1
|
Yamakawa H, Fukawa A, Yairi IE, Matsuo Y. Brain-consistent architecture for imagination. Front Syst Neurosci 2024; 18:1302429. [PMID: 39229305 PMCID: PMC11368743 DOI: 10.3389/fnsys.2024.1302429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
Background Imagination represents a pivotal capability of human intelligence. To develop human-like artificial intelligence, uncovering the computational architecture pertinent to imaginative capabilities through reverse engineering the brain's computational functions is essential. The existing Structure-Constrained Interface Decomposition (SCID) method, leverages the anatomical structure of the brain to extract computational architecture. However, its efficacy is limited to narrow brain regions, making it unsuitable for realizing the function of imagination, which involves diverse brain areas such as the neocortex, basal ganglia, thalamus, and hippocampus. Objective In this study, we proposed the Function-Oriented SCID method, an advancement over the existing SCID method, comprising four steps designed for reverse engineering broader brain areas. This method was applied to the brain's imaginative capabilities to design a hypothetical computational architecture. The implementation began with defining the human imaginative ability that we aspire to simulate. Subsequently, six critical requirements necessary for actualizing the defined imagination were identified. Constraints were established considering the unique representational capacity and the singularity of the neocortex's modes, a distributed memory structure responsible for executing imaginative functions. In line with these constraints, we developed five distinct functions to fulfill the requirements. We allocated specific components for each function, followed by an architectural proposal aligning each component with a corresponding brain organ. Results In the proposed architecture, the distributed memory component, associated with the neocortex, realizes the representation and execution function; the imaginary zone maker component, associated with the claustrum, accomplishes the dynamic-zone partitioning function; the routing conductor component, linked with the complex of thalamus and basal ganglia, performs the manipulation function; the mode memory component, related to the specific agranular neocortical area executes the mode maintenance function; and the recorder component, affiliated with the hippocampal formation, handles the history management function. Thus, we have provided a fundamental cognitive architecture of the brain that comprehensively covers the brain's imaginative capacities.
Collapse
Affiliation(s)
- Hiroshi Yamakawa
- School of Engineering, The University of Tokyo, Tokyo, Japan
- The Whole Brain Architecture Initiative, Tokyo, Japan
| | - Ayako Fukawa
- The Whole Brain Architecture Initiative, Tokyo, Japan
- Graduate School of Science and Technology, Sophia University, Tokyo, Japan
| | - Ikuko Eguchi Yairi
- Graduate School of Science and Technology, Sophia University, Tokyo, Japan
| | - Yutaka Matsuo
- School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Quintanilla J, Jia Y, Pruess BS, Chavez J, Gall CM, Lynch G, Gunn BG. Pre- versus Post-synaptic Forms of LTP in Two Branches of the Same Hippocampal Afferent. J Neurosci 2024; 44:e1449232024. [PMID: 38326038 PMCID: PMC10919254 DOI: 10.1523/jneurosci.1449-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/18/2023] [Accepted: 01/22/2024] [Indexed: 02/09/2024] Open
Abstract
There has been considerable controversy about pre- versus postsynaptic expression of memory-related long-term potentiation (LTP), with corresponding disputes about underlying mechanisms. We report here an instance in male mice, in which both types of potentiation are expressed but in separate branches of the same hippocampal afferent. Induction of LTP in the dentate gyrus (DG) branch of the lateral perforant path (LPP) reduces paired-pulse facilitation, is blocked by antagonism of cannabinoid receptor type 1, and is not affected by suppression of postsynaptic actin polymerization. These observations are consistent with presynaptic expression. The opposite pattern of results was obtained in the LPP branch that innervates the distal dendrites of CA3: LTP did not reduce paired-pulse facilitation, was unaffected by the cannabinoid receptor blocker, and required postsynaptic actin filament assembly. Differences in the two LPP termination sites were also noted for frequency facilitation of synaptic responses, an effect that was reproduced in a two-step simulation by small adjustments to vesicle release dynamics. These results indicate that different types of glutamatergic neurons impose different forms of filtering and synaptic plasticity on their afferents. They also suggest that inputs are routed to, and encoded by, different sites within the hippocampus depending upon the pattern of activity arriving over the parent axon.
Collapse
Affiliation(s)
- J Quintanilla
- Department of Anatomy & Neurobiology, University of California, Irvine, California 92697
| | - Y Jia
- Department of Anatomy & Neurobiology, University of California, Irvine, California 92697
| | - B S Pruess
- Department of Anatomy & Neurobiology, University of California, Irvine, California 92697
| | - J Chavez
- Department of Anatomy & Neurobiology, University of California, Irvine, California 92697
| | - C M Gall
- Department of Anatomy & Neurobiology, University of California, Irvine, California 92697
- Neurobiology & Behavior, University of California, Irvine, California 92697
| | - G Lynch
- Department of Anatomy & Neurobiology, University of California, Irvine, California 92697
- Psychiatry & Human Behavior, University of California, Irvine, California 92697
| | - B G Gunn
- Department of Anatomy & Neurobiology, University of California, Irvine, California 92697
| |
Collapse
|
3
|
Carretero-Hernández M, Catalano-Iniesta L, Blanco EJ, García-Barrado MJ, Carretero J. Highlights regarding prolactin in the dentate gyrus and hippocampus. VITAMINS AND HORMONES 2022; 118:479-505. [PMID: 35180938 DOI: 10.1016/bs.vh.2021.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Prolactin (PRL) is a pituitary hormone that has been typically related to lactogenesis in mammals. However, it has been described over 300 roles in the organism of vertebrae and its relationship with the central nervous system (CNS) is yet to be clarified. Mainly secreted by the pituitary gland, the source of prolactin in the CNS remains unclear, where some experiments suggest active transport via an unknown carrier or, on the contrary, PRL being synthesized on the brain. So far, it seems to be involved with neurogenesis, neuroprotection, maternal behavior and cognitive processes in the hippocampus and dentate gyrus, among other regions.
Collapse
Affiliation(s)
- Marta Carretero-Hernández
- Department of Human Anatomy and Histology, Faculty of Medicine, University of Salamanca, Spain; Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León (INCyL), and Laboratory of Neuroendocrinology and Obesity, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Spain.
| | - Leonardo Catalano-Iniesta
- Department of Human Anatomy and Histology, Faculty of Medicine, University of Salamanca, Spain; Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León (INCyL), and Laboratory of Neuroendocrinology and Obesity, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Spain
| | - Enrique J Blanco
- Department of Human Anatomy and Histology, Faculty of Medicine, University of Salamanca, Spain; Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León (INCyL), and Laboratory of Neuroendocrinology and Obesity, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Spain
| | - María José García-Barrado
- Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León (INCyL), and Laboratory of Neuroendocrinology and Obesity, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Spain; Department of Physiology and Pharmacology, Faculty of Medicine, University of Salamanca, Spain
| | - José Carretero
- Department of Human Anatomy and Histology, Faculty of Medicine, University of Salamanca, Spain; Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León (INCyL), and Laboratory of Neuroendocrinology and Obesity, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Spain
| |
Collapse
|
4
|
Le AA, Quintanilla J, Amani M, Piomelli D, Lynch G, Gall CM. Persistent sexually dimorphic effects of adolescent THC exposure on hippocampal synaptic plasticity and episodic memory in rodents. Neurobiol Dis 2022; 162:105565. [PMID: 34838664 DOI: 10.1016/j.nbd.2021.105565] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/04/2021] [Accepted: 11/23/2021] [Indexed: 01/01/2023] Open
Abstract
There is evidence that cannabis use during adolescence leads to memory and cognitive problems in young adulthood but little is known about effects of early life cannabis exposure on synaptic operations that are critical for encoding and organizing information. We report here that a 14-day course of daily Δ9-tetrahydrocannabinol treatments administered to adolescent rats and mice (aTHC) leads to profound but selective deficits in synaptic plasticity in two axonal systems in female, and to lesser extent male, hippocampus as assessed in adulthood. Adolescent-THC exposure did not alter basic synaptic transmission (input/output curves) and had only modest effects on frequency facilitation. Nevertheless, aTHC severely impaired the endocannabinoid-dependent long-term potentiation in the lateral perforant path in females of both species, and in male mice; this was reliably associated with impaired acquisition of a component of episodic memory that depends on lateral perforant path function. Potentiation in the Schaffer-commissural (S-C) projection to field CA1 was disrupted by aTHC treatment in females only and this was associated with both a deficit in estrogen effects on S-C synaptic responses and impairments to CA1-dependent spatial (object location) memory. In all the results demonstrate sexually dimorphic and projection system-specific effects of aTHC exposure that could underlie discrete effects of early life cannabinoid usage on adult cognitive function. Moreover they suggest that some of the enduring, sexually dimorphic effects of cannabis use reflect changes in synaptic estrogen action.
Collapse
Affiliation(s)
- Aliza A Le
- Departments of Anatomy & Neurobiology, University of California, Irvine, CA 92697, United States of America
| | - Julian Quintanilla
- Departments of Anatomy & Neurobiology, University of California, Irvine, CA 92697, United States of America
| | - Mohammad Amani
- Departments of Anatomy & Neurobiology, University of California, Irvine, CA 92697, United States of America
| | - Daniele Piomelli
- Departments of Anatomy & Neurobiology, University of California, Irvine, CA 92697, United States of America
| | - Gary Lynch
- Departments of Anatomy & Neurobiology, University of California, Irvine, CA 92697, United States of America; Departments of Psychiatry & Human Behavior, University of California, Irvine, CA 92868, United States of America.
| | - Christine M Gall
- Departments of Anatomy & Neurobiology, University of California, Irvine, CA 92697, United States of America; Departments of Neurobiology & Behavior, University of California, Irvine, CA 92697, United States of America.
| |
Collapse
|
5
|
Abichou K, La Corte V, Bellegarde A, Nicolas S, Piolino P. How rich are false memories in a naturalistic context in healthy aging? Memory 2021; 30:262-278. [PMID: 34850666 DOI: 10.1080/09658211.2021.2006717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The recall of factual and contextual information is a core characteristic of episodic memory sensitive to aging effects. The innovative aim of the present study was to assess in a naturalistic context the quantity and quality of correct and false free recalls among younger and older adults considering feature binding (What-Where-When-Details) and recollection (Remembering vs. Knowing). Thanks to virtual reality, we designed a multimodal environment simulating a lively town in which we implemented a variant of a DRM task rich in sets of semantically related items (e.g., fruits on a market stall). We asked 30 young and 30 older participants to navigate in the virtual environment, paying attention to the items, and then recall as many items and as much contextual information as possible and indicate the presence of recollection. As expected, older adults produced fewer correct recall but more intrusions than younger adults, and their correct recall was more deficient in binding and recollection. In both age groups, false recall was associated with the correct context inferred from a related set of items. However, the intrusions produced by older adults were highly recollected compared to those of the younger adults, and they were associated with false item-related contextual information.
Collapse
Affiliation(s)
- Kouloud Abichou
- Department of psychology, Université de Paris, MC2Lab, Boulogne-Billancourt, France
| | - Valentina La Corte
- Department of psychology, Université de Paris, MC2Lab, Boulogne-Billancourt, France.,Department of Neurology, Institute of Memory and Alzheimer's Disease, Pitié-Salpêtrière Hospital, Paris, France
| | - Alexandre Bellegarde
- Department of psychology, Université de Paris, MC2Lab, Boulogne-Billancourt, France
| | - Serge Nicolas
- Department of psychology, Université de Paris, MC2Lab, Boulogne-Billancourt, France.,Institut Universitaire de France (IUF), Paris, France
| | - Pascale Piolino
- Department of psychology, Université de Paris, MC2Lab, Boulogne-Billancourt, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
6
|
Zhen ZH, Guo MR, Li HM, Guo OY, Zhen JL, Fu J, Tan GJ. Normal and Abnormal Sharp Wave Ripples in the Hippocampal-Entorhinal Cortex System: Implications for Memory Consolidation, Alzheimer's Disease, and Temporal Lobe Epilepsy. Front Aging Neurosci 2021; 13:683483. [PMID: 34262446 PMCID: PMC8273653 DOI: 10.3389/fnagi.2021.683483] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022] Open
Abstract
The appearance of hippocampal sharp wave ripples (SWRs) is an electrophysiological biomarker for episodic memory encoding and behavioral planning. Disturbed SWRs are considered a sign of neural network dysfunction that may provide insights into the structural connectivity changes associated with cognitive impairment in early-stage Alzheimer's disease (AD) and temporal lobe epilepsy (TLE). SWRs originating from hippocampus have been extensively studied during spatial navigation in rodents, and more recent studies have investigated SWRs in the hippocampal-entorhinal cortex (HPC-EC) system during a variety of other memory-guided behaviors. Understanding how SWR disruption impairs memory function, especially episodic memory, could aid in the development of more efficacious therapeutics for AD and TLE. In this review, we first provide an overview of the reciprocal association between AD and TLE, and then focus on the functions of HPC-EC system SWRs in episodic memory consolidation. It is posited that these waveforms reflect rapid network interactions among excitatory projection neurons and local interneurons and that these waves may contribute to synaptic plasticity underlying memory consolidation. Further, SWRs appear altered or ectopic in AD and TLE. These waveforms may thus provide clues to understanding disease pathogenesis and may even serve as biomarkers for early-stage disease progression and treatment response.
Collapse
Affiliation(s)
- Zhi-Hang Zhen
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Mo-Ran Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - He-Ming Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ou-Yang Guo
- Department of Biology, Boston University, Boston, MA, United States
| | - Jun-Li Zhen
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Jian Fu
- Department of Emergency Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guo-Jun Tan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Neurological Laboratory of Hebei Province, Shijiazhuang, China
| |
Collapse
|
7
|
Bajaffer A, Mineta K, Gojobori T. Evolution of memory system-related genes. FEBS Open Bio 2021; 11:3201-3210. [PMID: 34110105 PMCID: PMC8634864 DOI: 10.1002/2211-5463.13224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/25/2021] [Accepted: 06/09/2021] [Indexed: 11/29/2022] Open
Abstract
Memory has an essential function in human life as it helps individuals remember and recognize their surroundings. It is also the major form of cognition that controls behavior. As memory is a function that is highly characteristic of humans, how it was established is of particular interest. Recent progress in the field of neurosciences, together with the technological advancement of genome‐wide approaches, has led to the accumulation of evidence regarding the presence and similar/distinct mechanisms of memory among species. However, the understanding of the evolution of memory obtained utilizing these genome‐wide approaches remains unclear. The purpose of this review was to provide an overview of the literature on the evolution of the memory system among species and the genes involved in this process. This review also discusses possible approaches to study the evolution of memory systems to guide future research.
Collapse
Affiliation(s)
- Amal Bajaffer
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Katsuhiko Mineta
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Takashi Gojobori
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
8
|
Binge drinking is associated with altered resting state functional connectivity of reward-salience and top down control networks. Brain Imaging Behav 2021; 14:1731-1746. [PMID: 31073695 DOI: 10.1007/s11682-019-00107-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Binge drinking is characterized by bouts of high-intensity alcohol intake and is associated with an array of health-related harms. Even though the transition from occasional impulsive to addictive alcohol use is not well understood, neurobiological models of addiction suggest that repeated cycles of intoxication and withdrawal contribute to the development of addiction in part through dysregulation of neurofunctional networks. Research on the neural sequelae associated with binge drinking is scant but resting state functional connectivity (RSFC) studies of alcohol use disorders (AUD) indicate that the development and maintenance of long-term excessive drinking may be mediated by network-level disruptions. The present study examined RSFC in young adult binge (BD) and light (LD) drinkers with seeds representing the networks subserving reward (the nucleus accumbens and caudate nucleus), salience (anterior cingulate cortex, ACC), and executive control (inferior frontal cortex, IFC). BDs exhibited enhanced connectivity between the striatal reward areas and the orbitofrontal cortex and the ACC, which is consistent with AUD studies and may be indicative of alcohol-motivated appetitive behaviors. Conversely, BDs demonstrated lower connectivity between the IFC and hippocampus which was associated with higher craving. This may indicate impaired ability to suppress unwanted thoughts and a failure to employ memory of the harmful consequences of heavy drinking in prospective plans and intentions. The observed greater connectivity of the reward/salience network and the lower prefrontal-hippocampal connectivity were associated with hazardous drinking levels indicating that dysregulation of neurofunctional networks may underlie binge drinking patterns.
Collapse
|
9
|
Lee SM, Jin SW, Park SB, Park EH, Lee CH, Lee HW, Lim HY, Yoo SW, Ahn JR, Shin J, Lee SA, Lee I. Goal-directed interaction of stimulus and task demand in the parahippocampal region. Hippocampus 2021; 31:717-736. [PMID: 33394547 PMCID: PMC8359334 DOI: 10.1002/hipo.23295] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/05/2020] [Accepted: 12/12/2020] [Indexed: 11/10/2022]
Abstract
The hippocampus and parahippocampal region are essential for representing episodic memories involving various spatial locations and objects, and for using those memories for future adaptive behavior. The “dual‐stream model” was initially formulated based on anatomical characteristics of the medial temporal lobe, dividing the parahippocampal region into two streams that separately process and relay spatial and nonspatial information to the hippocampus. Despite its significance, the dual‐stream model in its original form cannot explain recent experimental results, and many researchers have recognized the need for a modification of the model. Here, we argue that dividing the parahippocampal region into spatial and nonspatial streams a priori may be too simplistic, particularly in light of ambiguous situations in which a sensory cue alone (e.g., visual scene) may not allow such a definitive categorization. Upon reviewing evidence, including our own, that reveals the importance of goal‐directed behavioral responses in determining the relative involvement of the parahippocampal processing streams, we propose the Goal‐directed Interaction of Stimulus and Task‐demand (GIST) model. In the GIST model, input stimuli such as visual scenes and objects are first processed by both the postrhinal and perirhinal cortices—the postrhinal cortex more heavily involved with visual scenes and perirhinal cortex with objects—with relatively little dependence on behavioral task demand. However, once perceptual ambiguities are resolved and the scenes and objects are identified and recognized, the information is then processed through the medial or lateral entorhinal cortex, depending on whether it is used to fulfill navigational or non‐navigational goals, respectively. As complex sensory stimuli are utilized for both navigational and non‐navigational purposes in an intermixed fashion in naturalistic settings, the hippocampus may be required to then put together these experiences into a coherent map to allow flexible cognitive operations for adaptive behavior to occur.
Collapse
Affiliation(s)
- Su-Min Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Seung-Woo Jin
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Seong-Beom Park
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Eun-Hye Park
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Choong-Hee Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Hyun-Woo Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Heung-Yeol Lim
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Seung-Woo Yoo
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Brain Institute, Florida Atlantic University, Jupiter, Florida, USA
| | - Jae Rong Ahn
- Department of Biology, Tufts University, Medford, Massachusetts, USA
| | - Jhoseph Shin
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Sang Ah Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Inah Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
10
|
Bornstein AM, Pickard H. "Chasing the first high": memory sampling in drug choice. Neuropsychopharmacology 2020; 45:907-915. [PMID: 31896119 PMCID: PMC7162911 DOI: 10.1038/s41386-019-0594-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/21/2019] [Accepted: 12/16/2019] [Indexed: 02/02/2023]
Abstract
Although vivid memories of drug experiences are prevalent within clinical contexts and addiction folklore ("chasing the first high"), little is known about the relevance of cognitive processes governing memory retrieval to substance use disorder. Drawing on recent work that identifies episodic memory's influence on decisions for reward, we propose a framework in which drug choices are biased by selective sampling of individual memories during two phases of addiction: (i) downward spiral into persistent use and (ii) relapse. Consideration of how memory retrieval influences the addiction process suggests novel treatment strategies. Rather than try to break learned associations between drug cues and drug rewards, treatment should aim to strengthen existing and/or create new associations between drug cues and drug-inconsistent rewards.
Collapse
Affiliation(s)
- Aaron M Bornstein
- Department of Cognitive Sciences, University of California, Irvine, CA, 92617, USA.
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, 92697, USA.
- Institute for Mathematical Behavioral Sciences, University of California, Irvine, CA, 92697, USA.
| | - Hanna Pickard
- Department of Philosophy, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Berman Institute of Bioethics, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
11
|
Manduca JD, Thériault RK, Perreault ML. Glycogen synthase kinase-3: The missing link to aberrant circuit function in disorders of cognitive dysfunction? Pharmacol Res 2020; 157:104819. [PMID: 32305493 DOI: 10.1016/j.phrs.2020.104819] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/10/2020] [Accepted: 04/07/2020] [Indexed: 12/15/2022]
Abstract
Elevated GSK-3 activity has been implicated in cognitive dysfunction associated with various disorders including Alzheimer's disease, schizophrenia, type 2 diabetes, traumatic brain injury, major depressive disorder and bipolar disorder. Further, aberrant neural oscillatory activity in, and between, cortical regions and the hippocampus is consistently present within these same cognitive disorders. In this review, we will put forth the idea that increased GSK-3 activity serves as a pathological convergence point across cognitive disorders, inducing similar consequent impacts on downstream signaling mechanisms implicated in the maintenance of processes critical to brain systems communication and normal cognitive functioning. In this regard we suggest that increased activation of GSK-3 and neuronal oscillatory dysfunction are early pathological changes that may be functionally linked. Mechanistic commonalities between these disorders of cognitive dysfunction will be discussed and potential downstream targets of GSK-3 that may contribute to neuronal oscillatory dysfunction identified.
Collapse
Affiliation(s)
- Joshua D Manduca
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
| | | | - Melissa L Perreault
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada.
| |
Collapse
|
12
|
Wang W, Jia Y, Pham DT, Palmer LC, Jung KM, Cox CD, Rumbaugh G, Piomelli D, Gall CM, Lynch G. Atypical Endocannabinoid Signaling Initiates a New Form of Memory-Related Plasticity at a Cortical Input to Hippocampus. Cereb Cortex 2019; 28:2253-2266. [PMID: 28520937 DOI: 10.1093/cercor/bhx126] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/02/2017] [Indexed: 01/16/2023] Open
Abstract
Endocannabinoids (ECBs) depress transmitter release at sites throughout the brain. Here, we describe another form of ECB signaling that triggers a novel form of long-term potentiation (LTP) localized to the lateral perforant path (LPP) which conveys semantic information from cortex to hippocampus. Two cannabinoid CB1 receptor (CB1R) signaling cascades were identified in hippocampus. The first is pregnenolone sensitive, targets vesicular protein Munc18-1 and depresses transmitter release; this cascade is engaged by CB1Rs in Schaffer-Commissural afferents to CA1 but not in the LPP, and it does not contribute to LTP. The second cascade is pregnenolone insensitive and LPP specific; it entails co-operative CB1R/β1-integrin signaling to effect synaptic potentiation via stable enhancement of transmitter release. The latter cascade is engaged during LPP-dependent learning. These results link atypical ECB signaling to the encoding of a fundamental component of episodic memory and suggest a novel route whereby endogenous and exogenous cannabinoids affect cognition.
Collapse
Affiliation(s)
- Weisheng Wang
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Yousheng Jia
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Danielle T Pham
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Linda C Palmer
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Kwang-Mook Jung
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Conor D Cox
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Gavin Rumbaugh
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.,Department of Pharmacology, University of California, Irvine, CA, USA.,Department of Biological Chemistry, University of California, Irvine, CA, USA.,Drug Discovery and Development, Instituto Italiano di Tecnologia, Genoa, Italy
| | - Christine M Gall
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.,Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Gary Lynch
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.,Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| |
Collapse
|
13
|
Postnatal Development of Functional Projections from Parasubiculum and Presubiculum to Medial Entorhinal Cortex in the Rat. J Neurosci 2019; 39:8645-8663. [PMID: 31511428 DOI: 10.1523/jneurosci.1623-19.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/26/2019] [Accepted: 09/03/2019] [Indexed: 01/12/2023] Open
Abstract
Neurons in parasubiculum (PaS), presubiculum (PrS), and medial entorhinal cortex (MEC) code for place (grid cells) and head direction. Directional input has been shown to be important for stable grid cell properties in MEC, and PaS and PrS have been postulated to provide this information to MEC. In line with this, head direction cells in those brain areas are present at postnatal day 11 (P11), having directional tuning that stabilizes shortly after eye opening, which is before premature grid cells emerge in MEC at P16. Whether functional connectivity between these structures exists at those early postnatal stages is unclear. Using anatomical tracing, voltage-sensitive dye imaging and single-cell patch recordings in female and male rat brain slices between P2 and P61, we determined when the pathways from PaS and PrS to MEC emerge, become functional, and how they develop. Anatomical connections from PaS and PrS to superficial MEC emerge between P4 and P6. Monosynaptic connectivity from PaS and PrS to superficial MEC was measurable from P9 to P10 onward, whereas connectivity with deep MEC was measurable from P11 to P12. From P14/P15 on, reactivity of MEC neurons to parasubicular and presubicular inputs becomes adult-like and continues to develop until P28-P30. The maturation of the efficacy of both inputs between P9 and P21 is paralleled by maturation of morphological properties, changes in intrinsic properties of MEC principal neurons, and changes in the GABAergic network of MEC. In conclusion, synaptic projections from PaS and PrS to MEC become functional and adult-like before the emergence of grid cells in MEC.SIGNIFICANCE STATEMENT Head direction information, crucial for grid cells in medial entorhinal cortex (MEC), is thought to enter MEC via parasubiculum (PaS) and presubiculum (PrS). Unraveling the development of functional connections between PaS, PrS, and MEC is key to understanding how spatial navigation, an important cognitive function, may evolve. To gain insight into the development, we used anatomical tracing techniques, voltage-sensitive dye imaging, and single-cell recordings. The combined data led us to conclude that synaptic projections from PaS and PrS to MEC become functional and adult-like before eye opening, allowing crucial head direction information to influence place encoding before the emergence of grid cells in rat MEC.
Collapse
|
14
|
The glycine site of NMDA receptors: A target for cognitive enhancement in psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:387-404. [PMID: 30738126 DOI: 10.1016/j.pnpbp.2019.02.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 01/05/2023]
Abstract
Cognitive dysfunction is a principal determinant of functional impairment in major depressive disorder (MDD) and often persists during periods of euthymia. Abnormalities in the glutamate system, particularly in N-methyl-d-aspartate receptors (NMDARs) activity, have been shown to contribute to both mood and cognitive symptoms in MDD. The current narrative review aims to evaluate the potential pro-cognitive effects of targeting the glycine site of NMDARs in the treatment of psychiatric disorders, with a special focus on how these results may apply to MDD. Literature databases were searched from inception to May 2018 for relevant pre-clinical and clinical studies evaluating antidepressant and pro-cognitive effects of NMDAR glycine site modulators in both MDD and non-MDD samples. Six glycine site modulators with pro-cognitive and antidepressant properties were identified: d-serine (co-agonist), d-cycloserine (partial agonist), d-alanine (co-agonist), glycine (agonist), sarcosine (co-agonist) and rapastinel (partial agonist). Preclinical animal studies demonstrated improved neuroplasticity and pro-cognitive effects with these agents. Numerous proof-of-concept clinical trials demonstrated pro-cognitive and antidepressant effects trans-diagnostically (e.g., in healthy participants, MDD, schizophrenia, anxiety disorders, major neurocognitive disorders). The generalizability of these clinical studies was limited by the small sample sizes and the paucity of studies directly evaluating cognitive effects in MDD samples, as most clinical trials were in non-MDD samples. Taken together, preliminary results suggest that the glycine site of NMDARs is a promising target to ameliorate symptoms of depression and cognitive dysfunction. Additional rigorously designed clinical studies are required to determine the cognitive effects of these agents in MDD.
Collapse
|
15
|
Peñasco S, Rico-Barrio I, Puente N, Gómez-Urquijo SM, Fontaine CJ, Egaña-Huguet J, Achicallende S, Ramos A, Reguero L, Elezgarai I, Nahirney PC, Christie BR, Grandes P. Endocannabinoid long-term depression revealed at medial perforant path excitatory synapses in the dentate gyrus. Neuropharmacology 2019; 153:32-40. [PMID: 31022405 DOI: 10.1016/j.neuropharm.2019.04.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/28/2019] [Accepted: 04/18/2019] [Indexed: 12/22/2022]
Abstract
The endocannabinoid system modulates synaptic plasticity in the hippocampus, but a link between long-term synaptic plasticity and the type 1 cannabinoid (CB1) receptor at medial perforant path (MPP) synapses remains elusive. Here, immuno-electron microscopy in adult mice showed that ∼26% of the excitatory synaptic terminals in the middle 1/3 of the dentate molecular layer (DML) contained CB1 receptors, and field excitatory postsynaptic potentials evoked by MPP stimulation were inhibited by CB1 receptor activation. In addition, MPP stimulation at 10 Hz for 10 min triggered CB1 receptor-dependent excitatory long-term depression (eCB-eLTD) at MPP synapses of wild-type mice but not on CB1-knockout mice. This eCB-eLTD was group I mGluR-dependent, required intracellular calcium influx and 2-arachydonoyl-glycerol (2-AG) synthesis but did not depend on N-methyl-d-aspartate (NMDA) receptors. Overall, these results point to a functional role for CB1 receptors with eCB-eLTD at DML MPP synapses and further involve these receptors in memory processing within the adult brain.
Collapse
Affiliation(s)
- Sara Peñasco
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - Irantzu Rico-Barrio
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - Nagore Puente
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - Sonia María Gómez-Urquijo
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - Christine J Fontaine
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, V8P 5C2, Canada
| | - Jon Egaña-Huguet
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - Svein Achicallende
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - Almudena Ramos
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - Leire Reguero
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - Izaskun Elezgarai
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - Patrick C Nahirney
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, V8P 5C2, Canada
| | - Brian R Christie
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, V8P 5C2, Canada
| | - Pedro Grandes
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, E-48940, Leioa, Spain; Division of Medical Sciences, University of Victoria, Victoria, British Columbia, V8P 5C2, Canada.
| |
Collapse
|
16
|
Gerlai R. Zebrafish and relational memory: Could a simple fish be useful for the analysis of biological mechanisms of complex vertebrate learning? Behav Processes 2017; 141:242-250. [PMID: 28143721 DOI: 10.1016/j.beproc.2017.01.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/06/2017] [Accepted: 01/24/2017] [Indexed: 12/19/2022]
Abstract
Analysis of the zebrafish allows one to combine two distinct scientific approaches, comparative ethology and neurobehavioral genetics. Furthermore, this species arguably represents an optimal compromise between system complexity and practical simplicity. This mini-review focuses on a complex form of learning, relational learning and memory, in zebrafish. It argues that zebrafish are capable of this type of learning, and it attempts to show how this species may be useful in the analysis of the mechanisms and the evolution of this complex brain function. The review is not intended to be comprehensive. It is a short opinion piece that reflects the author's own biases, and it draws some of its examples from the work coming from his own laboratory. Nevertheless, it is written in the hope that it will persuade those who have not utilized zebrafish and who may be interested in opening their research horizon to this relatively novel but powerful vertebrate research tool.
Collapse
Affiliation(s)
- Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, 3359 Mississauga Road North, Rm CCT4004 Mississauga, Ontario L5L 1C6, Canada.
| |
Collapse
|
17
|
Abstract
UNLABELLED The hippocampus is critical to the memory for sequences of events, a defining feature of episodic memory. However, the fundamental neuronal mechanisms underlying this capacity remain elusive. While considerable research indicates hippocampal neurons can represent sequences of locations, direct evidence of coding for the memory of sequential relationships among nonspatial events remains lacking. To address this important issue, we recorded neural activity in CA1 as rats performed a hippocampus-dependent sequence-memory task. Briefly, the task involves the presentation of repeated sequences of odors at a single port and requires rats to identify each item as "in sequence" or "out of sequence". We report that, while the animals' location and behavior remained constant, hippocampal activity differed depending on the temporal context of items-in this case, whether they were presented in or out of sequence. Some neurons showed this effect across items or sequence positions (general sequence cells), while others exhibited selectivity for specific conjunctions of item and sequence position information (conjunctive sequence cells) or for specific probe types (probe-specific sequence cells). We also found that the temporal context of individual trials could be accurately decoded from the activity of neuronal ensembles, that sequence coding at the single-cell and ensemble level was linked to sequence memory performance, and that slow-gamma oscillations (20-40 Hz) were more strongly modulated by temporal context and performance than theta oscillations (4-12 Hz). These findings provide compelling evidence that sequence coding extends beyond the domain of spatial trajectories and is thus a fundamental function of the hippocampus. SIGNIFICANCE STATEMENT The ability to remember the order of life events depends on the hippocampus, but the underlying neural mechanisms remain poorly understood. Here we addressed this issue by recording neural activity in hippocampal region CA1 while rats performed a nonspatial sequence memory task. We found that hippocampal neurons code for the temporal context of items (whether odors were presented in the correct or incorrect sequential position) and that this activity is linked with memory performance. The discovery of this novel form of temporal coding in hippocampal neurons advances our fundamental understanding of the neurobiology of episodic memory and will serve as a foundation for our cross-species, multitechnique approach aimed at elucidating the neural mechanisms underlying memory impairments in aging and dementia.
Collapse
|
18
|
|
19
|
Memory of occasional events in rats: individual episodic memory profiles, flexibility, and neural substrate. J Neurosci 2015; 35:7575-86. [PMID: 25972182 DOI: 10.1523/jneurosci.3941-14.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In search for the mechanisms underlying complex forms of human memory, such as episodic recollection, a primary challenge is to develop adequate animal models amenable to neurobiological investigation. Here, we proposed a novel framework and paradigm that provides means to quantitatively evaluate the ability of rats to form and recollect a combined knowledge of what happened, where it happened, and when or in which context it happened (referred to as episodic-like memory) after a few specific episodes in situations as close as possible to a paradigm we recently developed to study episodic memory in humans. In this task, rats have to remember two odor-drink associations (what happened) encountered in distinct locations (where it happened) within two different multisensory enriched environments (in which context/occasion it happened), each characterized by a particular combination of odors and places. By analyzing licking behavior on each drinking port, we characterized quantitatively individual recollection profiles and showed that rats are able to incidentally form and recollect an accurate, long-term integrated episodic-like memory that can last ≥ 24 d after limited exposure to the episodes. Placing rats in a contextually challenging recollection situation at recall reveals the ability for flexible use of episodic memory as described in humans. We further report that reversible inactivation of the dorsal hippocampus during recall disrupts the animal's capacity to recollect the complete episodic memory. Cellular imaging of c-Fos and Zif268 brain activation reveals that episodic memory recollection recruits a specific, distributed network of hippocampal-prefrontal cortex structures that correlates with the accuracy of the integrated recollection performance.
Collapse
|
20
|
Allen TA, Morris AM, Stark SM, Fortin NJ, Stark CEL. Memory for sequences of events impaired in typical aging. ACTA ACUST UNITED AC 2015; 22:138-48. [PMID: 25691514 PMCID: PMC4340129 DOI: 10.1101/lm.036301.114] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Typical aging is associated with diminished episodic memory performance. To improve our understanding of the fundamental mechanisms underlying this age-related memory deficit, we previously developed an integrated, cross-species approach to link converging evidence from human and animal research. This novel approach focuses on the ability to remember sequences of events, an important feature of episodic memory. Unlike existing paradigms, this task is nonspatial, nonverbal, and can be used to isolate different cognitive processes that may be differentially affected in aging. Here, we used this task to make a comprehensive comparison of sequence memory performance between younger (18-22 yr) and older adults (62-86 yr). Specifically, participants viewed repeated sequences of six colored, fractal images and indicated whether each item was presented "in sequence" or "out of sequence." Several out of sequence probe trials were used to provide a detailed assessment of sequence memory, including: (i) repeating an item from earlier in the sequence ("Repeats"; e.g., AB A: DEF), (ii) skipping ahead in the sequence ("Skips"; e.g., AB D: DEF), and (iii) inserting an item from a different sequence into the same ordinal position ("Ordinal Transfers"; e.g., AB 3: DEF). We found that older adults performed as well as younger controls when tested on well-known and predictable sequences, but were severely impaired when tested using novel sequences. Importantly, overall sequence memory performance in older adults steadily declined with age, a decline not detected with other measures (RAVLT or BPS-O). We further characterized this deficit by showing that performance of older adults was severely impaired on specific probe trials that required detailed knowledge of the sequence (Skips and Ordinal Transfers), and was associated with a shift in their underlying mnemonic representation of the sequences. Collectively, these findings provide unambiguous evidence that the capacity to remember sequences of events is fundamentally affected by typical aging.
Collapse
Affiliation(s)
- Timothy A Allen
- Center for the Neurobiology of Learning and Memory and Department of Neurobiology and Behavior, University of California, Irvine, California 92697-3800, USA
| | - Andrea M Morris
- Center for the Neurobiology of Learning and Memory and Department of Neurobiology and Behavior, University of California, Irvine, California 92697-3800, USA Department of Health Policy and Management, University of California, Los Angeles, California 90095-1772, USA
| | - Shauna M Stark
- Center for the Neurobiology of Learning and Memory and Department of Neurobiology and Behavior, University of California, Irvine, California 92697-3800, USA
| | - Norbert J Fortin
- Center for the Neurobiology of Learning and Memory and Department of Neurobiology and Behavior, University of California, Irvine, California 92697-3800, USA
| | - Craig E L Stark
- Center for the Neurobiology of Learning and Memory and Department of Neurobiology and Behavior, University of California, Irvine, California 92697-3800, USA
| |
Collapse
|
21
|
Binicewicz FZM, van Strien NM, Wadman WJ, van den Heuvel MP, Cappaert NLM. Graph analysis of the anatomical network organization of the hippocampal formation and parahippocampal region in the rat. Brain Struct Funct 2015; 221:1607-21. [PMID: 25618022 PMCID: PMC4819791 DOI: 10.1007/s00429-015-0992-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 01/14/2015] [Indexed: 10/27/2022]
Abstract
Graph theory was used to analyze the anatomical network of the rat hippocampal formation and the parahippocampal region (van Strien et al., Nat Rev Neurosci 10(4):272-282, 2009). For this analysis, the full network was decomposed along the three anatomical axes, resulting in three networks that describe the connectivity within the rostrocaudal, dorsoventral and laminar dimensions. The rostrocaudal network had a connection density of 12% and a path length of 2.4. The dorsoventral network had a high cluster coefficient (0.53), a relatively high path length (1.62) and a rich club was identified. The modularity analysis revealed three modules in the dorsoventral network. The laminar network contained most information. The laminar dimension revealed a network with high clustering coefficient (0.47), a relatively high path length (2.11) and four significantly increased characteristic network building blocks (structural motifs). Thirteen rich club nodes were identified, almost all of them situated in the parahippocampal region. Six connector hubs were detected and all of them were located in the entorhinal cortex. Three large modules were revealed, indicating a close relationship between the perirhinal and postrhinal cortex as well as between the lateral and medial entorhinal cortex. These results confirmed the central position of the entorhinal cortex in the (para)hippocampal network and this possibly explains why pathology in this region has such profound impact on cognitive function, as seen in several brain diseases. The results also have implications for the idea of strict separation of the "spatial" and the "non-spatial" information stream into the hippocampus. This two-stream memory model suggests that the information influx from, respectively, the postrhinal-medial entorhinal cortex and the perirhinal-lateral entorhinal cortex is separate, but the current analysis shows that this apparent separation is not determined by anatomical constraints.
Collapse
Affiliation(s)
- F Z M Binicewicz
- Swammerdam Institute for Life Science, Center for Neuroscience, University of Amsterdam, Science Park 904, Room C3.266, 1098 XH, Amsterdam, The Netherlands
| | - N M van Strien
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - W J Wadman
- Swammerdam Institute for Life Science, Center for Neuroscience, University of Amsterdam, Science Park 904, Room C3.266, 1098 XH, Amsterdam, The Netherlands
| | - M P van den Heuvel
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands.,Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - N L M Cappaert
- Swammerdam Institute for Life Science, Center for Neuroscience, University of Amsterdam, Science Park 904, Room C3.266, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
22
|
Cercato MC, Colettis N, Snitcofsky M, Aguirre AI, Kornisiuk EE, Baez MV, Jerusalinsky DA. Hippocampal NMDA receptors and the previous experience effect on memory. ACTA ACUST UNITED AC 2014; 108:263-9. [PMID: 25132342 DOI: 10.1016/j.jphysparis.2014.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 06/19/2014] [Accepted: 08/04/2014] [Indexed: 10/24/2022]
Abstract
N-methyl-D-aspartate receptors (NMDAR) are thought to be responsible for switching synaptic activity specific patterns into long-term changes in synaptic function and structure, which would support learning and memory. Hippocampal NMDAR blockade impairs memory consolidation in rodents, while NMDAR stimulation improves it. Adult rats that explored twice an open field (OF) before a weak though overthreshold training in inhibitory avoidance (IA), expressed IA long-term memory in spite of the hippocampal administration of MK-801, which currently leads to amnesia. Those processes would involve different NMDARs. The selective blockade of hippocampal GluN2B-containing NMDAR with ifenprodil after training promoted memory in an IA task when the training was weak, suggesting that this receptor negatively modulates consolidation. In vivo, after 1h of an OF exposure-with habituation to the environment-, there was an increase in GluN1 and GluN2A subunits in the rat hippocampus, without significant changes in GluN2B. Coincidentally, in vitro, in both rat hippocampal slices and neuron cultures there was an increase in GluN2A-NMDARs surface expression at 30min; an increase in GluN1 and GluN2A levels at about 1h after LTP induction was also shown. We hypothesize that those changes in NMDAR composition could be involved in the "anti-amnesic effect" of the previous OF. Along certain time interval, an increase in GluN1 and GluN2A would lead to an increase in synaptic NMDARs, facilitating synaptic plasticity and memory; while then, an increase in GluN2A/GluN2B ratio could protect the synapse and the already established plasticity, perhaps saving the specific trace.
Collapse
Affiliation(s)
- Magalí C Cercato
- Laboratorio de Neuroplasticidad y Neurotoxinas, Instituto de Biologia Celular y Neurociencia (IBCN), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155 3er Piso, Buenos Aires, Argentina.
| | - Natalia Colettis
- Laboratorio de Neuroplasticidad y Neurotoxinas, Instituto de Biologia Celular y Neurociencia (IBCN), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155 3er Piso, Buenos Aires, Argentina.
| | - Marina Snitcofsky
- Laboratorio de Neuroplasticidad y Neurotoxinas, Instituto de Biologia Celular y Neurociencia (IBCN), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155 3er Piso, Buenos Aires, Argentina.
| | - Alejandra I Aguirre
- Laboratorio de Neuroplasticidad y Neurotoxinas, Instituto de Biologia Celular y Neurociencia (IBCN), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155 3er Piso, Buenos Aires, Argentina.
| | - Edgar E Kornisiuk
- Laboratorio de Neuroplasticidad y Neurotoxinas, Instituto de Biologia Celular y Neurociencia (IBCN), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155 3er Piso, Buenos Aires, Argentina.
| | - María V Baez
- Laboratorio de Neuroplasticidad y Neurotoxinas, Instituto de Biologia Celular y Neurociencia (IBCN), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155 3er Piso, Buenos Aires, Argentina.
| | - Diana A Jerusalinsky
- Laboratorio de Neuroplasticidad y Neurotoxinas, Instituto de Biologia Celular y Neurociencia (IBCN), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155 3er Piso, Buenos Aires, Argentina.
| |
Collapse
|
23
|
Allen TA, Morris AM, Mattfeld AT, Stark CEL, Fortin NJ. A Sequence of events model of episodic memory shows parallels in rats and humans. Hippocampus 2014; 24:1178-88. [PMID: 24802767 DOI: 10.1002/hipo.22301] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 11/07/2022]
Abstract
A critical feature of episodic memory is the ability to remember the order of events as they occurred in time, a capacity shared across species including humans, nonhuman primates, and rodents. Accumulating evidence suggests that this capacity depends on a network of structures including the hippocampus and the prefrontal cortex, but their respective contributions remain poorly understood. As addressing this important issue will require converging evidence from complementary investigative techniques, we developed a cross-species, nonspatial sequence memory task suitable for behavioral and neurophysiological studies in rodents and in humans. The task involves the repeated presentation of sequences of items (odors in rats and images in humans) and requires subjects to make a judgment as to whether each item is presented "in sequence" or "out of sequence." To shed light on the cognitive processes and sequence representations supporting performance, different types of "out of sequence" probe trials were used including: (i) repeating an item from earlier in the sequence (Repeats; e.g., ABAD), (ii) skipping ahead in the sequence (Skips; e.g., ABD), and (iii) inserting an item from a different sequence into the same ordinal position (Ordinal Transfers; e.g., A2CD). We found a remarkable similarity in the performance of rats and humans, particularly in the pattern of results across probe trial types. Thus, the results suggest that rats and humans not only remember the sequences of events, but also use similar underlying cognitive processes and mnemonic representations. This strong cross-species correspondence validates this task for use in future basic and clinical interdisciplinary studies aimed at examining the neural mechanisms underlying episodic memory.
Collapse
Affiliation(s)
- Timothy A Allen
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, California
| | | | | | | | | |
Collapse
|
24
|
Weafer J, Gallo DA, de Wit H. Amphetamine fails to alter cued recollection of emotional images: study of encoding, retrieval, and state-dependency. PLoS One 2014; 9:e90423. [PMID: 24587355 PMCID: PMC3937372 DOI: 10.1371/journal.pone.0090423] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/29/2014] [Indexed: 11/21/2022] Open
Abstract
Stimulant drugs facilitate both encoding and retrieval of salient information in laboratory animals, but less is known about their effects on memory for emotionally salient visual images in humans. The current study investigated dextroamphetamine (AMP) effects on memory for emotional pictures in healthy humans, by administering the drug only at encoding, only at retrieval, or at both encoding and retrieval. During the encoding session, all participants viewed standardized positive, neutral, and negative pictures from the International Affective Picture System (IAPS). 48 hours later they attended a retrieval session testing their cued recollection of these stimuli. Participants were randomly assigned to one of four conditions (N=20 each): condition AP (20 mg AMP at encoding and placebo (PL) at retrieval); condition PA (PL at encoding and AMP at retrieval); condition AA (AMP at encoding and retrieval); or condition PP (PL at encoding and retrieval). Amphetamine produced its expected effects on physiological and subjective measures, and negative pictures were recollected more frequently than neutral pictures. However, contrary to hypotheses, AMP did not affect recollection for positive, negative, or neutral stimuli, whether it was administered at encoding, retrieval, or at both encoding and retrieval. Moreover, recollection accuracy was not state-dependent. Considered in light of other recent drug studies in humans, this study highlights the sensitivity of drug effects to memory testing conditions and suggests future strategies for translating preclinical findings to human behavioral laboratories.
Collapse
Affiliation(s)
- Jessica Weafer
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois, United States of America
| | - David A. Gallo
- Department of Psychology, University of Chicago, Chicago, Illinois, United States of America
| | - Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
25
|
Abstract
One prominent view holds that episodic memory emerged recently in humans and lacks a "(neo)Darwinian evolution" [Tulving E (2002) Annu Rev Psychol 53:1-25]. Here, we review evidence supporting the alternative perspective that episodic memory has a long evolutionary history. We show that fundamental features of episodic memory capacity are present in mammals and birds and that the major brain regions responsible for episodic memory in humans have anatomical and functional homologs in other species. We propose that episodic memory capacity depends on a fundamental neural circuit that is similar across mammalian and avian species, suggesting that protoepisodic memory systems exist across amniotes and, possibly, all vertebrates. The implication is that episodic memory in diverse species may primarily be due to a shared underlying neural ancestry, rather than the result of evolutionary convergence. We also discuss potential advantages that episodic memory may offer, as well as species-specific divergences that have developed on top of the fundamental episodic memory architecture. We conclude by identifying possible time points for the emergence of episodic memory in evolution, to help guide further research in this area.
Collapse
|
26
|
Behrendt RP. Conscious experience and episodic memory: hippocampus at the crossroads. Front Psychol 2013; 4:304. [PMID: 23755033 PMCID: PMC3667233 DOI: 10.3389/fpsyg.2013.00304] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 05/13/2013] [Indexed: 12/21/2022] Open
Abstract
If an instance of conscious experience of the seemingly objective world around us could be regarded as a newly formed event memory, much as an instance of mental imagery has the content of a retrieved event memory, and if, therefore, the stream of conscious experience could be seen as evidence for ongoing formation of event memories that are linked into episodic memory sequences, then unitary conscious experience could be defined as a symbolic representation of the pattern of hippocampal neuronal firing that encodes an event memory – a theoretical stance that may shed light into the mind-body and binding problems in consciousness research. Exceedingly detailed symbols that describe patterns of activity rapidly self-organizing, at each cycle of the θ rhythm, in the hippocampus are instances of unitary conscious experience that jointly constitute the stream of consciousness. Integrating object information (derived from the ventral visual stream and orbitofrontal cortex) with contextual emotional information (from the anterior insula) and spatial environmental information (from the dorsal visual stream), the hippocampus rapidly forms event codes that have the informational content of objects embedded in an emotional and spatiotemporally extending context. Event codes, formed in the CA3-dentate network for the purpose of their memorization, are not only contextualized but also allocentric representations, similarly to conscious experiences of events and objects situated in a seemingly objective and observer-independent framework of phenomenal space and time. Conscious perception, creating the spatially and temporally extending world that we perceive around us, is likely to be evolutionarily related to more fleeting and seemingly internal forms of conscious experience, such as autobiographical memory recall, mental imagery, including goal anticipation, and to other forms of externalized conscious experience, namely dreaming and hallucinations; and evidence pointing to an important contribution of the hippocampus to these conscious phenomena will be reviewed.
Collapse
Affiliation(s)
- Ralf-Peter Behrendt
- Elderly Mental Health Team, Princess Elizabeth Hospital St Martin, Guernsey, UK
| |
Collapse
|
27
|
Mechner F. AN INVITATION TO BEHAVIOR ANALYSTS: REVIEW OF IN SEARCH OF MEMORY: THE EMERGENCE OF A NEW SCIENCE OF MIND
BY ERIC R KANDEL. J Exp Anal Behav 2013. [DOI: 10.1901/jeab.2008.90-235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Sheldon S, Romero K, Moscovitch M. Medial temporal lobe amnesia impairs performance on a free association task. Hippocampus 2013; 23:405-12. [DOI: 10.1002/hipo.22099] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2013] [Indexed: 11/06/2022]
|
29
|
Deshmukh SS, Knierim JJ. Hippocampus. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2012; 3:231-251. [DOI: 10.1002/wcs.1164] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sachin S. Deshmukh
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - James J. Knierim
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
30
|
Pearce RA, Duscher P, Van Dyke K, Lee M, Andrei AC, Perouansky M. Isoflurane impairs odour discrimination learning in rats: differential effects on short- and long-term memory. Br J Anaesth 2012; 108:630-7. [PMID: 22258200 DOI: 10.1093/bja/aer451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Anaesthetics suppress the formation of lasting memories at concentrations that do not suppress perception, but it is unclear which elements of the complex cascade leading from a conscious experience to a lasting memory trace are disrupted. Experiments in conscious humans suggest that subhypnotic concentrations of anaesthetics impair consolidation or maintenance rather than acquisition of a representation (long-term more than short-term memory). We sought to test whether these agents similarly impair learning in rats. METHODS We used operant conditioning in rats to examine the effect of isoflurane on acquisition compared with long-term (24 h) memory of non-aversive olfactory memories using two different odour discrimination tasks. Rats learned the 'valences' of odour pairs presented either separately (task A) or simultaneously (task B), under control conditions and under isoflurane inhalation. In a separate set of experiments, we tested the ability of the animals to recall a learning set that had been acquired 24 h previously. RESULTS Under 0.4% isoflurane inhalation, the average number of trials required to reach criterion performance (18 correct responses in 20 successive trials) increased from 21.9 to 43.5 (P<0.05) and 24.2 to 54.4 (P<0.05) for tasks A and B, respectively. Under 0.3% isoflurane inhalation, only task B was impaired (from 24.2 to 31.5 trials, P<0.05). Recall at 24 h was dose-dependently impaired or prevented by isoflurane for both tasks. CONCLUSIONS Isoflurane interfered with long-term memory of odour valence without preventing its acquisition. This paradigm may serve as a non-aversive animal model of conscious amnesia.
Collapse
Affiliation(s)
- R A Pearce
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Yoganarasimha D, Rao G, Knierim JJ. Lateral entorhinal neurons are not spatially selective in cue-rich environments. Hippocampus 2011; 21:1363-74. [PMID: 20857485 PMCID: PMC3010309 DOI: 10.1002/hipo.20839] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2010] [Indexed: 11/06/2022]
Abstract
The hippocampus is a brain region that is critical for spatial learning, context-dependent memory, and episodic memory. It receives major inputs from the medial entorhinal cortex (MEC) and the lateral EC (LEC). MEC neurons show much greater spatial firing than LEC neurons in a recording chamber with a single, salient landmark. The MEC cells are thought to derive their spatial tuning through path integration, which permits spatially selective firing in such a cue-deprived environment. In accordance with theories that postulate two spatial mapping systems that provide input to the hippocampus-an internal, path-integration system and an external, landmark-based system-it was possible that LEC neurons can also convey a spatial signal, but that the signal requires multiple landmarks to define locations, rather than movement integration. To test this hypothesis, neurons from the MEC and LEC were recorded as rats foraged for food in cue-rich environments. In both environments, LEC neurons showed little spatial specificity, whereas many MEC neurons showed a robust spatial signal. These data strongly support the notion that the MEC and LEC convey fundamentally different types of information to the hippocampus, in terms of their spatial firing characteristics, under various environmental and behavioral conditions.
Collapse
Affiliation(s)
- D Yoganarasimha
- Department of Neurobiology and Anatomy, University of Texas Medical School at Houston, Houston, Texas, USA
| | | | | |
Collapse
|
32
|
Deshmukh SS, Knierim JJ. Representation of non-spatial and spatial information in the lateral entorhinal cortex. Front Behav Neurosci 2011; 5:69. [PMID: 22065409 PMCID: PMC3203372 DOI: 10.3389/fnbeh.2011.00069] [Citation(s) in RCA: 314] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 10/03/2011] [Indexed: 11/13/2022] Open
Abstract
Some theories of memory propose that the hippocampus integrates the individual items and events of experience within a contextual or spatial framework. The hippocampus receives cortical input from two major pathways: the medial entorhinal cortex (MEC) and the lateral entorhinal cortex (LEC). During exploration in an open field, the firing fields of MEC grid cells form a periodically repeating, triangular array. In contrast, LEC neurons show little spatial selectivity, and it has been proposed that the LEC may provide non-spatial input to the hippocampus. Here, we recorded MEC and LEC neurons while rats explored an open field that contained discrete objects. LEC cells fired selectively at locations relative to the objects, whereas MEC cells were weakly influenced by the objects. These results provide the first direct demonstration of a double dissociation between LEC and MEC inputs to the hippocampus under conditions of exploration typically used to study hippocampal place cells.
Collapse
Affiliation(s)
- Sachin S Deshmukh
- Krieger Mind/Brain Institute, Johns Hopkins University Baltimore, MD, USA
| | | |
Collapse
|
33
|
Alvernhe A, Save E, Poucet B. Local remapping of place cell firing in the Tolman detour task. Eur J Neurosci 2011; 33:1696-705. [DOI: 10.1111/j.1460-9568.2011.07653.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Fouquet C, Tobin C, Rondi-Reig L. A new approach for modeling episodic memory from rodents to humans: The temporal order memory. Behav Brain Res 2010; 215:172-9. [DOI: 10.1016/j.bbr.2010.05.054] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 05/31/2010] [Indexed: 10/19/2022]
|
35
|
Learning, retrieval, and recognition are compromised in aMCI and mild AD: are distinct episodic memory processes mediated by the same anatomical structures? J Int Neuropsychol Soc 2010; 16:205-9. [PMID: 19835661 DOI: 10.1017/s1355617709990956] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Performance of different episodic memory processes in patients with amnestic mild cognitive impairment (aMCI) and mild Alzheimer's disease (AD) and their anatomical correlates are not completely understood. We evaluated the performance of 48 subjects (17 with aMCI, 15 with mild AD, and 16 controls) on the Rey Auditory Verbal Learning Test (RAVLT). A brain MRI voxel-based morphometry (VBM) analysis was run with the aim of evaluating the correlations between RAVLT and gray matter density. All memory processes were compromised in aMCI and mild AD. Also, the same cerebral structures were involved in all RAVLT stages. Learning and delayed recall were more related to the medial prefrontal cortex and hippocampi, whereas recognition was more related to the thalamic nuclei and caudate nucleus, particularly in the left side. Our findings suggest that these structures may act as a complex functional system and are involved in the acquisition of new information.
Collapse
|
36
|
Behrendt RP. Contribution of hippocampal region CA3 to consciousness and schizophrenic hallucinations. Neurosci Biobehav Rev 2009; 34:1121-36. [PMID: 20034516 DOI: 10.1016/j.neubiorev.2009.12.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 11/18/2009] [Accepted: 12/15/2009] [Indexed: 01/31/2023]
Abstract
Recent advances in understanding hippocampal information processing offer new vistas on the mind-body and binding problems. Information encoded by the autoassociation network of cornu ammonis 3 (CA3) situates landmarks and objects within an allocentric framework of space and time. Guiding locomotion across the spatial environment, and generally organizing behaviour that transcends space and time, the hippocampus creates phenomenal space and time themselves, thus laying the foundations for conscious awareness. It is argued that conscious experience describes/symbolizes the informational content of self-organizing activity patterns in CA3. Imagery, conscious perception or hallucinations do not in themselves affect the physical trajectory of behaviour but are evidence for patterns of neuronal activity that, acting via the medial prefrontal cortex, modulate action dispositions and influence prefrontal top-down attentional control of sensory processing and thus subsequent event memory formation. Evidence for GABAergic deficit and pyramidal cell hyperexcitability in CA3 in patients with schizophrenia is consistent with the notion that binding, by the CA3 network, of cortical modules representing weakly related sensory representations underlies hallucinations in this disorder.
Collapse
|
37
|
Abstract
Despite converging evidence that major depressive illness is associated with both memory impairment and hippocampal pathology, findings vary widely across studies and it is not known whether these changes are regionally specific. In the present study we acquired brain MRIs (magnetic resonance images) from 31 unmedicated patients with MDD (major depressive disorder; mean age 39.2±11.9 years; 77% female) and 31 demographically comparable controls. Three-dimensional parametric mesh models were created to examine localized alterations of hippocampal morphology. Although global volumes did not differ between groups, statistical mapping results revealed that in MDD patients, more severe depressive symptoms were associated with greater left hippocampal atrophy, particularly in CA1 (cornu ammonis 1) subfields and the subiculum. However, previous treatment with atypical antipsychotics was associated with a trend towards larger left hippocampal volume. Our findings suggest effects of illness severity on hippocampal size, as well as a possible effect of past history of atypical antipsychotic treatment, which may reflect prolonged neuroprotective effects. This possibility awaits confirmation in longitudinal studies.
Collapse
|
38
|
Okatan M. Correlates of reward-predictive value in learning-related hippocampal neural activity. Hippocampus 2009; 19:487-506. [PMID: 19123250 PMCID: PMC2742500 DOI: 10.1002/hipo.20535] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Temporal difference learning (TD) is a popular algorithm in machine learning. Two learning signals that are derived from this algorithm, the predictive value and the prediction error, have been shown to explain changes in neural activity and behavior during learning across species. Here, the predictive value signal is used to explain the time course of learning-related changes in the activity of hippocampal neurons in monkeys performing an associative learning task. The TD algorithm serves as the centerpiece of a joint probability model for the learning-related neural activity and the behavioral responses recorded during the task. The neural component of the model consists of spiking neurons that compete and learn the reward-predictive value of task-relevant input signals. The predictive-value signaled by these neurons influences the behavioral response generated by a stochastic decision stage, which constitutes the behavioral component of the model. It is shown that the time course of the changes in neural activity and behavioral performance generated by the model exhibits key features of the experimental data. The results suggest that information about correct associations may be expressed in the hippocampus before it is detected in the behavior of a subject. In this way, the hippocampus may be among the earliest brain areas to express learning and drive the behavioral changes associated with learning. Correlates of reward-predictive value may be expressed in the hippocampus through rate remapping within spatial memory representations, they may represent reward-related aspects of a declarative or explicit relational memory representation of task contingencies, or they may correspond to reward-related components of episodic memory representations. These potential functions are discussed in connection with hippocampal cell assembly sequences and their reverse reactivation during the awake state. The results provide further support for the proposal that neural processes underlying learning may be implementing a temporal difference-like algorithm.
Collapse
Affiliation(s)
- Murat Okatan
- Laboratory of Cognitive Neurobiology, Department of Psychology, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
39
|
Zhang XL, Sullivan JA, Moskal JR, Stanton PK. A NMDA receptor glycine site partial agonist, GLYX-13, simultaneously enhances LTP and reduces LTD at Schaffer collateral-CA1 synapses in hippocampus. Neuropharmacology 2008; 55:1238-50. [PMID: 18796308 PMCID: PMC2661239 DOI: 10.1016/j.neuropharm.2008.08.018] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 07/18/2008] [Accepted: 08/04/2008] [Indexed: 11/30/2022]
Abstract
N-methyl-D-aspartate glutamate receptors (NMDARs) are a key route for Ca2+ influx into neurons important to both activity-dependent synaptic plasticity and, when uncontrolled, triggering events that cause neuronal degeneration and death. Among regulatory binding sites on the NMDAR complex is a glycine binding site, distinct from the glutamate binding site, which must be co-activated for NMDAR channel opening. We developed a novel glycine site partial agonist, GLYX-13, which is both nootropic and neuroprotective in vivo. Here, we assessed the effects of GLYX-13 on long-term synaptic plasticity and NMDAR transmission at Schaffer collateral-CA1 synapses in hippocampal slices in vitro. GLYX-13 simultaneously enhanced the magnitude of long-term potentiation (LTP) of synaptic transmission, while reducing long-term depression (LTD). GLYX-13 reduced NMDA receptor-mediated synaptic currents in CA1 pyramidal neurons evoked by low frequency Schaffer collateral stimulation, but enhanced NMDAR currents during high frequency bursts of activity, and these actions were occluded by a saturating concentration of the glycine site agonist d-serine. Direct two-photon imaging of Schaffer collateral burst-evoked increases in [Ca2+] in individual dendritic spines revealed that GLYX-13 selectively enhanced burst-induced NMDAR-dependent spine Ca2+ influx. Examining the rate of MK-801 block of synaptic versus extrasynaptic NMDAR-gated channels revealed that GLYX-13 selectively enhanced activation of burst-driven extrasynaptic NMDARs, with an action that was blocked by the NR2B-selective NMDAR antagonist ifenprodil. Our data suggest that GLYX-13 may have unique therapeutic potential as a learning and memory enhancer because of its ability to simultaneously enhance LTP and suppress LTD.
Collapse
Affiliation(s)
- Xiao-lei Zhang
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, 10595
| | - John A. Sullivan
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, 10595
| | - Joseph R. Moskal
- The Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL 60201
| | - Patric K. Stanton
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, 10595
- Department of Neurology, New York Medical College, Valhalla, NY, 10595
| |
Collapse
|
40
|
Carpenter WT, Koenig JI. The evolution of drug development in schizophrenia: past issues and future opportunities. Neuropsychopharmacology 2008; 33:2061-79. [PMID: 18046305 PMCID: PMC2575138 DOI: 10.1038/sj.npp.1301639] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Schizophrenia is a disease syndrome with major public health implications. The primary advance in pharmacotherapeutics was in 1952 with the introduction of antipsychotic medications (ie, chlorpromazine, dopamine D2 antagonism). Barriers to progress have been substantial, but many will be subject to rapid change based on current knowledge. There are attractive psychopathology indications for drug discovery (eg, impaired cognition and negative symptoms), and drugs with efficacy in these domains may have application across a number of disease classes. These pathologies are observed prior to psychosis raising the possibility of very early intervention and secondary prevention. Success in drug discovery for cognition and negative symptom pathologies may bring forth issues in ethics as the potential for enhancing normal function is explored.
Collapse
Affiliation(s)
- William T Carpenter
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD 21228, USA.
| | | |
Collapse
|
41
|
Bearden CE, Thompson PM, Dutton RA, Frey BN, Peluso MAM, Nicoletti M, Dierschke N, Hayashi KM, Klunder AD, Glahn DC, Brambilla P, Sassi RB, Mallinger AG, Soares JC. Three-dimensional mapping of hippocampal anatomy in unmedicated and lithium-treated patients with bipolar disorder. Neuropsychopharmacology 2008; 33:1229-38. [PMID: 17687266 PMCID: PMC6693586 DOI: 10.1038/sj.npp.1301507] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Declarative memory impairments are common in patients with bipolar illness, suggesting underlying hippocampal pathology. However, hippocampal volume deficits are rarely observed in bipolar disorder. Here we used surface-based anatomic mapping to examine hippocampal anatomy in bipolar patients treated with lithium relative to matched control subjects and unmedicated patients with bipolar disorder. High-resolution brain magnetic resonance images were acquired from 33 patients with bipolar disorder (21 treated with lithium and 12 unmedicated), and 62 demographically matched healthy control subjects. Three-dimensional parametric mesh models were created from manual tracings of the hippocampal formation. Total hippocampal volume was significantly larger in lithium-treated bipolar patients compared with healthy controls (by 10.3%; p=0.001) and unmedicated bipolar patients (by 13.9%; p=0.003). Statistical mapping results, confirmed by permutation testing, revealed localized deficits in the right hippocampus, in regions corresponding primarily to cornu ammonis 1 subfields, in unmedicated bipolar patients, as compared to both normal controls (p=0.01), and in lithium-treated bipolar patients (p=0.03). These findings demonstrate the sensitivity of these anatomic mapping methods for detecting subtle alterations in hippocampal structure in bipolar disorder. The observed reduction in subregions of the hippocampus in unmedicated bipolar patients suggests a possible neural correlate for memory deficits frequently reported in this illness. Moreover, increased hippocampal volume in lithium-treated bipolar patients may reflect postulated neurotrophic effects of this agent, a possibility warranting further study in longitudinal investigations.
Collapse
Affiliation(s)
- Carrie E Bearden
- Department of Psychiatry & Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Bearden CE, Soares JC, Klunder AD, Nicoletti M, Dierschke N, Hayashi KM, Narr KL, Brambilla P, Sassi RB, Axelson D, Ryan N, Birmaher B, Thompson PM. Three-dimensional mapping of hippocampal anatomy in adolescents with bipolar disorder. J Am Acad Child Adolesc Psychiatry 2008; 47:515-525. [PMID: 18356767 PMCID: PMC2773145 DOI: 10.1097/chi.0b013e31816765ab] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Early-onset bipolar disorder is thought to be a particularly severe variant of the illness. Continuity with the adult form of illness remains unresolved, but preliminary evidence suggests similar biological underpinnings. Recently, we observed localized hippocampal decreases in unmedicated adults with bipolar disorder that were not detectable with conventional volumetric measures. Using the same three-dimensional mapping methods, we sought to investigate whether a similar pattern exists in adolescents with bipolar disorder. METHOD High-resolution brain magnetic resonance images were acquired from 16 adolescents meeting DSM-IV criteria for bipolar disorder (mean age 15.5 +/- 3.4 years, 50% female) and 20 demographically matched, typically developing control subjects. Three-dimensional parametric mesh models of the hippocampus were created from manual tracings of the hippocampal formation. RESULTS Controlling for total brain volume, total hippocampal volume was significantly smaller in adolescent patients with bipolar disorder relative to controls (by 9.2%). Statistical mapping results, confirmed by permutation testing, revealed significant localized deformations in the head and tail of the left hippocampus in adolescents with bipolar disorder, relative to normal controls. In addition, there was a significant positive correlation between hippocampal size and age in patients with bipolar disorder, whereas healthy controls showed an inverse relation. DISCUSSION Localized hippocampal deficits in adolescent patients with bipolar disorder suggest a possible neural correlate for memory deficits observed in this illness. Moreover, age-related increases in hippocampal size in patients with bipolar disorder, not observed in healthy controls, may reflect abnormal developmental mechanisms in bipolar disorder. This possibility must be confirmed by longitudinal studies.
Collapse
Affiliation(s)
- Carrie E Bearden
- Dr. Bearden is with the Semel Institute for Neuroscience and Human Behavior and Department of Psychology, University of California, Los Angeles; Dr. Soares and Mr. Nicoletti are with the Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine; Ms. Klunder, Ms. Hayashi, and Drs. Narr and Thompson are with the Laboratory of NeuroImaging, UCLA School of Medicine; Ms. Dierschke is with the Department of Psychiatry, University of Texas Health Science Center at San Antonio; Dr. Brambilla is with the Scientific Institute IRCCS; Dr. Sassi is with the Department of Psychiatry, University of Sao Paulo School of Medicine; Drs. Axelson, Ryan, and Birmaher are with the Department of Psychiatry, University of Pittsburgh School of Medicine..
| | - Jair C Soares
- Dr. Bearden is with the Semel Institute for Neuroscience and Human Behavior and Department of Psychology, University of California, Los Angeles; Dr. Soares and Mr. Nicoletti are with the Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine; Ms. Klunder, Ms. Hayashi, and Drs. Narr and Thompson are with the Laboratory of NeuroImaging, UCLA School of Medicine; Ms. Dierschke is with the Department of Psychiatry, University of Texas Health Science Center at San Antonio; Dr. Brambilla is with the Scientific Institute IRCCS; Dr. Sassi is with the Department of Psychiatry, University of Sao Paulo School of Medicine; Drs. Axelson, Ryan, and Birmaher are with the Department of Psychiatry, University of Pittsburgh School of Medicine
| | - Andrea D Klunder
- Dr. Bearden is with the Semel Institute for Neuroscience and Human Behavior and Department of Psychology, University of California, Los Angeles; Dr. Soares and Mr. Nicoletti are with the Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine; Ms. Klunder, Ms. Hayashi, and Drs. Narr and Thompson are with the Laboratory of NeuroImaging, UCLA School of Medicine; Ms. Dierschke is with the Department of Psychiatry, University of Texas Health Science Center at San Antonio; Dr. Brambilla is with the Scientific Institute IRCCS; Dr. Sassi is with the Department of Psychiatry, University of Sao Paulo School of Medicine; Drs. Axelson, Ryan, and Birmaher are with the Department of Psychiatry, University of Pittsburgh School of Medicine
| | - Mark Nicoletti
- Dr. Bearden is with the Semel Institute for Neuroscience and Human Behavior and Department of Psychology, University of California, Los Angeles; Dr. Soares and Mr. Nicoletti are with the Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine; Ms. Klunder, Ms. Hayashi, and Drs. Narr and Thompson are with the Laboratory of NeuroImaging, UCLA School of Medicine; Ms. Dierschke is with the Department of Psychiatry, University of Texas Health Science Center at San Antonio; Dr. Brambilla is with the Scientific Institute IRCCS; Dr. Sassi is with the Department of Psychiatry, University of Sao Paulo School of Medicine; Drs. Axelson, Ryan, and Birmaher are with the Department of Psychiatry, University of Pittsburgh School of Medicine
| | - Nicole Dierschke
- Dr. Bearden is with the Semel Institute for Neuroscience and Human Behavior and Department of Psychology, University of California, Los Angeles; Dr. Soares and Mr. Nicoletti are with the Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine; Ms. Klunder, Ms. Hayashi, and Drs. Narr and Thompson are with the Laboratory of NeuroImaging, UCLA School of Medicine; Ms. Dierschke is with the Department of Psychiatry, University of Texas Health Science Center at San Antonio; Dr. Brambilla is with the Scientific Institute IRCCS; Dr. Sassi is with the Department of Psychiatry, University of Sao Paulo School of Medicine; Drs. Axelson, Ryan, and Birmaher are with the Department of Psychiatry, University of Pittsburgh School of Medicine
| | - Kiralee M Hayashi
- Dr. Bearden is with the Semel Institute for Neuroscience and Human Behavior and Department of Psychology, University of California, Los Angeles; Dr. Soares and Mr. Nicoletti are with the Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine; Ms. Klunder, Ms. Hayashi, and Drs. Narr and Thompson are with the Laboratory of NeuroImaging, UCLA School of Medicine; Ms. Dierschke is with the Department of Psychiatry, University of Texas Health Science Center at San Antonio; Dr. Brambilla is with the Scientific Institute IRCCS; Dr. Sassi is with the Department of Psychiatry, University of Sao Paulo School of Medicine; Drs. Axelson, Ryan, and Birmaher are with the Department of Psychiatry, University of Pittsburgh School of Medicine
| | - Katherine L Narr
- Dr. Bearden is with the Semel Institute for Neuroscience and Human Behavior and Department of Psychology, University of California, Los Angeles; Dr. Soares and Mr. Nicoletti are with the Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine; Ms. Klunder, Ms. Hayashi, and Drs. Narr and Thompson are with the Laboratory of NeuroImaging, UCLA School of Medicine; Ms. Dierschke is with the Department of Psychiatry, University of Texas Health Science Center at San Antonio; Dr. Brambilla is with the Scientific Institute IRCCS; Dr. Sassi is with the Department of Psychiatry, University of Sao Paulo School of Medicine; Drs. Axelson, Ryan, and Birmaher are with the Department of Psychiatry, University of Pittsburgh School of Medicine
| | - Paolo Brambilla
- Dr. Bearden is with the Semel Institute for Neuroscience and Human Behavior and Department of Psychology, University of California, Los Angeles; Dr. Soares and Mr. Nicoletti are with the Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine; Ms. Klunder, Ms. Hayashi, and Drs. Narr and Thompson are with the Laboratory of NeuroImaging, UCLA School of Medicine; Ms. Dierschke is with the Department of Psychiatry, University of Texas Health Science Center at San Antonio; Dr. Brambilla is with the Scientific Institute IRCCS; Dr. Sassi is with the Department of Psychiatry, University of Sao Paulo School of Medicine; Drs. Axelson, Ryan, and Birmaher are with the Department of Psychiatry, University of Pittsburgh School of Medicine
| | - Roberto B Sassi
- Dr. Bearden is with the Semel Institute for Neuroscience and Human Behavior and Department of Psychology, University of California, Los Angeles; Dr. Soares and Mr. Nicoletti are with the Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine; Ms. Klunder, Ms. Hayashi, and Drs. Narr and Thompson are with the Laboratory of NeuroImaging, UCLA School of Medicine; Ms. Dierschke is with the Department of Psychiatry, University of Texas Health Science Center at San Antonio; Dr. Brambilla is with the Scientific Institute IRCCS; Dr. Sassi is with the Department of Psychiatry, University of Sao Paulo School of Medicine; Drs. Axelson, Ryan, and Birmaher are with the Department of Psychiatry, University of Pittsburgh School of Medicine
| | - David Axelson
- Dr. Bearden is with the Semel Institute for Neuroscience and Human Behavior and Department of Psychology, University of California, Los Angeles; Dr. Soares and Mr. Nicoletti are with the Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine; Ms. Klunder, Ms. Hayashi, and Drs. Narr and Thompson are with the Laboratory of NeuroImaging, UCLA School of Medicine; Ms. Dierschke is with the Department of Psychiatry, University of Texas Health Science Center at San Antonio; Dr. Brambilla is with the Scientific Institute IRCCS; Dr. Sassi is with the Department of Psychiatry, University of Sao Paulo School of Medicine; Drs. Axelson, Ryan, and Birmaher are with the Department of Psychiatry, University of Pittsburgh School of Medicine
| | - Neal Ryan
- Dr. Bearden is with the Semel Institute for Neuroscience and Human Behavior and Department of Psychology, University of California, Los Angeles; Dr. Soares and Mr. Nicoletti are with the Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine; Ms. Klunder, Ms. Hayashi, and Drs. Narr and Thompson are with the Laboratory of NeuroImaging, UCLA School of Medicine; Ms. Dierschke is with the Department of Psychiatry, University of Texas Health Science Center at San Antonio; Dr. Brambilla is with the Scientific Institute IRCCS; Dr. Sassi is with the Department of Psychiatry, University of Sao Paulo School of Medicine; Drs. Axelson, Ryan, and Birmaher are with the Department of Psychiatry, University of Pittsburgh School of Medicine
| | - Boris Birmaher
- Dr. Bearden is with the Semel Institute for Neuroscience and Human Behavior and Department of Psychology, University of California, Los Angeles; Dr. Soares and Mr. Nicoletti are with the Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine; Ms. Klunder, Ms. Hayashi, and Drs. Narr and Thompson are with the Laboratory of NeuroImaging, UCLA School of Medicine; Ms. Dierschke is with the Department of Psychiatry, University of Texas Health Science Center at San Antonio; Dr. Brambilla is with the Scientific Institute IRCCS; Dr. Sassi is with the Department of Psychiatry, University of Sao Paulo School of Medicine; Drs. Axelson, Ryan, and Birmaher are with the Department of Psychiatry, University of Pittsburgh School of Medicine
| | - Paul M Thompson
- Dr. Bearden is with the Semel Institute for Neuroscience and Human Behavior and Department of Psychology, University of California, Los Angeles; Dr. Soares and Mr. Nicoletti are with the Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine; Ms. Klunder, Ms. Hayashi, and Drs. Narr and Thompson are with the Laboratory of NeuroImaging, UCLA School of Medicine; Ms. Dierschke is with the Department of Psychiatry, University of Texas Health Science Center at San Antonio; Dr. Brambilla is with the Scientific Institute IRCCS; Dr. Sassi is with the Department of Psychiatry, University of Sao Paulo School of Medicine; Drs. Axelson, Ryan, and Birmaher are with the Department of Psychiatry, University of Pittsburgh School of Medicine
| |
Collapse
|
43
|
Zhou Y, Shu N, Liu Y, Song M, Hao Y, Liu H, Yu C, Liu Z, Jiang T. Altered resting-state functional connectivity and anatomical connectivity of hippocampus in schizophrenia. Schizophr Res 2008; 100:120-32. [PMID: 18234476 DOI: 10.1016/j.schres.2007.11.039] [Citation(s) in RCA: 232] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 11/27/2007] [Accepted: 11/30/2007] [Indexed: 11/20/2022]
Abstract
Hippocampus has been implicated in participating in the pathophysiology of schizophrenia. However, the functional and anatomical connectivities between hippocampus and other regions are rarely concurrently investigated in schizophrenia. In the present study, both functional magnetic resonance imaging (fMRI) during rest and diffusion tensor imaging (DTI) were performed on 17 patients with paranoid schizophrenia and 14 healthy subjects. Resting-state functional connectivities of the bilateral hippocampi were separately analyzed by selecting the anterior hippocampus as region of interest. The fornix body was reconstructed by diffusion tensor tractography, and the integrity of this tract was evaluated using fractional anisotropy (FA). In patients with schizophrenia, the bilateral hippocampi showed reduced functional connectivities to some regions which have been reported to be involved in episodic memory, such as posterior cingulate cortex, extrastriate cortex, medial prefrontal cortex, and parahippocampus gyrus. We speculated that these reduced connectivity may reflect the disconnectivity within a neural network related to the anterior hippocampus in schizophrenia. Meanwhile the mean FA of the fornix body was significantly reduced in patients, indicating the damage in the hippocampal anatomical connectivity in schizophrenia. The concurrence of the functional disconnectivity and damaged anatomical connectivity between the hippocampus and other regions in schizophrenia suggest that the functional-anatomical relationship need to be further investigated.
Collapse
Affiliation(s)
- Yuan Zhou
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100080, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Li JS, Chao YS. Electrolytic lesions of dorsal CA3 impair episodic-like memory in rats. Neurobiol Learn Mem 2008; 89:192-8. [PMID: 17702614 DOI: 10.1016/j.nlm.2007.06.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 06/07/2007] [Accepted: 06/30/2007] [Indexed: 10/22/2022]
Abstract
Episodic memory is the ability to recollect one's past experiences occurring in an unique spatial and temporal context. In non-human animals, it is expressed in the ability to combine "what", "where" and "when" factors to form an integrated memory system. During the search for its neural substrates, the hippocampus has attracted a lot of attentions. Yet, it is not yet possible to induce a pure episodic-like memory deficit in animal studies without being confounded by impairments in the spatial cognition. Here, we present a lesion study evidencing direct links between the hippocampus CA3 region and the episodic-like memory in rats. In a spontaneous object exploration task, lesioned rats showed no interaction between the temporal and spatial elements in their memory associated with the objects. In separate tests carried out subsequently, the same animals still expressed abilities to process spatial, temporal, and object recognition memory. In conclusions, our results support the idea that the hippocampus CA3 has a particular status in the neural mechanism of the episodic-like memory system. It is responsible for combining information from different modules of cognitive processes.
Collapse
Affiliation(s)
- Jay-Shake Li
- Department of Psychology, National Chung Cheng University, 168, University Road, Min-Hsiung, Chia-Yi, Taiwan, ROC.
| | | |
Collapse
|
45
|
Abstract
Rhesus monkeys were trained and tested in visual and auditory list-memory tasks with sequences of four travel pictures or four natural/environmental sounds followed by single test items. Acquisitions of the visual list-memory task are presented. Visual recency (last item) memory diminished with retention delay, and primacy (first item) memory strengthened. Capuchin monkeys, pigeons, and humans showed similar visual-memory changes. Rhesus learned an auditory memory task and showed octave generalization for some lists of notes--tonal, but not atonal, musical passages. In contrast with visual list memory, auditory primacy memory diminished with delay and auditory recency memory strengthened. Manipulations of interitem intervals, list length, and item presentation frequency revealed proactive and retroactive inhibition among items of individual auditory lists. Repeating visual items from prior lists produced interference (on nonmatching tests) revealing how far back memory extended. The possibility of using the interference function to separate familiarity vs. recollective memory processing is discussed.
Collapse
Affiliation(s)
- Anthony A Wright
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston Medical School, 77225, USA.
| |
Collapse
|
46
|
Chapter 3.3 Toward a neurobiology of episodic memory. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s1569-7339(08)00216-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
47
|
Abstract
AbstractThe claim that nonhuman animals lack foresight is common and intuitive. I propose an alternative whereby foresight is a gradual continuum in that it is present in animals to the extent that it is needed. A second aspect of this commentary points out that the requirements that the memory that mediates foresight be both specific yet flexible seem contradictory.
Collapse
|
48
|
Abstract
The hippocampus is essential for episodic memory, which requires single-trial learning. Although long-term potentiation (LTP) of synaptic strength is a candidate mechanism for learning, it is typically induced by using repeated synaptic activation to produce precisely timed, high-frequency, or rhythmic firing. Here we show that hippocampal synapses potentiate robustly in response to strong activation by a single burst. The induction mechanism of this single-burst LTP requires activation of NMDA receptors, L-type voltage-gated calcium channels, and dendritic spikes. Thus, dendritic spikes are a critical trigger for a form of LTP that is consistent with the function of the hippocampus in episodic memory.
Collapse
|
49
|
Declerck CH, Boone C, De Brabander B. On feeling in control: A biological theory for individual differences in control perception. Brain Cogn 2006; 62:143-76. [PMID: 16806623 DOI: 10.1016/j.bandc.2006.04.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 04/20/2006] [Accepted: 04/21/2006] [Indexed: 01/28/2023]
Abstract
This review aims to create a cross-disciplinary framework for understanding the perception of control. Although, the personality trait locus of control, the most common measure of control perception, has traditionally been regarded as a product of social learning, it may have biological antecedents as well. It is suggested that control perception follows from the brain's capacity for self regulation, leading to flexible and goal directed behaviours. To this account, a model is presented which spans several levels of analyses. On a behavioural level, control perception may be a corollary of emotion regulation, executive functions, and social cognition. On a neural level, these self-regulatory functions are substantiated in part by the dorsolateral and ventral prefrontal cortex and the anterior cingulate cortex. In addition, a possible role of subcortical-cortical dopamine pathways underlying control perception is discussed.
Collapse
Affiliation(s)
- Carolyn H Declerck
- University of Antwerp, Department of Business Economics, Prinsstraat 13, 2000 Antwerpen, Belgium.
| | | | | |
Collapse
|
50
|
Schaal DW. Naming our concerns about neuroscience: a review of Bennett and Hacker's philosophical foundations of neuroscience. J Exp Anal Behav 2006; 84:683-92. [PMID: 16596986 PMCID: PMC1389787 DOI: 10.1901/jeab.2005.83-05] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bennett and Hacker use conceptual analysis to appraise the theoretical language of modern cognitive neuroscientists, and conclude that neuroscientific theory is largely dualistic despite the fact that neuroscientists equate mind with the operations of the brain. The central error of cognitive neuroscientists is to commit the mereological fallacy, the tendency to ascribe to the brain psychological concepts that only make sense when ascribed to whole animals. The authors review how the mereological fallacy is committed in theories of memory, perception, thinking, imagery, belief, consciousness, and other psychological processes studied by neuroscientists, and the consequences that fallacious reasoning have for our understanding of how the brain participates in cognition and behavior. Several behavior-analytic concepts may themselves be nonsense based on thorough conceptual analyses in which the criteria for sense and nonsense are found in the ways the concepts are used in ordinary language. Nevertheless, the authors' nondualistic approach and their consistent focus on behavioral criteria for the application of psychological concepts make Philosophical Foundations of Neuroscience an important contribution to cognitive neuroscience.
Collapse
|