PDAC patients. These results imply potential roles for EOGT- and LFNG-dependent Notch signaling in PDAC.
Collapse
Affiliation(s)
- Rashu Barua
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan; (R.B.); (Y.T.); (M.O.); (H.T.)
| | - Kazuyuki Mizuno
- Division of Molecular Diagnostics, Aichi Cancer Center, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi 464-8681, Japan; (K.M.); (A.T.)
| | - Yuko Tashima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan; (R.B.); (Y.T.); (M.O.); (H.T.)
- Institute for Glyco-core Research (iGCORE), Integrated Glyco-Biomedical Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 Nagoya, Japan
| | - Mitsutaka Ogawa
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan; (R.B.); (Y.T.); (M.O.); (H.T.)
- Institute for Glyco-core Research (iGCORE), Integrated Glyco-Biomedical Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 Nagoya, Japan
| | - Hideyuki Takeuchi
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan; (R.B.); (Y.T.); (M.O.); (H.T.)
- Institute for Glyco-core Research (iGCORE), Integrated Glyco-Biomedical Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 Nagoya, Japan
| | - Ayumu Taguchi
- Division of Molecular Diagnostics, Aichi Cancer Center, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi 464-8681, Japan; (K.M.); (A.T.)
- Division of Advanced Cancer Diagnostics, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan; (R.B.); (Y.T.); (M.O.); (H.T.)
- Institute for Glyco-core Research (iGCORE), Integrated Glyco-Biomedical Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 Nagoya, Japan
- Correspondence: ; Tel.: +81-52-744-2068; Fax: +81-52-744-2069
| |
Collapse
|
4
|
Urata Y, Saiki W, Tsukamoto Y, Sago H, Hibi H, Okajima T, Takeuchi H. Xylosyl Extension of O-Glucose Glycans on the Extracellular Domain of NOTCH1 and NOTCH2 Regulates Notch Cell Surface Trafficking. Cells 2020; 9:cells9051220. [PMID: 32423029 PMCID: PMC7291291 DOI: 10.3390/cells9051220] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 12/15/2022] Open
Abstract
Biochemical and genetic studies have indicated that O-linked glycosylation such as O-glucose (Glc), fucose (Fuc), and N-acetylglucosamine (GlcNAc) is critical for Notch signaling; however, it is not fully understood how O-glycans regulate the Notch receptor function. Notch receptors are type-I transmembrane proteins with large extracellular domains (ECD), containing 29–36 epidermal growth factor-like (EGF) repeats. Here, we analyzed O-Glc glycans on NOTCH1 and NOTCH2 expressed in HEK293T cells using an Orbitrap Fusion mass spectrometer and successfully revealed the structures and stoichiometries of all 17 EGF repeats of NOTCH1 with the O-Glc consensus sequence (C1-X-S-X-(P/A)-C2), and 16 out of 17 EGF repeats of NOTCH2 with the same consensus sequence. High levels of O-Glc attachment and xylosyl elongation were detected on most NOTCH1 and NOTCH2 EGF repeats. When both glucoside xylosyltransferases, GXYLT1 and GXYLT2, responsible for the xylosyl elongation of O-glucose, were genetically deleted, the expression of endogenous NOTCH1 and NOTCH2 on the surface of HEK293T cells did not change, but the cell surface expression of overexpressed NOTCH1 and NOTCH2 decreased compared with that in the wild type cells. In vitro secretion assays consistently showed a reduced secretion of both the NOTCH1 and NOTCH2 ECDs in GXYLT1 and GXYLT2 double knockout cells compared with the wild type cells, suggesting a significant role of the elongation of O-Glc glycans on the Notch ECDs in the quality control of Notch receptors.
Collapse
Affiliation(s)
- Yusuke Urata
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (Y.U.); (W.S.); (Y.T.); (H.S.)
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan;
| | - Wataru Saiki
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (Y.U.); (W.S.); (Y.T.); (H.S.)
| | - Yohei Tsukamoto
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (Y.U.); (W.S.); (Y.T.); (H.S.)
| | - Hiroaki Sago
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (Y.U.); (W.S.); (Y.T.); (H.S.)
| | - Hideharu Hibi
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan;
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (Y.U.); (W.S.); (Y.T.); (H.S.)
- Correspondence: (T.O.); (H.T.); Tel.: +81-52-744-2068 (H.T.)
| | - Hideyuki Takeuchi
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (Y.U.); (W.S.); (Y.T.); (H.S.)
- Correspondence: (T.O.); (H.T.); Tel.: +81-52-744-2068 (H.T.)
| |
Collapse
|