1
|
Sarıkaya B, Kolay E, Guney-Coskun M, Yiğit-Ziolkowski A, Aktaç Ş. The Effect of Black Chokeberry (Aronia melanocarpa) on Human Inflammation Biomarkers and Antioxidant Enzymes: A Systematic Review of Randomized Controlled Trials. Nutr Rev 2025; 83:1083-1098. [PMID: 39499790 DOI: 10.1093/nutrit/nuae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
Abstract
CONTEXT Consuming antioxidant-rich foods has been associated with potential benefits in managing chronic diseases by reducing oxidative stress and inflammation. OBJECTIVE This systematic review aimed to evaluate the effects of Aronia melanocarpa (aronia berry or chokeberry) on human inflammation biomarkers and antioxidant enzymes. DATA SOURCES A systematic search was conducted across multiple databases, including PubMed, Scopus, Science Direct, and Web of Science, to identify relevant studies investigating the potential effects of aronia on human inflammation biomarkers and antioxidant enzymes between April 2022 and November 2023. DATA EXTRACTION The selection of studies followed the PRISMA guidelines, data screening was conducted by 4 independent reviewers, and data extraction and risk-of-bias assessments were performed by 2 independent reviewers using the Cochrane Risk of Bias 2 tool. DATA ANALYSIS A total of 1986 studies were screened, and 18 studies that met the inclusion criteria were included in a systematic review that investigated the anti-inflammatory effects of aronia on various health parameters. These studies primarily focused on the effects of aronia on cardiometabolic diseases, performance in sport, and other health parameters. CONCLUSIONS This study examined the effects of Aronia intervention on human health outcomes using aronia juice, extract, or oven-dried powder for a period of 4 to 13 weeks. The primary health parameters considered were C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), interleukin-8 (IL-8), interleukin-10 (IL-10), interleukin-1ß (IL-1ß), superoxide dismutase (SOD), catalase (CAT), and reduced glutathione peroxidase (GSH-Px). The results showed that aronia had a beneficial effect on several inflammatory cytokines, including reductions in CRP, TNF-α and IL-6 concentrations, as well as elevated IL-10 levels. Moreover, positive changes have been observed in antioxidant enzyme systems, including; elevated SOD, GSH-Px and CAT activity. The findings of the presented studies provide evidence that Aronia melanocarpa may have beneficial effects on inflammatory markers. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration No. CRD42022325633.
Collapse
Affiliation(s)
- Buse Sarıkaya
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Amasya University, Amasya 05100, Turkey
| | - Ezgi Kolay
- Dietitian, Independent Nutrition Reseacher, Istanbul 34000, Turkey
| | - Merve Guney-Coskun
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Medipol University, Istanbul 34810, Turkey
| | - Aslı Yiğit-Ziolkowski
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Poznan 60-632, Poland
| | - Şule Aktaç
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Marmara University, Istanbul 34854, Turkey
| |
Collapse
|
2
|
Frumuzachi O, Mocan A, Rohn S, Gavrilaș L. Impact of a Chokeberry ( Aronia melanocarpa (Michx.) Elliott) Supplementation on Cardiometabolic Outcomes: A Critical Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2025; 17:1488. [PMID: 40362797 PMCID: PMC12073822 DOI: 10.3390/nu17091488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/26/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025] Open
Abstract
Background/Objectives: Chokeberry (Aronia melanocarpa (Michx.) Elliott) is a (poly)phenol-rich fruit with purported cardiometabolic benefits. However, the evidence from randomized controlled trials (RCTs) remains inconclusive. This systematic review and meta-analysis aimed to assess the effects of chokeberry supplementation on cardiometabolic outcomes, including anthropometric parameters, glycemic control, lipid profile, and blood pressure in adults. Methods: A systematic literature search was conducted in PubMed, Scopus, and Web of Science through January 2025. RCTs investigating chokeberry supplementation (≥2 weeks) in adults (≥18 years) with or without cardiometabolic risk factors were included. A random effects model was used to pool effect sizes, expressed as standardized mean differences (SMDs) with 95% confidence intervals (CIs). Heterogeneity was assessed using the I2 statistic, and risk of bias was evaluated with the Cochrane risk of bias 1 (RoB 1) tool. Trial sequential analysis (TSA) was performed to assess the conclusiveness of the evidence. Certainty of evidence was rated using GRADE. Results: Ten RCTs (n = 666 participants) met the inclusion criteria. Chokeberry supplementation had no significant effects on cardiometabolic outcomes under evaluation. Subgroup analysis suggested that a chokeberry supplementation could reduce total cholesterol and LDL-C in individuals with a baseline total plasma cholesterol <200 mg/dL, and systolic blood pressure with interventions, containing >50 mg/day anthocyanin, while increasing fasting blood glucose in individuals ≤50 years old. Risk of bias was unclear or high in several studies, TSA indicated inconclusive evidence for most outcomes, and the certainty of evidence was rated as very low across all cardiometabolic markers. Conclusions: Chokeberry supplementation did not significantly improve cardiometabolic outcomes in the general adult population. Limited evidence is given for potential lipid-lowering and blood pressure effects in specific subgroups. However, a high risk of bias accompanies these results. More robust RCTs with standardized interventions and dietary assessments are needed.
Collapse
Affiliation(s)
- Oleg Frumuzachi
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany;
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337 Cluj-Napoca, Romania;
| | - Andrei Mocan
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337 Cluj-Napoca, Romania;
| | - Sascha Rohn
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany;
| | - Laura Gavrilaș
- Department 2, Faculty of Nursing and Health Sciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337 Cluj-Napoca, Romania;
| |
Collapse
|
3
|
Wang J, Hao J, Wang J, Wang S, Fan Z. Preparation of Functional Food with Enhanced Antioxidant Properties by Adding Aronia melanocarpa Polyphenol Honey. Foods 2024; 13:3852. [PMID: 39682923 DOI: 10.3390/foods13233852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
To enhance the functionality of honey, particularly its antioxidant capacity, the incorporation of Aronia melanocarpa polyphenols (AMPs) is an effective approach. The preparation technology and antioxidant activity of AMP added to honey were studied. AMP was extracted with ethanol and its components were analyzed and then mixed evenly with honey in different addition amounts (0.1~0.5% w/w). The product was characterized based on the active ingredients (total phenols, total flavonoids, and anthocyanin content) and antioxidant activity (DPPH, ABTS, and reducing power) during storage to obtain the optimal storage time. The optimal polyphenol addition amount was determined by combining honey enzyme activity (amylase, glucose oxidase, and sucrase), sensory evaluation, and acute cell toxicity experiments. The optimal preparation process is an addition of 0.4% AMP and a storage time of 14 days or more. The active ingredients of the product are positively correlated with the AMP addition, and the antioxidant activity is significantly improved (from two to eight times). AMP exhibits a notable inhibitory effect on enzyme activity, with concentrations ranging from 0.1% to 0.4%, resulting in enzyme activity levels in honey remaining at 75% or higher. Honey samples containing 0.1% to 0.5% AMP exhibit minimal to no acute toxicity to cells. AMP can improve the nutritional value of honey, imparting unique color and flavor while enhancing its antioxidant activity. As such, it holds significant potential as a novel functional food.
Collapse
Affiliation(s)
- Jingyi Wang
- School of Life Sciences, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Jiahui Hao
- School of Life Sciences, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Jie Wang
- School of Life Sciences, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Siyu Wang
- School of Life Sciences, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Ziluan Fan
- School of Life Sciences, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China
- Key Laboratory of Forest Food Resources Utilization, Harbin 150040, China
| |
Collapse
|
4
|
Frumuzachi O, Rohn S, Mocan A. Fermented black chokeberry (Aronia melanocarpa (Michx.) Elliott) products - A systematic review on the composition and current scientific evidence of possible health benefits. Food Res Int 2024; 196:115094. [PMID: 39614570 DOI: 10.1016/j.foodres.2024.115094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/18/2024] [Accepted: 09/12/2024] [Indexed: 12/01/2024]
Abstract
Black chokeberry (Aronia melanocarpa (Michx.) Elliott) is recognized for its potential health benefits, largely attributed to its high phenolic content. However, many phenolic compounds possess a low bioavailability, potentially limiting their beneficial effects. Fermentation of chokeberry has been proposed as a method to improve bioavailability, bioactive composition, sensory qualities, and nutritional value. This systematic review provides an overview of fermented chokeberry products, including compound composition, sensory attributes, and health benefits observed in in vivo and in vitro studies. While sensory evaluations highlighted diverse flavour profiles and acceptability, human intervention studies suggested potential benefits for glucose-dependent insulinotropic peptide increase. Animal models indicated anti-obesity and immunomodulatory properties, while in vitro studies demonstrate antioxidant, anti-melanogenesis, and anti-diabetic effects. Despite some promising findings in human and animal trials, challenges such as participant adherence and dosing inconsistencies force further protocol improvements. Through continuous scientific research, fermented chokeberry products may emerge as functional foods contributing to human health.
Collapse
Affiliation(s)
- Oleg Frumuzachi
- Technische Universität Berlin, Institute of Food Technology and Food Chemistry, Gustav-Meyer-Allee 25, 13355 Berlin, Germany; Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania.
| | - Sascha Rohn
- Technische Universität Berlin, Institute of Food Technology and Food Chemistry, Gustav-Meyer-Allee 25, 13355 Berlin, Germany.
| | - Andrei Mocan
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania; Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
| |
Collapse
|
5
|
Jelska A, Polecka A, Zahorodnii A, Olszewska E. The Role of Oxidative Stress and the Potential Therapeutic Benefits of Aronia melanocarpa Supplementation in Obstructive Sleep Apnea Syndrome: A Comprehensive Literature Review. Antioxidants (Basel) 2024; 13:1300. [PMID: 39594442 PMCID: PMC11591145 DOI: 10.3390/antiox13111300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/12/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Obstructive sleep apnea (OSA) is a sleep disorder characterized by repeated episodes of apnea and hypopnea, leading to inflammation and oxidative stress that contribute to numerous health complications, including cardiovascular diseases. Continuous positive airway pressure (CPAP) is a standard for treating OSA and is effective in reducing inflammation and oxidative stress. Aronia melanocarpa (a black chokeberry), a deciduous shrub belonging to the Rosaceae family and native to eastern North America that is rich in polyphenols, has garnered attention for its therapeutic potential due to its ability to neutralize reactive oxygen species (ROS) and modulate inflammatory pathways, such as NF-κB. This review supports the hypothesis that combining CPAP with black chokeberry supplementation might provide a more comprehensive approach to treating OSA, reducing the risk of health complications by further reducing oxidative stress. In conclusion, Aronia melanocarpa has potential benefits as an adjunct therapy in the treatment of OSA, enhancing overall health and well-being. This review compiles the latest scientific findings on the benefits of black chokeberry supplementation, its application in OSA treatment, and its potential use in the treatment of other conditions linked to oxidative stress.
Collapse
Affiliation(s)
- Alicja Jelska
- Doctoral School, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.P.)
| | - Agnieszka Polecka
- Doctoral School, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.P.)
| | - Andrii Zahorodnii
- Doctoral School, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.P.)
| | - Ewa Olszewska
- Department of Otolaryngology, Sleep Apnea Surgery Center, Medical University of Bialystok, 15-089 Bialystok, Poland
| |
Collapse
|
6
|
Lackner S, Mahnert A, Moissl-Eichinger C, Madl T, Habisch H, Meier-Allard N, Kumpitsch C, Lahousen T, Kohlhammer-Dohr A, Mörkl S, Strobl H, Holasek S. Interindividual differences in aronia juice tolerability linked to gut microbiome and metabolome changes-secondary analysis of a randomized placebo-controlled parallel intervention trial. MICROBIOME 2024; 12:49. [PMID: 38461313 PMCID: PMC10924357 DOI: 10.1186/s40168-024-01774-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/05/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Aronia melanocarpa is a berry rich in polyphenols known for health benefits. However, the bioavailability of polyphenols has been questioned, and the individual taste acceptance of the fruit with its specific flavor varies. We recently observed substantial differences in the tolerability of aronia juice among healthy females, with half of the individuals tolerating aronia juice without complaints. Given the importance of the gut microbiome in food digestion, we investigated in this secondary analysis of the randomized placebo-controlled parallel intervention study (ClinicalTrials.gov registration: NCT05432362) if aronia juice tolerability was associated with changes in intestinal microbiota and bacterial metabolites, seeking for potential mechanistic insights into the impact on aronia polyphenol tolerance and metabolic outcomes. RESULTS Forty females were enrolled for this 6-week trial, receiving either 100 ml natural aronia juice (verum, V) twice daily or a polyphenol-free placebo (P) with a similar nutritional profile, followed by a 6-week washout. Within V, individuals were categorized into those who tolerated the juice well (Vt) or reported complaints (Vc). The gut microbiome diversity, as analyzed by 16S rRNA gene-based next-generation sequencing, remained unaltered in Vc but changed significantly in Vt. A MICOM-based flux balance analysis revealed pronounced differences in the 40 most predictive metabolites post-intervention. In Vc carbon-dioxide, ammonium and nine O-glycans were predicted due to a shift in microbial composition, while in Vt six bile acids were the most likely microbiota-derived metabolites. NMR metabolomics of plasma confirmed increased lipoprotein subclasses (LDL, VLDL) post-intervention, reverting after wash out. Stool samples maintained a stable metabolic profile. CONCLUSION In linking aronia polyphenol tolerance to gut microbiota-derived metabolites, our study explores adaptive processes affecting lipoprotein profiles during high polyphenol ingestion in Vt and examines effects on mucosal gut health in response to intolerance to high polyphenol intake in Vc. Our results underpin the importance of individualized hormetic dosing for beneficial polyphenol effects, demonstrate dynamic gut microbiome responses to aronia juice, and emphasize personalized responses in polyphenol interventions.
Collapse
Affiliation(s)
- Sonja Lackner
- Division of Immunology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Stiftingtalstraße 6, 8010, Graz, Austria
| | - Alexander Mahnert
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Christine Moissl-Eichinger
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010, Graz, Austria
| | - Tobias Madl
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010, Graz, Austria
| | - Hansjörg Habisch
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Nathalie Meier-Allard
- Division of Immunology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Stiftingtalstraße 6, 8010, Graz, Austria
| | - Christina Kumpitsch
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Theresa Lahousen
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036, Graz, Austria
| | - Alexandra Kohlhammer-Dohr
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036, Graz, Austria
| | - Sabrina Mörkl
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Auenbruggerplatz 3, 8036, Graz, Austria
| | - Herbert Strobl
- Division of Immunology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Stiftingtalstraße 6, 8010, Graz, Austria
| | - Sandra Holasek
- Division of Immunology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Stiftingtalstraße 6, 8010, Graz, Austria.
| |
Collapse
|
7
|
Sirca TB, Mureșan ME, Pallag A, Marian E, Jurca T, Vicaș LG, Tunduc IP, Manole F, Ștefan L. The Role of Polyphenols in Modulating PON1 Activity Regarding Endothelial Dysfunction and Atherosclerosis. Int J Mol Sci 2024; 25:2962. [PMID: 38474211 DOI: 10.3390/ijms25052962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/24/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
The incidence and prevalence of cardiovascular diseases are still rising. The principal mechanism that drives them is atherosclerosis, an affection given by dyslipidemia and a pro-inflammatory state. Paraoxonase enzymes have a protective role due to their ability to contribute to antioxidant and anti-inflammatory pathways, especially paraoxonase 1 (PON1). PON1 binds with HDL (high-density lipoprotein), and high serum levels lead to a protective state against dyslipidemia, cardiovascular diseases, diabetes, stroke, nonalcoholic fatty liver disease, and many others. Modulating PON1 expression might be a treatment objective with significant results in limiting the prevalence of atherosclerosis. Lifestyle including diet and exercise can raise its levels, and some beneficial plants have been found to influence PON1 levels; therefore, more studies on herbal components are needed. Our purpose is to highlight the principal roles of Praoxonase 1, its implications in dyslipidemia, cardiovascular diseases, stroke, and other diseases, and to emphasize plants that can modulate PON1 expression, targeting the potential of some flavonoids that could be introduced as supplements in our diet and to validate the hypothesis that flavonoids have any effects regarding PON1 function.
Collapse
Affiliation(s)
- Teodora Bianca Sirca
- Doctoral School of Biomedical Sciences, University of Oradea, No. 1 University Street, 410087 Oradea, Romania
| | - Mariana Eugenia Mureșan
- Doctoral School of Biomedical Sciences, University of Oradea, No. 1 University Street, 410087 Oradea, Romania
| | - Annamaria Pallag
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania
| | - Eleonora Marian
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania
| | - Tunde Jurca
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania
| | - Laura Grațiela Vicaș
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania
| | - Ioana Paula Tunduc
- Department of Cardiology, Clinical County Emergency Hospital of Bihor, Gheorghe Doja Street 65-67, 410169 Oradea, Romania
| | - Felicia Manole
- Department of Surgery, Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, 410073 Oradea, Romania
| | - Liana Ștefan
- Department of Surgery, Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, 410073 Oradea, Romania
| |
Collapse
|
8
|
Fočak M, Mitrašinović-Brulić M, Suljević D. Aronia melanocarpa (Michx.) Elliott 1821 Extract Has Moderate Ameliorative Influence on Biochemical and Hematological Parameters in Gentamicin-Induced Nephropathy in Wistar Rats. Appl Biochem Biotechnol 2024; 196:896-908. [PMID: 37256488 DOI: 10.1007/s12010-023-04573-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 06/01/2023]
Abstract
Gentamicin (GM) is an aminoglycoside antibiotic used to treat bacterial infections. Nephrotoxicity refers to the impairments of the kidneys caused by the use of GM and can result in decreased kidney function and in severe cases, kidney failure. Aronia melanocarpa extract (AME), also known as the black chokeberry, has been used for its protective effects on the kidneys. AME concentration of 3.38 mg/kg (max antioxidant activity in vitro) was used to determine its effectiveness against induced nephropathy during 30 days. GM treatment caused significant hypoalbuminemia and high values of globulins, creatinine, and urea compared to the control group. GM application lead to hemolysis occurrence, echinocytosis, and platelets aggregation. Significantly high values of segmented neutrophils and low values of non-segmented neutrophils were recorded in the blood of rats treated with chokeberry extract (AME). In the pre-treatment (AME + GM), severe hypochromic anemia and a significant improvement in hematological parameters, as well as a reduction of anemia in the post-treatment (GM + AME), were noted. Post-treatment AME also significantly regulates urea and creatinine values. Statistically significantly low hemoglobin values were found in all groups treated with AME. Current study suggests that compounds in the AME have a moderate beneficial effect against renal injury and anti-inflammatory properties that may help protect the kidneys from injury caused by GM.
Collapse
Affiliation(s)
- Muhamed Fočak
- Department of Biology, Faculty of Science, University of Sarajevo, Zmaja Od Bosne 33-35, 71 000, Sarajevo, Bosnia and Herzegovina.
| | - Maja Mitrašinović-Brulić
- Department of Biology, Faculty of Science, University of Sarajevo, Zmaja Od Bosne 33-35, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Damir Suljević
- Department of Biology, Faculty of Science, University of Sarajevo, Zmaja Od Bosne 33-35, 71 000, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
9
|
Christiansen CB, Jeppesen PB, Hermansen K, Gregersen S. The Impact of an 8-Week Supplementation with Fermented and Non-Fermented Aronia Berry Pulp on Cardiovascular Risk Factors in Individuals with Type 2 Diabetes. Nutrients 2023; 15:5094. [PMID: 38140354 PMCID: PMC10745664 DOI: 10.3390/nu15245094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Aronia berries contain antioxidants that may be health-promoting, e.g., demonstrated positive effects on hypertension and dyslipidaemia. There is a close link between cardiovascular diseases and hypertension and dyslipidaemia, and cardiovascular events are the leading cause of death among subjects with type 2 diabetes (T2D). Thus, we investigated the effect of an 8-week supplementation with fermented aronia extract (FAE), non-fermented aronia extract (AE), and placebo on cardiovascular risk factors. Snack bars were produced containing 34 g (37%) aronia extract, or 17 g (21%) wheat bran for placebo, as well as raisins and coconut oil. The study was randomized and blinded with a triple-crossover design. We examined the effects of aronia extracts on blood pressure, adiponectin, and high-sensitive C-reactive protein, and found no effects. After supplementation with placebo, there were significantly higher blood concentrations of total cholesterol, LDL-cholesterol, and HDL-cholesterol, with the placebo group showing significantly higher increases in total cholesterol and LDL-cholesterol than the AE group. Furthermore, we observed an increase in HDL-cholesterol in the FAE group and an increase in triglyceride in the AE group. Thus, we assume that the raisins may have increased the participants' cholesterol levels, with both AE and FAE having the potential to prevent this increase.
Collapse
Affiliation(s)
- Christine B. Christiansen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, 8200 Aarhus N, Denmark; (P.B.J.); (K.H.); (S.G.)
| | - Per B. Jeppesen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, 8200 Aarhus N, Denmark; (P.B.J.); (K.H.); (S.G.)
| | - Kjeld Hermansen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, 8200 Aarhus N, Denmark; (P.B.J.); (K.H.); (S.G.)
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Søren Gregersen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, 8200 Aarhus N, Denmark; (P.B.J.); (K.H.); (S.G.)
- Steno Diabetes Center Aarhus, Palle Juul-Jensens Boulevard 11, 8200 Aarhus N, Denmark
| |
Collapse
|
10
|
Christiansen CB, Jeppesen PB, Hermansen K, Gregersen S. Aronia in the Type 2 Diabetes Treatment Regimen. Nutrients 2023; 15:4188. [PMID: 37836472 PMCID: PMC10574687 DOI: 10.3390/nu15194188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
Aronia melanocarpa berries are rich in antioxidants and possess a high antioxidant capacity. Aronia berries have shown potential in type 2 diabetes mellitus (T2DM) treatment, and previous studies indicate improvements in glycemia after supplementation. Unfortunately, the effectiveness of aronia berries is limited by the low bioavailability of aronia, which fermentation could potentially overcome. The objective of this study was to compare the effects of fermented or non-fermented aronia pulp with placebo in subjects with T2DM. This study was a triple-blinded, triple-crossover study with eight-week intervention periods with fermented aronia extract (FAE), non-fermented aronia extract (AE), and placebo. Extracts were incorporated in snack bars with 37% aronia (FAE or AE) or wheat bran (placebo) and 63% raisins and coconut oil. Pre- and post-treatment period, we did fasting blood samples, including hemoglobin A1c, fructosamine, insulin, glucose, glucagon-like peptide-1, glucose-dependent insulinotropic peptide (GIP) and glucagon, oral glucose tolerance tests, and anthropometric measurements. Of 36 randomized participants, 23 completed the trial. Aside from a higher increase in GIP after FAE supplementation compared to after placebo supplementation, aronia extracts had no effect. The increase in GIP levels after FAE supplementation may hold potential benefits, but the overall clinical impact remains unclear.
Collapse
Affiliation(s)
- Christine B. Christiansen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, 8200 Aarhus N, Denmark; (P.B.J.); (K.H.); (S.G.)
| | - Per B. Jeppesen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, 8200 Aarhus N, Denmark; (P.B.J.); (K.H.); (S.G.)
| | - Kjeld Hermansen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, 8200 Aarhus N, Denmark; (P.B.J.); (K.H.); (S.G.)
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Søren Gregersen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, 8200 Aarhus N, Denmark; (P.B.J.); (K.H.); (S.G.)
- Steno Diabetes Center Aarhus, Palle Juul-Jensens Boulevard 11, 8200 Aarhus N, Denmark
| |
Collapse
|
11
|
Sangild J, Faldborg A, Schousboe C, Fedder MDK, Christensen LP, Lausdahl AK, Arnspang EC, Gregersen S, Jakobsen HB, Knudsen UB, Fedder J. Effects of Chokeberries ( Aronia spp.) on Cytoprotective and Cardiometabolic Markers and Semen Quality in 109 Mildly Hypercholesterolemic Danish Men: A Prospective, Double-Blinded, Randomized, Crossover Trial. J Clin Med 2023; 12:jcm12010373. [PMID: 36615174 PMCID: PMC9821700 DOI: 10.3390/jcm12010373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Background: Chokeberries (Aronia spp.) are known to exhibit both direct and indirect antioxidant properties and have been associated with beneficial effects on human health, including cardiovascular risk factors (inflammation, serum lipids, sugars, blood pressure), oxidative stress, and semen quality. This prospective, double-blinded, randomized, crossover clinical trial was conducted to elucidate the effects of Aronia supplementation on these health targets in mildly hypercholesterolemic men. Methods: The standardized Aronia supplementation comprised three wild Aronia spp. (A. arbutifolia, A prunifolia and A. melanocarpa) and the Aronia hybrid × Sorbaronia mitschurinii (standardized to 150 mg anthocyanins daily). Participants (n = 109) were healthy men with respect to all outcome targets except for the total cholesterol level (5.0−7.0 mM). Participants were randomized to supplementation with either Aronia or placebo for 90 days, followed by a wash-out period and lastly the complementary supplementation. Effects on the health parameters were compared among both the whole group of men and in subgroups according to age, body mass index (BMI), lifestyle, dietary habits, and serum glutathione levels at baseline. The study is registered in ClinicalTrials.gov.: NCT03405753. Results: Glutathione levels were significantly improved after 90 days intake of Aronia supplementation compared to placebo in the subgroup of men with a low level of glutathione at baseline (p = 0.038) and a high coffee intake (p = 0.045). A significant decrease in levels of sperm DNA fragmentation and an increase in the percentage of motile sperm were observed in men aged >40 and in men with BMI > 25. Further, these parameters were significantly improved in the dietary subgroup defined by a high level of coffee intake. Total cholesterol and low-density lipoprotein-cholesterol levels decreased significantly in men <40 years after Aronia supplementation. No statistically significant effects were observed regarding blood pressure, markers of blood sugar regulation, hemoglobin A1c, superoxide dismutase, catalase, isoprostane levels, high sensitivity C reactive protein, or other semen parameters. Conclusions: This study demonstrated a significant increase in glutathione levels and improvement of cytoprotective targets following Aronia supplementation in specific subgroups of men >40 years of age and BMI > 25 but did not demonstrate a significant effect in the overall analysis. The observed concurrent increase in glutathione levels and improvement of cytoprotective targets following Aronia supplementation in subgroups of men, suggests that the endogenous phase II antioxidant glutathione is involved in the modulation of the observed cytoprotective effects. This study is a good foundation for further investigation of these cytoprotective effects in groups with oxidative stress in a dose−response study.
Collapse
Affiliation(s)
- Julie Sangild
- Department of Clinical Medicine, Aarhus University, DK-8200 Aarhus, Denmark
| | - Anne Faldborg
- Department of Clinical Medicine, Aarhus University, DK-8200 Aarhus, Denmark
| | - Cecilie Schousboe
- Department of Clinical Medicine, Aarhus University, DK-8200 Aarhus, Denmark
| | | | - Lars Porskjær Christensen
- Department of Physics, Chemistry and Pharmacy, Faculty of Science, University of Southern Denmark, DK-5230 Odense, Denmark
| | - Astrid Komal Lausdahl
- Department of Green Technology, Faculty of Engineering, University of Southern Denmark, DK-5230 Odense, Denmark
| | - Eva Christensen Arnspang
- Department of Green Technology, Faculty of Engineering, University of Southern Denmark, DK-5230 Odense, Denmark
| | - Søren Gregersen
- Department of Clinical Medicine, Aarhus University, DK-8200 Aarhus, Denmark
- Steno Diabetes Center Aarhus, DK-8200 Aarhus, Denmark
| | | | - Ulla Breth Knudsen
- Department of Clinical Medicine, Aarhus University, DK-8200 Aarhus, Denmark
- Department of Obstetrics and Gynecology, Fertility Clinic, Horsens Regional Hospital, DK-8700 Horsens, Denmark
| | - Jens Fedder
- Centre of Andrology, Fertility Clinic, Department D, Odense University Hospital, DK-5000 Odense, Denmark
- Department of Clinical Medicine, University of Southern Denmark, DK-5000 Odense, Denmark
- Correspondence:
| |
Collapse
|
12
|
Ren Y, Frank T, Meyer G, Lei J, Grebenc JR, Slaughter R, Gao YG, Kinghorn AD. Potential Benefits of Black Chokeberry ( Aronia melanocarpa) Fruits and Their Constituents in Improving Human Health. Molecules 2022; 27:molecules27227823. [PMID: 36431924 PMCID: PMC9696386 DOI: 10.3390/molecules27227823] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Aronia berry (black chokeberry) is a shrub native to North America, of which the fresh fruits are used in the food industry to produce different types of dietary products. The fruits of Aronia melanocarpa (Aronia berries) have been found to show multiple bioactivities potentially beneficial to human health, including antidiabetic, anti-infective, antineoplastic, antiobesity, and antioxidant activities, as well as heart-, liver-, and neuroprotective effects. Thus far, phenolic compounds, such as anthocyanins, cyanidins, phenolic acids, proanthocyanidins, triterpenoids, and their analogues have been identified as the major active components of Aronia berries. These natural products possess potent antioxidant activity, which contributes to the majority of the other bioactivities observed for Aronia berries. The chemical components and the potential pharmaceutical or health-promoting effects of Aronia berries have been summarized previously. The present review article focuses on the molecular targets of extracts of Aronia berries and the examples of promising lead compounds isolated from these berries, including cyanidin-3-O-galactoside, chlorogenic acid, quercetin, and ursolic acid. In addition, presented herein are clinical trial investigations for Aronia berries and their major components, including cancer clinical trials for chlorogenic acid and COVID-19 trial studies for quercetin. Additionally, the possible development of Aronia berries and their secondary metabolites as potential therapeutic agents is discussed. It is hoped that this contribution will help stimulate future investigations on Aronia berries for the continual improvement of human health.
Collapse
Affiliation(s)
- Yulin Ren
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: (Y.R.); (A.D.K.)
| | - Tyler Frank
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Gunnar Meyer
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Jizhou Lei
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Jessica R. Grebenc
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Ryan Slaughter
- OSU South Centers, The Ohio State University, Columbus, OH 43210, USA
- Department of Horticulture and Crop Science, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Yu G. Gao
- OSU South Centers, The Ohio State University, Columbus, OH 43210, USA
- Department of Horticulture and Crop Science, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - A. Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: (Y.R.); (A.D.K.)
| |
Collapse
|