1
|
Al-Balushi M, Al-Badi S, Al-Yaarubi S, Al-Riyami H, Al-Shidhani A, Al-Hinai S, Alshirawi A, Hasson S, Said E, Al-Jabri A, Al Ansari A. The Association of Human Leukocyte Antigens Complex with Type 1 Diabetes in the Omani Population. Sultan Qaboos Univ Med J 2023; 23:68-75. [PMID: 36865417 PMCID: PMC9974035 DOI: 10.18295/squmj.2.2022.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/16/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
Objectives Identification of the high risk alleles, genotypes and haplotypes of the human leukocyte antigens (HLA) in different populations is beneficial for understanding their roles in type 1 diabetes (T1D) pathogenesis and intervention practices. This study aimed to identify T1D-associated HLA gene alleles in the Omani population. Methods The present case-control study included 73 diabetic seropositive children (mean age 9.08 ± 3.27 years) attending the paediatric clinic at Sultan Qaboos University Hospital in Muscat, Oman, and 110 healthy controls. HLA-A, -B, -C, -DRB1 and -DQB1 genes were genotyped using a sequence-specific primer polymerase chain reaction (SSP-PCR). Results Two HLA class I alleles (B*08, B*58) and three class II alleles (DQB1*02, DRB1*03 and DRB1*04) were associated with T1D susceptibility, while one class I (B*51) and three class II (DQB1*05, DQB1*06 and DRB1*16) alleles were associated with T1D protection. HLA-DRB1*03 and DQB1*02 alleles showed the strongest risk association among all alleles. Six DRB1 residues (E9, S11, S13, Y30, V70 and K71) were significantly associated with T1D susceptibility. Heterozygous genotypes, HLA-DRB1*03/*04 and DQB1*02/*03 were significantly associated with T1D susceptibility (P <0.0001, odds ratio [OR] = 63.21 and P = 0.02, OR = 3.63, respectively). Furthermore, a significant combined action of DRB1*03-DQB1*02 haplotype in T1D risk (P = 0.000176, OR = 15) and DRB1*16-DQB1*05 haplotype in protection (P = 0.0312, OR = 0.48) was detected. Conclusion Known HLA class II gene alleles are associated with T1D in Omani children.
Collapse
Affiliation(s)
- Mohammed Al-Balushi
- Department of Microbiology & Immunology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Samiya Al-Badi
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Saif Al-Yaarubi
- Department of Child Health, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Hamad Al-Riyami
- Department of Genetics, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Azza Al-Shidhani
- Department of Child Health, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Shaima Al-Hinai
- Department of Child Health, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Ali Alshirawi
- Department of Medicine, College of Medicine, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Sidgi Hasson
- Department of Microbiology & Immunology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Elias Said
- Department of Microbiology & Immunology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Ali Al-Jabri
- Department of Microbiology & Immunology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Aliya Al Ansari
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman,Corresponding Author’s e-mail:
| |
Collapse
|
2
|
Troshina EA, Yukina MY, Nuralieva NF, Mokrysheva NG. [The role of HLA genes: from autoimmune diseases to COVID-19]. ACTA ACUST UNITED AC 2020; 66:9-15. [PMID: 33351354 DOI: 10.14341/probl12470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/13/2020] [Accepted: 07/22/2020] [Indexed: 11/06/2022]
Abstract
Genes of HLA system (Human Leukocyte Antigen) play an essential role in the normal functioning of the immune system. There are three classes of genes: I, II, and III. The function of HLA molecules class I is to present antigens of peptides from the cytoplasm to T-lymphocytes on the cell surface, and class II - to present antigens of peptides from the extracellular space. In the classical view, the pathological activation of the immune system in patients with a genetic predisposition can result in the development of autoimmune diseases. However, the influence of this system on the development of non-autoimmune diseases, their severity and prognosis, has been recently considered. Besides, HLA molecules provide a presentation of various infectious agents. In this connection, the loci of the main histocompatibility complex can be considered candidates for determining the genetic predisposition to infectious diseases themselves and their course. This review hypothesizes that specific variants of HLA genes may cause the formation of a «cytokine storm» in patients with COVID-19. Identification of a group of patients with particular genetic variations that cause violation of immune tolerance and hyperresponse in the setting of viral infection will help to optimize the algorithm for disease prevention and treatment of such patients and, as a result, to reduce the severity of the epidemiological situation.
Collapse
|
3
|
Classical HLA alleles tag SNP in families from Antioquia with type 1 diabetes mellitus. BIOMEDICA 2018; 38:329-337. [PMID: 30335238 DOI: 10.7705/biomedica.v38i3.3768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 12/05/2017] [Indexed: 11/21/2022]
Abstract
Introduction: The HLA region strongly associates with autoimmune diseases, such as type 1 diabetes. An alternative way to test classical HLA alleles is by using tag SNP. A set of tag SNP for several classical HLA alleles has been reported as associated with susceptibility or resistance to this disease in Europeans.
Objective: We aimed at validating the methodology based on tag SNP focused on the inference of classical HLA alleles, and at evaluating their association with type 1 diabetes mellitus in a sample of 200 families from Antioquia.
Materials and methods: We studied a sample of 200 families from Antioquia. Each family had one or two children with T1D. We genotyped 13 SNPs using tetra-primer ARMS-PCR or PCRRFLP. In addition, we tested the validity of the tag SNP reported for Europeans in 60 individuals from a population of Colombians living in Medellín (CLM) from the 1000 Genomes Project database. Statistical analyses included the Hardy-Weinberg equilibrium, the transmission disequilibrium and the linkage disequilibrium tests.
Results: The linkage disequilibrium was low in reported tag SNP and classical HLA alleles in this CLM population. Association analyses revealed both risk and protection factors to develop type 1 diabetes mellitus. Appropriate tag SNPs for the CLM population were determined by using the genotype information available in the 1000 Genome Project database.
Conclusions: Although linkage disequilibrium patterns in this CLM population were different from those reported in Europeans, we did find strong evidence of the role of HLA in the development of type 1 diabetes mellitus in the study population.
Collapse
|
4
|
Agarwal A, Ingham SA, Harkins KA, Do DV, Nguyen QD. The role of pharmacogenetics and advances in gene therapy in the treatment of diabetic retinopathy. Pharmacogenomics 2016; 17:309-20. [PMID: 26807609 DOI: 10.2217/pgs.15.173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Diabetic retinopathy (DR) and its complications such as diabetic macular edema continue to remain a major cause for legal blindness in the developed world. While the introduction of anti-tVEGF agents has significantly improved visual outcomes of patients with DR, unpredictable response, largely due to genetic polymorphisms, appears to be a challenge with this therapy. With advances in identification of various genetic biomarkers, novel therapeutic strategies consisting of gene transfer are being developed and tested for patients with DR. Application of pharmacogenetic principles appears to be a promising futuristic strategy to attenuate diabetes-mediated retinal vasculopathy. In this comprehensive review, data from recent studies in the field of pharmacogenomics for the treatment of DR have been provided.
Collapse
Affiliation(s)
- Aniruddha Agarwal
- Ocular Imaging Research & Reading Center (OIRRC), Stanley M. Truhlsen Eye Institute, University of Nebraska Medical Center, South 42nd Street & Emile St, Omaha, NE 68198, USA
| | - Sally A Ingham
- College of Medicine, University of Nebraska Medical Center, South 42nd Street & Emile St, Omaha, NE 68198, USA
| | - Keegan A Harkins
- Stanley M. Truhlsen Eye Institute, University of Nebraska Medical Center, South 42nd Street & Emile St, Omaha, NE 68198, USA
| | - Diana V Do
- Ocular Imaging Research & Reading Center (OIRRC), Stanley M. Truhlsen Eye Institute, University of Nebraska Medical Center, South 42nd Street & Emile St, Omaha, NE 68198, USA.,Stanley M. Truhlsen Eye Institute, University of Nebraska Medical Center, South 42nd Street & Emile St, Omaha, NE 68198, USA
| | - Quan Dong Nguyen
- Ocular Imaging Research & Reading Center (OIRRC), Stanley M. Truhlsen Eye Institute, University of Nebraska Medical Center, South 42nd Street & Emile St, Omaha, NE 68198, USA.,Stanley M. Truhlsen Eye Institute, University of Nebraska Medical Center, South 42nd Street & Emile St, Omaha, NE 68198, USA
| |
Collapse
|
5
|
de Sorrentino AH, Young M, Marinic K, Motta PF, Baruzzo C. HLA Class I and II study in a mestizo family with high incidence of autoimmune disease. ACTA ACUST UNITED AC 2013; 9:365-8. [PMID: 23465840 DOI: 10.1016/j.reuma.2012.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 11/21/2012] [Accepted: 11/29/2012] [Indexed: 01/22/2023]
Abstract
There are many factors that influence the pathogenesis of autoimmune disease of which host genetic factors play an important role. The aim of this study was to investigate the HLA Class I and II genes in a family with a high incidence of AID to establish whether they contribute to the development of these disease. Four of them had been diagnosed with SLE and one with AHA. The patients with SLE showed the presence of HLA-A*02 B*40 DRB1*04:07 DQB1*03:02 haplotype with a high statistical significance. This haplotype was not present in the healthy individuals and in the patient with AHA, although the DRB1*04:07 DQB1*03:02 haplotype (carried by both parents) was found in the AHA patients and one of the healthy individuals. We must consider how HLA Class I in linkage disequilibrium with HLA Class II may be involved in susceptibility or in the development of SLE. An extensive study in this population should be conducted to establish the true participation of the HLA Class I region.
Collapse
|
6
|
Baker PR, Baschal EE, Fain PR, Nanduri P, Triolo TM, Siebert JC, Armstrong TK, Babu SR, Rewers MJ, Gottlieb PA, Barker JM, Eisenbarth GS. Dominant suppression of Addison's disease associated with HLA-B15. J Clin Endocrinol Metab 2011; 96:2154-62. [PMID: 21565792 PMCID: PMC3135206 DOI: 10.1210/jc.2010-2964] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 04/19/2011] [Indexed: 11/19/2022]
Abstract
CONTEXT Autoimmune Addison's disease (AD) is the major cause of primary adrenal failure in developed nations. Autoantibodies to 21-hydroxylase (21OH-AA) are associated with increased risk of progression to AD. Highest genetic risk is associated with the Major Histocompatibility region (MHC), specifically human leukocyte antigen (HLA)-DR3 haplotypes (containing HLA-B8) and HLA-DR4. OBJECTIVE The objective of the study was the further characterization of AD risk associated with MHC alleles. DESIGN, SETTING, AND PARTICIPANTS MHC genotypes were determined for HLA-DRB1, DQA1, DQB1, MICA, HLA-B, and HLA-A in 168 total individuals with 21OH-AA (85 with AD at referral and 83 with positive 21OH-AA but without AD at referral). MAIN OUTCOME MEASURE(S) Genotype was evaluated in 21OH-AA-positive individuals. Outcomes were compared with general population controls and type 1 diabetes patients. RESULTS In HLA-DR4+ individuals, HLA-B15 was found in only one of 55 (2%) with AD vs. 24 of 63 (40%) 21OH-AA-positive nonprogressors (P = 2 × 10(-7)) and 518 of 1558 (33%) HLA-DR4 patients with type 1 diabetes (P = 1 × 10(-8)). On prospective follow-up, none of the HLA-B15-positive, 21-hydroxylase-positive individuals progressed to AD vs. 25% non-HLA-B15 autoantibody-positive individuals by life table analysis (P = 0.03). Single nucleotide polymorphism analysis revealed the HLA-DR/DQ region associated with risk and HLA-B15 were separated by multiple intervening single-nucleotide polymorphism haplotypes. CONCLUSIONS HLA-B15 is not associated with protection from 21OH-AA formation but is associated with protection from progression to AD in 21OH-AA-positive individuals. To our knowledge, this is one of the most dramatic examples of genetic disease suppression in individuals who already have developed autoantibodies and of novel dominant suppression of an autoimmune disease by a class I HLA allele.
Collapse
Affiliation(s)
- Peter R Baker
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado 80045-6511, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Glawe JD, Patrick DR, Huang M, Sharp CD, Barlow SC, Kevil CG. Genetic deficiency of Itgb2 or ItgaL prevents autoimmune diabetes through distinctly different mechanisms in NOD/LtJ mice. Diabetes 2009; 58:1292-301. [PMID: 19223596 PMCID: PMC2682677 DOI: 10.2337/db08-0804] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Insulitis is an important pathological feature of autoimmune diabetes; however, mechanisms governing the recruitment of diabetogenic T-cells into pancreatic islets are poorly understood. Here, we determined the importance of leukocyte integrins beta(2)(Itgb2) and alphaL (ItgaL) in developing insulitis and frank diabetes. RESEARCH DESIGN AND METHODS Gene-targeted mutations of either Itgb2 or ItgaL were established on the NOD/LtJ mouse strain. Experiments were performed to measure insulitis and diabetes development. Studies were also performed measuring mutant T-cell adhesion to islet microvascular endothelial cells under hydrodynamic flow conditions. T-cell adhesion molecule profiles and adoptive transfer studies were also performed. RESULTS Genetic deficiency of either Itgb2 or ItgaL completely prevented the development of hyperglycemia and frank diabetes in NOD mice. Loss of Itgb2 or ItgaL prevented insulitis with Itgb2 deficiency conferring complete protection. In vitro hydrodynamic flow adhesion studies also showed that loss of Itgb2 completely abrogated T-cell adhesion. However, ItgaL deficiency did not alter NOD T-cell adhesion to or transmigration across islet endothelial cells. Adoptive transfer of ItgaL-deficient splenocytes into NOD/Rag-1 mice did not result in development of diabetes, suggesting a role for ItgaL in NOD/LtJ T-cell activation. CONCLUSIONS Together, these data demonstrate that genetic deficiency of Itgb2 or ItgaL confers protection against autoimmune diabetes through distinctly different mechanisms.
Collapse
Affiliation(s)
- John D. Glawe
- Department of Pathology, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana
| | - D. Ross Patrick
- Department of Pathology, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana
| | - Meng Huang
- Department of Pathology, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana
| | - Christopher D. Sharp
- Department of Pathology, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana
| | - Shayne C. Barlow
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Christopher G. Kevil
- Department of Pathology, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana
- Corresponding author: Christopher Kevil,
| |
Collapse
|
8
|
Abstract
Following their discovery in the early 1970s, classical human leukocyte antigen (HLA) loci have been the prototypical candidates for genetic susceptibility to infectious disease. Indeed, the original hypothesis for the extreme variability observed at HLA loci (H-2 in mice) was the major selective pressure from infectious diseases. Now that both the human genome and the molecular basis of innate and acquired immunity are understood in greater detail, do the classical HLA loci still stand out as major genes that determine susceptibility to infectious disease? This review looks afresh at the evidence supporting a role for classical HLA loci in susceptibility to infectious disease, examines the limitations of data reported to date, and discusses current advances in methodology and technology that will potentially lead to greater understanding of their role in infectious diseases in the future.
Collapse
Affiliation(s)
- Jenefer M Blackwell
- Telethon Institute for Child Health Research, Centre for Child Health Research, The University of Western Australia, P.O. Box 855, West Perth, Western Australia, Australia 6872.
| | | | | |
Collapse
|
9
|
Abstract
Following their discovery in the early 1970s, classical human leukocyte antigen (HLA) loci have been the prototypical candidates for genetic susceptibility to infectious disease. Indeed, the original hypothesis for the extreme variability observed at HLA loci (H-2 in mice) was the major selective pressure from infectious diseases. Now that both the human genome and the molecular basis of innate and acquired immunity are understood in greater detail, do the classical HLA loci still stand out as major genes that determine susceptibility to infectious disease? This review looks afresh at the evidence supporting a role for classical HLA loci in susceptibility to infectious disease, examines the limitations of data reported to date, and discusses current advances in methodology and technology that will potentially lead to greater understanding of their role in infectious diseases in the future.
Collapse
Affiliation(s)
- Jenefer M Blackwell
- Telethon Institute for Child Health Research, Centre for Child Health Research, The University of Western Australia, P.O. Box 855, West Perth, Western Australia, Australia 6872.
| | | | | |
Collapse
|
10
|
Kingsmore SF, Lindquist IE, Mudge J, Gessler DD, Beavis WD. Genome-wide association studies: progress and potential for drug discovery and development. Nat Rev Drug Discov 2008; 7:221-30. [PMID: 18274536 PMCID: PMC2853477 DOI: 10.1038/nrd2519] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although genetic studies have been critically important for the identification of therapeutic targets in Mendelian disorders, genetic approaches aiming to identify targets for common, complex diseases have traditionally had much more limited success. However, during the past year, a novel genetic approach - genome-wide association (GWA) - has demonstrated its potential to identify common genetic variants associated with complex diseases such as diabetes, inflammatory bowel disease and cancer. Here, we highlight some of these recent successes, and discuss the potential for GWA studies to identify novel therapeutic targets and genetic biomarkers that will be useful for drug discovery, patient selection and stratification in common diseases.
Collapse
Affiliation(s)
- Stephen F Kingsmore
- National Center for Genome Resources, 2935 Rodeo Park Drive East, Santa Fe, New Mexico 87505, USA.
| | | | | | | | | |
Collapse
|
11
|
Lutale JJK, Thordarson H, Holm PI, Eide GE, Vetvik K. Islet cell autoantibodies in African patients with Type 1 and Type 2 diabetes in Dar es Salaam Tanzania: a cross sectional study. JOURNAL OF AUTOIMMUNE DISEASES 2007; 4:4. [PMID: 17963519 PMCID: PMC2147002 DOI: 10.1186/1740-2557-4-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Accepted: 10/27/2007] [Indexed: 11/10/2022]
Abstract
Background The aim of the present study was to assess the occurrence of glutamic acid decarboxylase autoantibodies (GADA) and insulinoma antigen 2 autoantibodies (IA2A) among patients of African origin in Dar es Salaam, Tanzania and to compare the occurrence of autoimmune mediated Type 1 diabetes with findings previously reported from the same place and from other African diabetic populations. Methods Two hundred and forty five patients from the diabetic clinic at Muhimbili Hospital were recruited for a cross sectional study. Patients were clinically classified into groups with Type 1 (T1D) and Type 2 diabetes (T2D); there were 94 patients with T1D and 151 with T2D. Autoantibodies for GAD and IA2 were measured with an assay based on radioligand binding. Fasting and random blood glucose, HbA1c, and C-peptide levels were also determined. Results Of the patients with T1D, 28 (29.8%) were GADA positive and 20 (21.3%) were IA2A positive. The overall occurrence of any autoantibody was 42.6%. The GAD and IA2 autoantibodies were detected more frequently among patients with T1D than among patients with T2D (P < 0.001). A higher autoantibody prevalence was observed with combined GADA and IA2A measurements compared to individual autoantibody measurements; 40 (42.6%) patients with T1D versus 11 (7.3%) with T2D had at least one positive autoantibody titer. There was no correlation between duration of disease and detection of autoantibodies in patients with T1D. There was a strong association with family history of diabetes among the autoantibody positive versus autoantibody negative patients with T1D (p < 0.01). Conclusion The prevalence of GAD and IA2 autoantibodies among African patients with T1D in Dar es Salaam was the same as that reported previously for South Africa and Ethiopia. It was much higher than the prevalence of islet cell autoantibodies (ICA) reported from the same clinic about 15 years ago. For unknown reasons the prevalence of pancreatic related autoantibodies in this African population is lower than the prevalence found among Caucasian populations.
Collapse
Affiliation(s)
- J J K Lutale
- Institute of Medicine, Division of Haraldsplass Deaconal Hospital, University of Bergen, Norway.
| | | | | | | | | |
Collapse
|