1
|
Nevins M. Periodontal Clinical Practice: The Past, the Present, the Future. J Periodontal Res 2025; 60:203-205. [PMID: 40230070 DOI: 10.1111/jre.13392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 04/16/2025]
Affiliation(s)
- Myron Nevins
- Department of Oral Medicine, Infection and Immunity, Division of Periodontology, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Galarraga-Vinueza ME, Barootchi S, Nevins ML, Nevins M, Miron RJ, Tavelli L. Twenty-five years of recombinant human growth factors rhPDGF-BB and rhBMP-2 in oral hard and soft tissue regeneration. Periodontol 2000 2024; 94:483-509. [PMID: 37681552 DOI: 10.1111/prd.12522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023]
Abstract
Contemporary oral tissue engineering strategies involve recombinant human growth factor approaches to stimulate diverse cellular processes including cell differentiation, migration, recruitment, and proliferation at grafted areas. Recombinant human growth factor applications in oral hard and soft tissue regeneration have been progressively researched over the last 25 years. Growth factor-mediated surgical approaches aim to accelerate healing, tissue reconstruction, and patient recovery. Thus, regenerative approaches involving growth factors such as recombinant human platelet-derived growth factor-BB (rhPDGF-BB) and recombinant human bone morphogenetic proteins (rhBMPs) have shown certain advantages over invasive traditional surgical approaches in severe hard and soft tissue defects. Several clinical studies assessed the outcomes of rhBMP-2 in diverse clinical applications for implant site development and bone augmentation. Current evidence regarding the clinical benefits of rhBMP-2 compared to conventional therapies is inconclusive. Nevertheless, it seems that rhBMP-2 can promote faster wound healing processes and enhance de novo bone formation, which may be particularly favorable in patients with compromised bone healing capacity or limited donor sites. rhPDGF-BB has been extensively applied for periodontal regenerative procedures and for the treatment of gingival recessions, showing consistent and positive outcomes. Nevertheless, current evidence regarding its benefits at implant and edentulous sites is limited. The present review explores and depicts the current applications, outcomes, and evidence-based clinical recommendations of rhPDGF-BB and rhBMPs for oral tissue regeneration.
Collapse
Affiliation(s)
- Maria Elisa Galarraga-Vinueza
- Tufts University School of Dental Medicine, Boston, Massachusetts, USA
- School of Dentistry, Universidad de las Américas (UDLA), Quito, Ecuador
| | - Shayan Barootchi
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
- Center for Clinical Research and Evidence Synthesis in Oral Tissue Regeneration (CRITERION), Boston, Massachusetts, USA
| | - Marc L Nevins
- Division of Periodontology, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Myron Nevins
- Division of Periodontology, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Lorenzo Tavelli
- Center for Clinical Research and Evidence Synthesis in Oral Tissue Regeneration (CRITERION), Boston, Massachusetts, USA
- Division of Periodontology, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Fraser D, Caton J, Benoit DSW. Periodontal Wound Healing and Regeneration: Insights for Engineering New Therapeutic Approaches. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.815810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Periodontitis is a widespread inflammatory disease that leads to loss of the tooth supporting periodontal tissues. The few therapies available to regenerate periodontal tissues have high costs and inherent limitations, inspiring the development of new approaches. Studies have shown that periodontal tissues have an inherent capacity for regeneration, driven by multipotent cells residing in the periodontal ligament (PDL). The purpose of this review is to describe the current understanding of the mechanisms driving periodontal wound healing and regeneration that can inform the development of new treatment approaches. The biologic basis underlying established therapies such as guided tissue regeneration (GTR) and growth factor delivery are reviewed, along with examples of biomaterials that have been engineered to improve the effectiveness of these approaches. Emerging therapies such as those targeting Wnt signaling, periodontal cell delivery or recruitment, and tissue engineered scaffolds are described in the context of periodontal wound healing, using key in vivo studies to illustrate the impact these approaches can have on the formation of new cementum, alveolar bone, and PDL. Finally, design principles for engineering new therapies are suggested which build on current knowledge of periodontal wound healing and regeneration.
Collapse
|
4
|
Rajadurai J, Lovric V, Mobbs RJ, Choy WJ, Walsh WR. The use of demineralised bone fibres (DBF) in conjunction with supercritical carbon dioxide (SCCO 2) treated allograft in anterior lumbar interbody fusion (ALIF). JOURNAL OF SPINE SURGERY 2019; 5:589-595. [PMID: 32043009 DOI: 10.21037/jss.2019.10.04] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Spinal fusion is a common procedure for the treatment of various spinal pathologies. Since the early days, spinal fusion has been carried out with the use of bone grafts as interbody spacers. With the development of synthetic interbody implants, bone grafts were used to facilitate fusion. Although autograft provides the best outcomes for fusion, allografts have been sought after due to donor site morbidity and other shortcomings. Currently, a vast variety of demineralised bone matrix (DBM) products are available with their methods of processing and preparation impacting their properties and clinical outcomes. Demineralised bone fibres (DBF), a form a DBM can be easily packed into implants when mixed with other substances such as allograft bone and patient's blood providing a scaffold for the mixture. We report two cases of anterior lumbar interbody fusion (ALIF) utilising a titanium-polyetheretherketone (PEEK) interbody cage filled with DBF, allograft and patient's blood with a maximum of 12 months follow-up outcome.
Collapse
Affiliation(s)
- Jeremy Rajadurai
- NeuroSpine Surgery Research Group (NSURG), Sydney, Australia.,Prince of Wales Private Hospital, Randwick, NSW, Australia
| | - Vedran Lovric
- NeuroSpine Surgery Research Group (NSURG), Sydney, Australia.,Faculty of Medicine, University of New South Wales, Sydney, Australia.,Surgical and Orthopaedics Research Lab (SORL), Prince of Wales Hospital, Randwick, Australia
| | - Ralph J Mobbs
- NeuroSpine Surgery Research Group (NSURG), Sydney, Australia.,Prince of Wales Private Hospital, Randwick, NSW, Australia.,Faculty of Medicine, University of New South Wales, Sydney, Australia.,Surgical and Orthopaedics Research Lab (SORL), Prince of Wales Hospital, Randwick, Australia
| | - Wen Jie Choy
- NeuroSpine Surgery Research Group (NSURG), Sydney, Australia.,Faculty of Medicine, University of New South Wales, Sydney, Australia.,Surgical and Orthopaedics Research Lab (SORL), Prince of Wales Hospital, Randwick, Australia
| | - William R Walsh
- NeuroSpine Surgery Research Group (NSURG), Sydney, Australia.,Faculty of Medicine, University of New South Wales, Sydney, Australia.,Surgical and Orthopaedics Research Lab (SORL), Prince of Wales Hospital, Randwick, Australia
| |
Collapse
|
5
|
Ausenda F, Rasperini G, Acunzo R, Gorbunkova A, Pagni G. New Perspectives in the Use of Biomaterials for Periodontal Regeneration. MATERIALS 2019; 12:ma12132197. [PMID: 31288437 PMCID: PMC6651816 DOI: 10.3390/ma12132197] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 02/05/2023]
Abstract
Periodontitis is a disease with a high prevalence among adults. If not treated, it can lead to loss of teeth. Periodontal therapy aims at maintaining patient’s teeth through infection control and correction of non-maintainable anatomies including—when possible—regeneration of lost periodontal tissues. The biological regenerative potential of the periodontium is high, and several biomaterials can be utilized to improve the outcome of periodontal therapy. Use of different natural and synthetic materials in the periodontal field has been studied for many years. The main materials used today in periodontology analyzed in this review are: Resorbable and non-resorbable barrier membranes; autogenous, allogeneic, xenogeneic, and alloplastic bone substitutes; biological agents, such as amelogenins; platelet-derived growth factor; bone morphogenic proteins; rh fibroblast growth factor 2; teriparatide hormone; platelet concentrates; and 3D scaffolds. With the development of new surgical techniques some concepts on periodontal regeneration that were strictly applied in the past seem to be not so critical today. This can have an impact on the materials that are needed when attempting to regenerate lost periodontal structures. This review aims at presenting a rationale behind the use of biomaterials in modern periodontal regeneration
Collapse
Affiliation(s)
- Federico Ausenda
- Unit of Periodontology, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Foundation IRCCS C'a Granda, 20142 Milan, Italy
| | - Giulio Rasperini
- Unit of Periodontology, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Foundation IRCCS C'a Granda, 20142 Milan, Italy
| | - Raffaele Acunzo
- Unit of Periodontology, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Foundation IRCCS C'a Granda, 20142 Milan, Italy
| | - Angelina Gorbunkova
- Unit of Periodontology, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Foundation IRCCS C'a Granda, 20142 Milan, Italy
| | - Giorgio Pagni
- Unit of Periodontology, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Foundation IRCCS C'a Granda, 20142 Milan, Italy.
| |
Collapse
|
6
|
Shamma RN, Elkasabgy NA, Mahmoud AA, Gawdat SI, Kataia MM, Abdel Hamid MA. Design of novel injectable in-situ forming scaffolds for non-surgical treatment of periapical lesions: In-vitro and in-vivo evaluation. Int J Pharm 2017; 521:306-317. [PMID: 28235624 DOI: 10.1016/j.ijpharm.2017.02.058] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/18/2017] [Accepted: 02/20/2017] [Indexed: 10/20/2022]
Abstract
Periapical lesions are considered one of the common pathological conditions affecting alveolar bone. The primary focus of this study was to investigate the effectiveness of formulating an injectable in-situ forming scaffold-loaded with risedronate (bone resorption inhibitor) and with lornoxicam (anti-inflammatory drug) for the non-surgical treatment of periapical lesions. The scaffolds were prepared using solvent-induced phase inversion technique. Two insoluble copolymers were investigated namely; PLGA (ester-terminal) and PLGA-A (acid-terminal), additionally, SAIB was added as a high viscosity water-insoluble carrier. The addition of porogenic agents like hydrolyzed collagen was also investigated. The prepared scaffolds were characterized by analyzing their in-vitro release, DSC and rheological properties, besides their morphological properties. The results showed that the scaffolds prepared using 30% (w/v) PLGA or combined PLGA: SAIB (1:1, w/w) with total polymer concentration of 30% (w/v) possessed the most sustained drug release profile. Selected scaffolds were tested for their therapeutic effect to study the effect of porogenic agent, anti-inflammatory drug and risedronate in periapical lesions induced in dogs' teeth. Results declared that the selected scaffolds succeeded in improving the inflammation and enhancing the formation of new bony regions confirming the success of the prepared scaffolds as an innovative approach in the treatment of bone defects.
Collapse
Affiliation(s)
- Rehab N Shamma
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, Egypt
| | - Nermeen A Elkasabgy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, Egypt.
| | - Azza A Mahmoud
- Department of Pharmaceutical Technology, National Research Center, Dokki, Cairo, Egypt; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt
| | - Shaimaa I Gawdat
- Department of Endodontics, Faculty of Oral and Dental Medicine, Cairo University, Cairo, Egypt
| | - Mohamed M Kataia
- Department of Endodontic, Faculty of Dentistry, Minia University, Cairo, Egypt
| | - Mohamed A Abdel Hamid
- Department of Surgery, Anaesthiology and Radiology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
7
|
Zaky AA, El Shenawy HMM, Harhsh TAH, Shalash M, Awad NMI. Can Low Level Laser Therapy Benefit Bone Regeneration in Localized Maxillary Cystic Defects? - A Prospective Randomized Control Trial. Open Access Maced J Med Sci 2016; 4:720-725. [PMID: 28028422 PMCID: PMC5175530 DOI: 10.3889/oamjms.2016.140] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 11/24/2016] [Accepted: 11/26/2016] [Indexed: 01/15/2023] Open
Abstract
AIM: The aim of the study was to evaluate the effect of Low-Level Laser Therapy (LLLT) on bone formation in cystic defects following cyst enucleation. PATIENTS AND METHODS: The sample was composed of sixteen patients with enucleated maxillary bony cystic lesions. With an age range from 20 - 44 grouped as eight Laser and eight Control patients. Laser group was subjected to low intensity diode laser immediately after surgery and then for three times per week for two weeks using a therapeutic laser irradiation. Group B (control group): patients were not subjected laser therapy. RESULTS: The predictor variable was exposure of bone defect to LLLT or none. The outcome variable was bone density changes measured by digital radiographs at day 1 and days 90 postoperatively. Descriptive and bivariate statistics were computed. There were no statistically significant differences between the 2 groups for the bone density at day 1. There was a statistically significant difference in bone density changes in each group at day 90: Significant at P ≤ 0.05. After adjusting for differences in day 1 for bone density, the estimated mean change in bone density changes at day 90 was significantly larger for Laser compared with control. CONCLUSION: The results of this study suggested that LLLT can enhance bone healing in maxillary cystic defects. This can serve as an adjunct method in preventing possible delayed healing and pathological fractures This also will be helpful for more researchers in early loading in case of dental implants to accelerate osseointegration.
Collapse
Affiliation(s)
- Ahmed Abbas Zaky
- National Institute of Laser Enhanced Sciences, Cairo University, Cairo, Egypt
| | | | | | - Mahmoud Shalash
- Oral Surgery and Medicine Department, National Research Center, Cairo, Egypt
| | | |
Collapse
|
8
|
Yu SH, Chan HL, Chong LY, Jheng YH, Chang PC. Evaluation of the osteogenic potential of growth factor-rich demineralized bone matrix in vivo. J Periodontol 2016; 86:36-43. [PMID: 25272981 DOI: 10.1902/jop.2014.140333] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The study evaluates the osteogenic properties and biocompatibility of growth factor-rich demineralized bone matrix (GDBM) by comparing with cancellous mineralized bone matrix (CMBM) and anorganic bovine bone matrix (ABBM). METHODS Thirty-six Sprague-Dawley rats were used (n = 6/group/time point). To assess biocompatibility and osteoinductivity, the respective bone matrices were randomly placed in subcutaneous pouches for 7 and 28 days and evaluated by histology and osteopontin expression. Osteoconductivity was assessed by randomly implanting respective bone matrices in osteotomies on femurs for 14 and 28 days and evaluated by microcomputed tomography and histology. RESULTS Neither acute inflammation nor mineralized tissue was noted in any of the subcutaneous specimens, whereas expression of osteopontin was more prominent in the GDBM group. Among the femoral specimens, the greatest relative bone volume (bone volume [BV] divided by trabecular volume [TV]) and trabecular thickness was noted in the ABBM group at both time points, whereas less BV/TV was noted in GDBM group at day 14. Residual matrix particles were noted in all examined groups at both time points, without significant differences regarding defect fill between groups. The GDBM group presented similar levels of newly formed bone compartment and marrow space to those of the ABBM group. CONCLUSIONS GDBM demonstrated acceptable biocompatibility and osteogenic potential comparable to ABBM in vivo. Further investigations in a more clinically relevant model are warranted.
Collapse
Affiliation(s)
- Shan-Huey Yu
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
9
|
Lin GH, Lim G, Chan HL, Giannobile WV, Wang HL. Recombinant human bone morphogenetic protein 2 outcomes for maxillary sinus floor augmentation: a systematic review and meta-analysis. Clin Oral Implants Res 2015; 27:1349-1359. [DOI: 10.1111/clr.12737] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Guo-Hao Lin
- Graduate Periodontics; Department of Periodontics & Oral Medicine; University of Michigan School of Dentistry; Ann Arbor MI USA
| | - Glendale Lim
- Graduate Periodontics; Department of Periodontics & Oral Medicine; University of Michigan School of Dentistry; Ann Arbor MI USA
| | - Hsun-Liang Chan
- Graduate Periodontics; Department of Periodontics & Oral Medicine; University of Michigan School of Dentistry; Ann Arbor MI USA
| | - William V. Giannobile
- Graduate Periodontics; Department of Periodontics & Oral Medicine; University of Michigan School of Dentistry; Ann Arbor MI USA
- Department of Biomedical Engineering; College of Engineering; University of Michigan; Ann Arbor MI USA
| | - Hom-Lay Wang
- Graduate Periodontics; Department of Periodontics & Oral Medicine; University of Michigan School of Dentistry; Ann Arbor MI USA
| |
Collapse
|
10
|
Sculean A, Nikolidakis D, Nikou G, Ivanovic A, Chapple ILC, Stavropoulos A. Biomaterials for promoting periodontal regeneration in human intrabony defects: a systematic review. Periodontol 2000 2015; 68:182-216. [DOI: 10.1111/prd.12086] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2014] [Indexed: 11/29/2022]
|
11
|
Moon KN, Kim SG, Oh JS, Kim CS, Lim SC, Jeong MA. Evaluation of bone formation after grafting with deproteinized bovine bone and mineralized allogenic bone. IMPLANT DENT 2015; 24:101-105. [PMID: 25621556 DOI: 10.1097/id.0000000000000185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE The purpose of this study was to evaluate the ability of new bone formation of deproteinized bovine bone (Bio-Oss) and mineralized allogenic bone (Tutoplast). MATERIALS AND METHODS Sixty rats were divided into control and experimental groups (groups 1 and 2): control group, unfilled control; group 1, Bio-Oss; group 2, Tutoplast, respectively. The animals were killed after 6 and 12 weeks, and newly formed bone was analyzed histomorphometrically. RESULTS In the control group, some new bone formed in the rim of the defect area. In the group 1, newly formed bone was thinner than the adjacent normal bone, and Bio-Oss particles were observed. In the group 2, showed a pattern of gradual fusion with adjacent bone, as well as particles in some areas, similar to the Bio-Oss-treated group. In the 12-week groups, the amount of new bone formation was significantly higher in the experimental groups than in the control group, and it was significantly higher in group 2 than in group 1. CONCLUSION Although Tutoplast and Bio-Oss graft materials seem to be useful for bone grafts, Tutoplast showed more active new bone formation than Bio-Oss.
Collapse
Affiliation(s)
- Kyung-Nam Moon
- *Graduate Student, Department of Oral and Maxillofacial Surgery, School of Dentistry, Chosun University, Gwangju, Korea. †Professor, Department of Oral and Maxillofacial Surgery, School of Dentistry, Chosun University, Gwangju, Korea. ‡Assistant Professor, Department of Oral and Maxillofacial Surgery, School of Dentistry, Chosun University, Gwangju, Korea. §Assistant Professor, Department of Oral Biochemistry and Oral Biology Research Institute, School of Dentistry, Chosun University, Gwangju, Korea. ‖Professor, Department of Pathology, School of Medicine, Chosun University, Gwangju, Korea. ¶Assistant Professor, Department of Dental Hygiene, Kangwon National University, Samcheok, Korea
| | | | | | | | | | | |
Collapse
|
12
|
Reynolds MA, Kao RT, Nares S, Camargo PM, Caton JG, Clem DS, Fiorellini JP, Geisinger ML, Mills MP, Nevins ML, Rosen PS. Periodontal Regeneration - Intrabony Defects: Practical Applications From the AAP Regeneration Workshop. Clin Adv Periodontics 2015; 5:21-29. [PMID: 32689725 DOI: 10.1902/cap.2015.140062] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/04/2014] [Indexed: 11/13/2022]
Abstract
Focused Clinical Question: What are important considerations for selecting a predictable regenerative surgical approach for intrabony defects? Summary: The predictable regeneration of intrabony defects remains an important goal in the management of periodontitis. Clinical and histologic evidence of periodontal regeneration has been shown for multiple regenerative therapies, including bone replacement grafts, guided tissue regeneration, and biologics, when used alone or in combination. Regenerative therapies improve periodontal health, as evidenced by gains in clinical attachment level, reductions in probing depth, and gains in radiographic bone fill. Important patient-related factors (e.g., smoking) and defect/site-related factors (e.g., defect morphology and gingival biotype) can influence the potential to achieve periodontal regeneration. The regeneration of intrabony defects generally becomes more challenging with increasing loss of height, proximity, and number of bony walls. Therefore, combination therapies may be necessary to achieve predictable regeneration. Clinical improvements after regenerative therapy can be maintained over extended periods (≥10 years) with professional maintenance at appropriate intervals and adequate home care. Conclusions: Periodontal regeneration of intrabony defects is possible using a variety of regenerative strategies. Management should be coupled with an effective oral hygiene and supportive periodontal maintenance program for long-term success.
Collapse
Affiliation(s)
- Mark A Reynolds
- Department of Periodontics, School of Dentistry, University of Maryland, Baltimore, MD
| | - Richard T Kao
- Division of Periodontology, School of Dentistry, University of California at San Francisco, San Francisco, CA.,Private practice, Cupertino, CA
| | - Salvador Nares
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL
| | - Paulo M Camargo
- Section of Periodontics, School of Dentistry, University of California at Los Angeles, Los Angeles, CA
| | - Jack G Caton
- Division of Periodontology, Eastman Institute for Oral Health, University of Rochester, Rochester, NY
| | | | - Joseph P Fiorellini
- Department of Periodontics, College of Dentistry, University of Pennsylvania, Philadelphia, PA
| | - Maria L Geisinger
- Department of Periodontology, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL
| | - Michael P Mills
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | | | - Paul S Rosen
- Department of Periodontics, School of Dentistry, University of Maryland, Baltimore, MD.,Private practice, Yardley, PA
| |
Collapse
|
13
|
Kao RT, Nares S, Reynolds MA. Periodontal regeneration - intrabony defects: a systematic review from the AAP Regeneration Workshop. J Periodontol 2014; 86:S77-104. [PMID: 25216204 DOI: 10.1902/jop.2015.130685] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Previous systematic reviews of periodontal regeneration with bone replacement grafts and guided tissue regeneration (GTR) were defined as state of the art for clinical periodontal regeneration as of 2002. METHODS The purpose of this systematic review is to update those consensus reports by reviewing periodontal regeneration approaches developed for the correction of intrabony defects with the focus on patient-, tooth-, and site-centered factors, surgical approaches, surgical determinants, and biologics. This review adheres to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines for systematic reviews. A computerized search of the PubMed and Cochrane databases was performed to evaluate the clinically available regenerative approaches for intrabony defects. The search included screening of original reports, review articles, and reference lists of retrieved articles and hand searches of selected journals. All searches were focused on clinically available regenerative approaches with histologic evidence of periodontal regeneration in humans published in English. For topics in which the literature is lacking, non-randomized observational and experimental animal model studies were used. Therapeutic endpoints examined included changes in clinical attachment level, changes in bone level/fill, and probing depth. For purposes of analysis, change in bone fill was used as the primary outcome measure, except in cases in which this information was not available. The SORT (Strength of Recommendation Taxonomy) grading scale was used in evaluating the body of knowledge. RESULTS 1) Fifty-eight studies provided data on patient, tooth, and surgical-site considerations in the treatment of intrabony defects. 2) Forty-five controlled studies provided outcome analysis on the use of biologics for the treatment of intrabony defects. CONCLUSIONS 1) Biologics (enamel matrix derivative and recombinant human platelet-derived growth factor-BB plus β-tricalcium phosphate) are generally comparable with demineralized freeze-dried bone allograft and GTR and superior to open flap debridement procedures in improving clinical parameters in the treatment of intrabony defects. 2) Histologic evidence of regeneration has been demonstrated with laser therapy; however, data are limited on clinical predictability and effectiveness. 3) Clinical outcomes appear most appreciably influenced by patient behaviors and surgical approach rather than by tooth and defect characteristics. 4) Long-term studies indicate that improvements in clinical parameters are maintainable up to 10 years, even in severely compromised teeth, consistent with a favorable/good long-term prognosis.
Collapse
|
14
|
Jain AP, Pundir S, Sharma A. Bone morphogenetic proteins: The anomalous molecules. J Indian Soc Periodontol 2014; 17:583-6. [PMID: 24174749 PMCID: PMC3808010 DOI: 10.4103/0972-124x.119275] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 08/01/2013] [Indexed: 12/05/2022] Open
Abstract
Bone is unique of all the tissues in the vertebrate organism. When injured, it heals by formation of new bone. Bone morphogenetic proteins (BMPs) are powerful inductors of the osteogenic activity during the embryologic bone formation phase and in cases of bone healing. They have proliferative effects on different cellular types, showing chemotactic properties and are able to induce mesenchymal cells differentiation into osteoblastic and chondroblastic line cells. Both primary cells and cell lines have been shown to respond to BMPs. Further the ability of embryonic cells to respond to BMPs by differentiating into cartilage and bone cells suggests that they are involved in the development of embryonic skeletal system. In addition, these proteins can also promote the angiogenesis, regulate the activity of some growth factors, and affect the production of these growth factors, which is helpful for the osteogenesis. BMPs have been considered as the most potent growth factors that can promote the bone regeneration. Thus, the aim of this review is to emphasize on the unique nature of the BMP molecules regarding their structure, classification, signaling mechanism, etc., as BMPs are the only molecules which show such deviation from the normal order, type. This will further help in understanding the role of BMPs and their potential advances which are necessary to facilitate the process of regeneration in periodontics.
Collapse
Affiliation(s)
- Aena Pundir Jain
- Department of Periodontics, Rungta College of Dental Sciences and Research, Bhilai, Chhattisgarh, India
| | | | | |
Collapse
|
15
|
Susin C, Wikesjö UME. Regenerative periodontal therapy: 30 years of lessons learned and unlearned. Periodontol 2000 2014; 62:232-42. [PMID: 23574469 DOI: 10.1111/prd.12003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this review, we reflect upon advances and hindrances encountered over the last three decades in the development of strategies for periodontal regeneration. In this soul-searching pursuit we focus on revisiting lessons learned that should guide us in the quest for the reconstruction of the lost periodontium. We also examine beliefs and traditions that should be unlearned so that we can continue to advance the field. This learned/unlearned body of knowledge is consolidated into core principles to help us to develop new therapeutic approaches to benefit our patients and ultimately our society.
Collapse
|
16
|
Carreira AC, Lojudice FH, Halcsik E, Navarro RD, Sogayar MC, Granjeiro JM. Bone morphogenetic proteins: facts, challenges, and future perspectives. J Dent Res 2014; 93:335-45. [PMID: 24389809 DOI: 10.1177/0022034513518561] [Citation(s) in RCA: 246] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are members of the TGF-β superfamily, acting as potent regulators during embryogenesis and bone and cartilage formation and repair. Cell and molecular biology approaches have unveiled the great complexity of BMP action, later confirmed by transgenic animal studies. Genetic engineering allows for the production of large amounts of BMPs for clinical use, but they have systematically been associated with a delivery system, such as type I collagen and calcium phosphate ceramics, to ensure controlled release and to maximize their biological activity at the surgical site, avoiding systemic diffusion. Clinical orthopedic studies have shown the benefits of FDA-approved recombinant human BMPs (rhBMPs) 2 and 7, but side effects, such as swelling, seroma, and increased cancer risk, have been reported, probably due to high BMP dosage. Several studies have supported the use of BMPs in periodontal regeneration, sinus lift bone-grafting, and non-unions in oral surgery. However, the clinical use of BMPs is growing mainly in off-label applications, with robust evidence to ascertain rhBMPs' safety and efficacy through well-designed, randomized, and double-blind clinical trials. Here we review and discuss the critical data on BMP structure, mechanisms of action, and possible clinical applications.
Collapse
Affiliation(s)
- A C Carreira
- Biochemistry Department, Chemistry Institute, and Cell and Molecular Therapy Center NUCEL-NETCEM, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
17
|
Rosen PS. A Tribute to Gerald M. Bowers and Robert G. Schallhorn. Clin Adv Periodontics 2013. [DOI: 10.1902/cap.2013.130001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Rosen PS, Froum SJ, Reynolds MA. Is the Use of Biologic Additions Necessary to Optimize Periodontal Regenerative Efforts? Clin Adv Periodontics 2013. [DOI: 10.1902/cap.2012.120090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Reynolds MA, Aichelmann-Reidy ME. Protein and peptide-based therapeutics in periodontal regeneration. J Evid Based Dent Pract 2013; 12:118-26. [PMID: 23040343 DOI: 10.1016/s1532-3382(12)70023-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
UNLABELLED Protein and peptide-based therapeutics provide a unique strategy for controlling highly specific and complex biologic actions that cannot be accomplished by simple devices or chemical compounds. This article reviews some of the key characteristics and summarizes the clinical effectiveness of protein and peptide-based therapeutics targeting periodontal regeneration. EVIDENCE ACQUISITION A literature search was conducted of randomized clinical trials and systematic reviews evaluating protein and peptide-based therapeutics for the regeneration of periodontal tissues of at least 6 months duration. Data sources included PubMed and Embase electronic databases, hand-searched journals, and the ClinicalTrials.gov registry. EVIDENCE SYNTHESIS Commercially marketed protein and peptide-based therapeutics for periodontal regeneration provide gains in clinical attachment level and bone formation that are comparable or superior to other regenerative approaches. Results from several clinical trials indicate that protein and peptide-based therapies can accelerate repair and regeneration when compared with other treatments and that improvements in clinical parameters continue beyond 12 months. Protein and peptide-based therapies also exhibit the capacity to increase the predictability of treatment outcomes. CONCLUSIONS Clinical and histologic studies support the effectiveness of protein- and peptide-based therapeutics for periodontal regeneration. Emerging evidence suggests that the delivery devices/scaffolds play a critical role in determining the effectiveness of this class of therapeutics.
Collapse
Affiliation(s)
- Mark A Reynolds
- Department of Periodontics, University of Maryland, School of Dentistry, Baltimore, MD 21201, USA.
| | | |
Collapse
|
20
|
Katuri KK, Kumar PJ, Swarna C, Swamy DN, Arun KV. Evaluation of bioactive glass and demineralized freeze dried bone allograft in the treatment of periodontal intraosseous defects: A comparative clinico-radiographic study. J Indian Soc Periodontol 2013; 17:367-72. [PMID: 24049339 PMCID: PMC3768189 DOI: 10.4103/0972-124x.115660] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 05/12/2013] [Indexed: 11/04/2022] Open
Abstract
AIM The purpose of this study was to evaluate the efficacy of demineralized freeze dried bone allograft (DFDBA) and bioactive glass by clinically and radiographically in periodontal intrabony defects for a period of 12 months. MATERIALS AND METHODS Ten systemically healthy patients diagnosed with chronic periodontitis, with radiographic evidence of at least a pair of contralateral vertical osseous defects were included in this study. Defect on one-side is treated with DFDBA and the other side with bioactive glass. Clinical and radiographic measurements were made at baseline 6 month and 12 month after the surgery. RESULTS Compared to baseline, the 12 month results indicated that both treatment modalities resulted in significant changes in all clinical parameters (gingival index, probing depth, clinical attachment level (CAL) and radiographic parameters (bone fill); P < 0.001*). However, sites treated with DFDBA exhibited statistically significantly more changes compared to the bioactive glass in probing depth reduction (2.5 ± 0.1 mm vs. 1.8 ± 0.1 mm) CAL gain 2.4 ± 0.1 mm versus 1.7 ± 0.2 mm; (P < 0.001*). At 12 months, sites treated with bioactive glass exhibited 56.99% bone fill and 64.76% bone fill for DFDBA sites, which is statistically significant (P < 0.05*). CONCLUSION After 12 months, there was a significant difference between the two materials with sites grafted with DFDBA showing better reduction in probing pocket depth, gain in CAL and a greater percentage of bone fill when compared to that of bioactive glass.
Collapse
Affiliation(s)
- Kishore Kumar Katuri
- Department of Periodontics, Sibar Institute of Dental Sciences, Takkellapadu, Guntur, Andhra Pradesh, India
| | - P. Jaya Kumar
- Department of Periodontics, Thai Moogambigai Dental College and Hospital, Madurvoyal, Tamil Nadu, India
| | - Chakrapani Swarna
- Department of Periodontics, Sibar Institute of Dental Sciences, Takkellapadu, Guntur, Andhra Pradesh, India
| | - D. Narasimha Swamy
- Department of Periodontics, Sibar Institute of Dental Sciences, Takkellapadu, Guntur, Andhra Pradesh, India
| | - Kurumathur V. Arun
- Department of Periodontics, Ragas Dental College and Hospital, Utthandi, Chennai, Tamil Nadu, India
| |
Collapse
|
21
|
Rao SM, Ugale GM, Warad SB. Bone morphogenetic proteins: periodontal regeneration. NORTH AMERICAN JOURNAL OF MEDICAL SCIENCES 2013; 5:161-8. [PMID: 23626951 PMCID: PMC3632019 DOI: 10.4103/1947-2714.109175] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Periodontitis is an infectious inflammatory disease that results in attachment loss and bone loss. Regeneration of the periodontal tissues entails de novo formation of cementum, periodontal ligament, and alveolar bone. Several different approaches are currently being explored to achieve complete, reliable, and reproducible regeneration of periodontal tissues. The therapeutic management of new bone formation is one of the key issues in successful periodontal regeneration. Bone morphogenetic proteins form a unique group of proteins within the transforming growth factor superfamily of genes and have a vital role in the regulation in the bone induction and maintenance. The activity of bone morphogenetic proteins was first identified in the 1960s, but the proteins responsible for bone induction were unknown until the purification and cloning of human bone morphogenetic proteins in the 1980s, because of their osteoinductive potential. Bone morphogenetic proteins have gained a lot of interest as therapeutic agents for treating periodontal defects. A systematic search for data related to the use of bone morphogenetic proteins for the regeneration of periodontal defects was performed to recognize studies on animals and human (PUBMED, MEDLINE, COCHRANE, and Google search). All the studies included showed noticeable regeneration of periodontal tissues with the use of BMP.
Collapse
Affiliation(s)
- Subramaniam M Rao
- Department of Periodontics, P M Nadagowda Memorial Dental College and Hospital, Bagalkot, Karnataka, India
| | | | | |
Collapse
|
22
|
Rosen PS, Froum SJ, Reynolds MA. Are The Use of Biologic Additions Necessary to Optimize Periodontal Regenerative Efforts? Clin Adv Periodontics 2013. [DOI: 10.1902/cap.2013.120090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Sasikumar KP, Elavarasu S, Gadagi JS. The application of bone morphogenetic proteins to periodontal and peri-implant tissue regeneration: A literature review. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2012; 4:S427-30. [PMID: 23066304 PMCID: PMC3467926 DOI: 10.4103/0975-7406.100320] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 01/02/2012] [Accepted: 01/26/2012] [Indexed: 11/04/2022] Open
Abstract
Progress in understanding the role of bone morphogenetic proteins (BMPs) in craniofacial and tooth development and the demonstration of stem cells in periodontal ligament have set the stage for periodontal regenerative therapy and tissue engineering. Furthermore, recent approval by the Food and Drug Administration of recombinant human BMPs for accelerating bone fusion in slow-healing fractures indicates that this protein family may prove useful in designing regenerative treatments in periodontics. In the near term, these advances are likely to be applied to periodontal surgery; ultimately, they may facilitate approaches to regenerating whole lost periodontal structures.
Collapse
Affiliation(s)
- Karuppanan P Sasikumar
- Department of Periodontics, JKK Nattraja Dental College, Komarapalayam, Tamil Nadu, India
| | | | | |
Collapse
|
24
|
Guimarães MDCM, Passanezi E, Sant'ana ACP, Greghi SLA. Pool of bovine morphogenetic proteins and guided tissue regeneration in the treatment of intrabony periodontal defects: I- Clinical measurements. J Appl Oral Sci 2012; 12:70-7. [PMID: 21365155 DOI: 10.1590/s1678-77572004000100013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2003] [Accepted: 11/12/2003] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to evaluate the effect of the pool of bovine BMPs on the treatment of intrabony defects. The sample comprised 15 patients aged 26 to 57 years old presenting with 10 pairs of lesions of 2 or 3 walls or 2-3 walls ³5mm, located in the same type teeth (premolar or molar) and same jaw. The test defects were treated with combination of a pool of bovine bone morphogenetic and resorbable hydroxyapatite carrier (BMPs- HA), bovine demineralized bone matrix (MB) and coverage by a bovine collagen barrier membrane. The control defects were treated with MB-HA and covered by a bovine collagen membrane. The clinical measurements at six months after therapy in the test group revealed a reduction in the mean probing pocket depth (PPD) of 1.63 ± 1.41mm (B) and 1.93 ± 0.96mm (L) and a mean change in the clinical attachment level (CAL) of 1.60 ± 1.16mm (B) and 1.46 ± 0.97mm (L). The control group showed a mean reduction of PPD of 1.93 ± 1.34mm (B) and 2.0 ± 1.51mm (L) and a mean change of CAL of 1.03 ± 1.24mm (B) and 1.30 ± 1.14 mm (L). The analysis of variance (ANOVA) demonstrated that the changes in the clinical parameters were statistically significant (p<0.05). There were no significant differences between the test and controls subjects (Student's test, p<0.005). These findings suggest that the use of a pool of bovine BMPs do not provide added effects to GTR in the treatment of intrabony defects.
Collapse
|
25
|
Stavropoulos A, Wikesjö UME. Growth and differentiation factors for periodontal regeneration: a review on factors with clinical testing. J Periodontal Res 2012; 47:545-53. [DOI: 10.1111/j.1600-0765.2012.01478.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Sculean A, Alessandri R, Miron R, Salvi GE, Bosshardt DD. Enamel Matrix Proteins and Periodontal Wound Healing and Regeneration. Clin Adv Periodontics 2011; 1:101-117. [DOI: 10.1902/cap.2011.110047] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Accepted: 06/14/2011] [Indexed: 12/13/2022]
|
27
|
Kwon DH, Bisch FC, Herold RW, Pompe C, Bastone P, Rodriguez NA, Susin C, Wikesjö UME. Periodontal wound healing/regeneration following the application of rhGDF-5 in a beta-TCP/PLGA carrier in critical-size supra-alveolar periodontal defects in dogs. J Clin Periodontol 2010; 37:667-74. [PMID: 20492073 DOI: 10.1111/j.1600-051x.2010.01569.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM The objective of this study was to evaluate the effect of a novel recombinant human GDF-5 (rhGDF-5) construct intended for onlay and inlay indications on periodontal wound healing/regeneration. METHODS Contralateral, surgically created, critical-size, 6-mm, supra-alveolar periodontal defects in five adult Hound Labrador mongrel dogs received rhGDF-5 coated onto beta-tricalcium phosphate (beta-TCP) particles and immersed in a bioresorbable poly(lactic-co-glycolic acid) (PLGA) composite or the beta-TCP/PLGA carrier alone (control). The rhGDF-5 and control constructs were moulded around the teeth and allowed to set. The gingival flaps were then advanced; flap margins were adapted 3-4 mm coronal to the teeth and sutured. The animals were euthanized at 8 weeks post-surgery when block biopsies were collected for histometric analysis. RESULTS Healing was generally uneventful. A few sites exhibited minor exposures. Three control sites and one rhGDF-5 site (in separate animals) experienced more extensive wound dehiscencies. The rhGDF-5 and control constructs were easy to apply and exhibited adequate structural integrity to support the mucoperiosteal flaps in this challenging onlay model. Limited residual beta-TCP particles were observed at 8 weeks for both rhGDF-5/beta-TCP/PLGA and beta-TCP/PLGA control sites. The rhGDF-5/beta-TCP/PLGA sites showed significantly greater cementum (2.34 +/- 0.44 versus 1.13 +/- 0.25 mm, p=0.02) and bone (2.92 +/- 0.66 versus 1.21 +/- 0.30 mm, p=0.02) formation compared with the carrier control. Limited ankylosis was observed in four of five rhGDF-5/beta-TCP/PLGA sites but not in control sites. CONCLUSIONS Within the limitations of this study, the results suggest that rhGDF-5 is a promising candidate technology in support of periodontal wound healing/regeneration. Carrier and rhGDF-5 dose optimization are necessary before further advancement of the technology towards clinical evaluation.
Collapse
Affiliation(s)
- David H Kwon
- U.S. Army Advanced Education Program in Periodontics, Ft. Gordon, GA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The ultimate goal of periodontal therapy is the regeneration of the tissues destroyed as a result of periodontal disease. Currently, two clinical techniques, based on the principles of "guided tissue regeneration" (GTR) or utilization of the biologically active agent "enamel matrix derivative" (EMD), can be used for the regeneration of intrabony and Class II mandibular furcation periodontal defects. In cases where additional support and space-making requirements are necessary, both of these procedures can be combined with a bone replacement graft. There is no evidence that the combined use of GTR and EMD results in superior clinical results compared to the use of each material in isolation. Great variability in clinical outcomes has been reported in relation to the use of both EMD and GTR, and these procedures can be generally considered to be unpredictable. Careful case selection and treatment planning, including consideration of patient, tooth, site and surgical factors, is required in order to optimize the outcomes of treatment. There are limited data available for the clinical effectiveness of other biologically active molecules, such as growth factors and platelet concentrates, and although promising results have been reported, further clinical trials are required in order to confirm their effectiveness. Current active areas of research are centred on tissue engineering and gene therapy strategies which may result in more predictable regenerative outcomes in the future.
Collapse
Affiliation(s)
- S Ivanovski
- School of Dentistry and Oral Health, Griffith University, Gold Coast, Queensland, Australia.
| |
Collapse
|
29
|
Reynolds MA, Aichelmann-Reidy ME, Branch-Mays GL. Regeneration of periodontal tissue: bone replacement grafts. Dent Clin North Am 2010; 54:55-71. [PMID: 20103472 DOI: 10.1016/j.cden.2009.09.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bone replacement grafts are widely used to promote bone formation and periodontal regeneration. Conventional surgical approaches, such as open flap debridement, provide critical access to evaluate and detoxify root surfaces as well as establish improved periodontal form and architecture; however, these surgical techniques offer only limited potential in restoring or reconstituting component periodontal tissues. A wide range of bone grafting materials, including bone grafts and bone graft substitutes, have been applied and evaluated clinically, including autografts, allografts, xenografts, and alloplasts (synthetic/semisynthetic materials). This review provides an overview of the biologic function and clinical application of bone replacement grafts for periodontal regeneration. Emphasis is placed on the clinical and biologic goals of periodontal regeneration as well as evidence-based treatment outcomes.
Collapse
Affiliation(s)
- Mark A Reynolds
- Department of Periodontics, Dental School, University of Maryland, 650 West Baltimore Street, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
30
|
Lee J, Stavropoulos A, Susin C, Wikesjö UME. Periodontal regeneration: focus on growth and differentiation factors. Dent Clin North Am 2010; 54:93-111. [PMID: 20103474 DOI: 10.1016/j.cden.2009.09.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Several growth and differentiation factors have shown potential as therapeutic agents to support periodontal wound healing/regeneration, although optimal dosage, release kinetics, and suitable delivery systems are still unknown. Experimental variables, including delivery systems, dose, and the common use of poorly characterized preclinical models, make it difficult to discern the genuine efficacy of each of these factors. Only a few growth and differentiation factors have reached clinical evaluation. It appears that well-defined discriminating preclinical models followed by well-designed clinical trials are needed to further investigate the true potential of these and other candidate factors. Thus, current research is focused on finding relevant growth and differentiation factors, optimal dosages, and the best approaches for delivery to develop clinically meaningful therapies in patient-centered settings.
Collapse
Affiliation(s)
- Jaebum Lee
- Laboratory for Applied Periodontal & Craniofacial Regeneration (LAPCR), Departments of Periodontics and Oral Biology, Medical College of Georgia School of Dentistry, 1120 5th Street AD1434, Augusta, GA 30912, USA
| | | | | | | |
Collapse
|
31
|
Hoidal MJ, Grimard BA, Mills MP, Schoolfield JD, Mellonig JT, Mealey BL. Clinical Evaluation of Demineralized Freeze-Dried Bone Allograft With and Without Enamel Matrix Derivative for the Treatment of Periodontal Osseous Defects in Humans. J Periodontol 2008; 79:2273-80. [DOI: 10.1902/jop.2008.080259] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
Trombelli L, Farina R. Clinical outcomes with bioactive agents alone or in combination with grafting or guided tissue regeneration. J Clin Periodontol 2008; 35:117-35. [DOI: 10.1111/j.1600-051x.2008.01265.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Piemontese M, Aspriello SD, Rubini C, Ferrante L, Procaccini M. Treatment of periodontal intrabony defects with demineralized freeze-dried bone allograft in combination with platelet-rich plasma: a comparative clinical trial. J Periodontol 2008; 79:802-10. [PMID: 18454658 DOI: 10.1902/jop.2008.070436] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The aim of the present randomized, double-masked, clinical trial was to compare platelet-rich plasma (PRP) combined with a demineralized freeze-dried bone allograft (DFDBA) to DFDBA mixed with a saline solution in the treatment of human intrabony defects. METHODS Sixty interproximal intrabony osseous defects in 60 healthy, non-smoking subjects diagnosed with chronic periodontitis were treated in this study. Thirty subjects each were randomly assigned to the test group (PRP + DFDBA) or the control group (DFDBA + saline). Clinical and radiographic measurements were made at baseline and at the 12-month evaluation. RESULTS Compared to baseline, the 12-month results indicated that both treatment modalities resulted in significant changes in all clinical parameters (gingival index, bleeding on probing, probing depth, clinical attachment level, and gingival recession; P <0.001) and radiographic parameters (hard tissue fill and bone depth reduction; P <0.001). However, the test group exhibited statistically significantly greater changes compared to the control group in probing depth reduction (4.3 +/- 1.7 mm versus 2.6 +/- 2.2 mm; P <0.05) and clinical attachment gain (3.5 +/- 2.1 mm versus 2.3 +/- 2.4 mm; P <0.001). CONCLUSIONS Treatment with a combination of PRP and DFDBA led to a significantly greater clinical improvement in intrabony periodontal defects compared to DFDBA with saline. No statistically significant differences were observed in the hard tissue response between the two treatment groups, which confirmed that PRP had no effect on hard tissue fill or gain in new hard tissue formation.
Collapse
Affiliation(s)
- Matteo Piemontese
- Division of Periodontology, Department of Dental Sciences, Graduate School of Medical and Dental Sciences, Polytechnic University of Marche, Via Tronto 10, Ancona Torrette, Italy.
| | | | | | | | | |
Collapse
|
34
|
Park JB, Lee JY, Park YJ, Rhee SH, Lee SC, Kim TI, Seol YJ, Lee YM, Ku Y, Rhyu IC, Han SB, Chung CP. Enhanced bone regeneration in beagle dogs with bovine bone mineral coated with a synthetic oligopeptide. J Periodontol 2007; 78:2150-2155. [PMID: 17970682 DOI: 10.1902/jop.2007.070108] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Recombinant human bone morphogenic protein-2 stimulates bone augmentation in animal models. The aim of this study was to evaluate the capacity of bovine bone mineral coated with synthetic oligopeptides to enhance guided bone regeneration in the beagle 3-wall defect model and the clinical implications. METHODS The second and fourth mandibular premolars of four adult beagle dogs were extracted bilaterally, and the extraction sites were allowed to heal for 2 months. An L-shaped defect was prepared at the central part of the extraction site with a round bur on a low-speed motor. Peptide-coated bone mineral was implanted on one side, and uncoated bone mineral was implanted on the other side. The membrane was tucked underneath the mobilized lingual flap. New bone formation at the test and control sites was determined at 4 weeks. RESULTS No specimen revealed any evidence of infection or foreign body reaction, and all wounds showed a good healing response. Sites augmented with peptide-coated bone mineral and uncoated mineral exhibited excellent maintenance of the ridge contour. There was more new bone at sites with peptide-coated bone mineral than at control sites. The new bone in sites with peptide-coated bone mineral was deposited evenly around the graft material, and bone mineral was integrated fully into the new bone. CONCLUSION Deproteinized cancellous bovine bone coated with synthetic oligopeptides enhanced new bone formation, and it seemed to be a better material for guided bone regeneration in the beagle L-shaped defect model.
Collapse
Affiliation(s)
- Jun-Beom Park
- Department of Periodontology, School of Dentistry, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Buxton PG, Cobourne MT. Regenerative approaches in the craniofacial region: manipulating cellular progenitors for oro-facial repair. Oral Dis 2007; 13:452-60. [PMID: 17714347 DOI: 10.1111/j.1601-0825.2007.01403.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This review aims to highlight the potential for regeneration that resides within the bony tissues of the craniofacial region. We examine the five main cues which determine osteogenic differentiation: heritage of the cell, mechanical cues, the influence of the matrix, growth factor stimulation and cell-to-cell contact. We review how successful clinical procedures, such as guided tissue regeneration and distraction osteogenesis exploit this resident ability. We explore the developmental origins of the flat bones of the skull to see how such programmes of differentiation may inform new therapies or regenerative techniques. Finally we compare and contrast existing approaches of hard tissue reconstruction with future approaches inspired by the regenerative medicine philosophy, with particular emphasis on the potential for using chondrocyte-inspired factors and replaceable scaffolds.
Collapse
Affiliation(s)
- P G Buxton
- Eastman Dental Institute, UCL, London, UK.
| | | |
Collapse
|
36
|
Ilgenli T, Dündar N, Kal BI. Demineralized freeze-dried bone allograft and platelet-rich plasma vs platelet-rich plasma alone in infrabony defects: a clinical and radiographic evaluation. Clin Oral Investig 2006; 11:51-9. [PMID: 17160498 DOI: 10.1007/s00784-006-0083-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 09/22/2006] [Indexed: 10/23/2022]
Abstract
The objective of this work is to compare the clinical and radiographic outcomes of demineralized freeze-dried bone allograft (DFDBA)/platelet-rich plasma (PRP) combination with PRP alone for the treatment of infrabony defects 18 months after surgery and to examine the influence of radiographic defect angle on the clinical and radiographic outcomes. Twenty-eight infrabony defects were treated with DFDBA/PRP combination or PRP alone. Clinical parameters and radiographic measurements were compared at baseline and 18 months. Interquartile range was performed to classify the defect angles. Mann-Whitney, Wilcoxon test, and Pearson correlation were used to analyze the data. The DFDBA/PRP combination exhibited more favorable gains in both clinical and radiographic parameters than PRP alone group (p < 0.05). A correlation existed between defect angle, defect depth, and clinical/radiographic outcomes for the defects treated with DFDBA/PRP. The narrow defects presented more favorable clinical attachment level values (CAL) gain, probing pocket depth (PPD) reduction and defect resolution than wide defects in the combination group (p < 0.05). The influence of baseline defect angle was not significant in the PRP-alone group (p > 0.05). The results indicate that DFDBA/PRP combination is more effective than PRP alone for the treatment of infrabony defects, and the amount of CAL gain, PPD reduction, and bone fill increases when the infrabony defect is narrow and deep before DFDBA/PRP combination treatment.
Collapse
Affiliation(s)
- Tunç Ilgenli
- Department of Periodontology, Faculty of Dentistry, Ege University, Izmir, Turkey.
| | | | | |
Collapse
|
37
|
Reynolds MA, Aichelmann-Reidy ME. The Era of Biologics and Reparative Medicine: A Pivotal Clinical Trial of Platelet-Derived Growth Factor for Periodontal Regeneration. J Periodontol 2005; 76:2330-2. [PMID: 16332248 DOI: 10.1902/jop.2005.76.12.2330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
Wang HL, Greenwell H, Fiorellini J, Giannobile W, Offenbacher S, Salkin L, Townsend C, Sheridan P, Genco RJ. Position Paper: Periodontal Regeneration. J Periodontol 2005; 76:1601-22. [PMID: 16171453 DOI: 10.1902/jop.2005.76.9.1601] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Untreated periodontal disease leads to tooth loss through destruction of the attachment apparatus and tooth-supporting structures. The goals of periodontal therapy include not only the arrest of periodontal disease progression,but also the regeneration of structures lost to disease where appropriate. Conventional surgical approaches (e.g., flap debridement) continue to offer time-tested and reliable methods to access root surfaces,reduce periodontal pockets, and attain improved periodontal form/architecture. However, these techniques offer only limited potential towards recovering tissues destroyed during earlier disease phases. Recently, surgical procedures aimed at greater and more predictable regeneration of periodontal tissues and functional attachment close to their original level have been developed, analyzed, and employed in clinical practice. This paper provides a review of the current understanding of the mechanisms, cells, and factors required for regeneration of the periodontium and of procedures used to restore periodontal tissues around natural teeth. Targeted audiences for this paper are periodontists and/or researchers with an interest in improving the predictability of regenerative procedures. This paper replaces the version published in 1993.
Collapse
|
39
|
Wang HL, Cooke J. Periodontal regeneration techniques for treatment of periodontal diseases. Dent Clin North Am 2005; 49:637-59, vii. [PMID: 15978245 DOI: 10.1016/j.cden.2005.03.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The ultimate goal of periodontal therapy is the regeneration of structures lost to disease. Conventional surgical approaches such as open-flap debridement offer only limited regeneration potential.Currently, surgical procedures for predictable regeneration of periodontal tissues are being developed, analyzed, and employed in clinical practice. This article addresses current trends in periodontal regeneration. Various materials/agents such as bone replacement grafts, barrier membranes, and biologic modifiers currently used for the regeneration of periodontal infrabony and furcation defects are discussed.
Collapse
Affiliation(s)
- Hom-Lay Wang
- Department of Periodontics/Prevention/Geriatrics, School of Dentistry, University of Michigan, 1011 North University Avenue, Ann Arbor, MI 48109-1078, USA.
| | | |
Collapse
|
40
|
Bender SA, Rogalski JB, Mills MP, Arnold RM, Cochran DL, Mellonig JT. Evaluation of Demineralized Bone Matrix Paste and Putty in Periodontal Intraosseous Defects. J Periodontol 2005; 76:768-77. [PMID: 15898938 DOI: 10.1902/jop.2005.76.5.768] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Demineralized bone matrix (DBX) paste and putty are particulate demineralized bone matrices in a 2% or 4% hyaluronate carrier, respectively. The purpose of this study was to determine the effectiveness of DBX paste and putty compared to demineralized freeze-dried bone allograft (DFDBA) in the treatment of human intraosseous periodontal defects. METHODS Sixty systemically healthy individuals between the ages of 31 and 71 years with at least one intraosseous periodontal defect of > or = 3 mm in depth and radiographic evidence of at least 40% to 50% vertical bone loss were accrued. Following initial non-surgical periodontal therapy, sites were randomly selected to receive either DBX paste, DBX putty, or DFDBA (control). Baseline and 6-month reentry soft and hard tissue parameter measurements were made by calibrated examiners. Data were analyzed within and between groups utilizing analysis of variance (ANOVA) and paired and unpaired Student t tests. RESULTS Probing depth reductions were significantly improved in all treatment groups with DFDBA, DBX paste, and putty patients demonstrating 2.8 mm, 3.6 mm, and 2.3 mm, respectively. Attachment level gains were significantly improved from baseline for all treatment groups with DFDBA, DBX paste, and putty, respectively, demonstrating 2.4 mm, 2.9 mm, and 1.6 mm. Bone fill was similar between all groups with DBX paste, putty, and DFDBA control groups demonstrating 2.0 mm, 2.4 mm, and 2.2 mm, respectively. All groups yielded significant improvements in percent bone fill with DFDBA, DBX paste and putty, respectively, achieving 37%, 42.1%, and 50% with no significant differences between the groups. CONCLUSION In summary, demineralized bone matrix paste, demineralized bone matrix putty, and demineralized freeze-dried bone allograft all demonstrated similar favorable improvements in soft and hard tissue parameters in the treatment of human intraosseous defects.
Collapse
|
41
|
Huang KK, Shen C, Chiang CY, Hsieh YD, Fu E. Effects of bone morphogenetic protein-6 on periodontal wound healing in a fenestration defect of rats. J Periodontal Res 2005; 40:1-10. [PMID: 15613073 DOI: 10.1111/j.1600-0765.2004.00752.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Bone morphogenetic proteins (BMPs) may play significant roles in bone formation. The ability of BMP-6 to promote wound healing has been chosen as the subject of this investigation. In this study, a synthetic rat BMP-6 polypeptide was applied to a periodontal fenestration defect in rats to elucidate the effects of BMP-6 on periodontal wound healing. MATERIAL AND METHODS Following surgery to create a bony window on the buccal aspects of mandibular molar roots, 24 male Sprague Dawley rats were divided into four groups according to BMP application (0, 1, 3 and 10 microg, respectively). Animals were killed after 28 days and the mandible taken for histological examination. Histometric measurements were performed on sections selected from three levels (coronal, middle and apical levels; with 240 microm apart from the central) of the defect. New bone and cementum formation (including area and thickness) were analyzed and compared. RESULTS In general, minimal new bone was observed on the surgically created defects in the non-BMP group, whereas a complete osseous healing occurred in all BMP-6 treated animals. New bone formation (both in area and thickness) was significantly influenced by both the dosage and the examining level, whereas new cementum formation was affected by dosage only. An increase in bone and cementum formation was noted in all three BMP groups when compared with the control group at all examined levels. Among the BMP groups, greatest new bone and cementum formation were noted in the 3 microg group. New cementum thickness increased on the cementum surfaces of the defects compared with the dentinal surfaces in all study groups. CONCLUSION An increase in new bone and cementum formation was noted after applying a synthetic BMP-6 polypeptide to a periodontal fenestration defect in rats. Therefore, we suggest that BMP-6 may play a certain role in periodontal regeneration.
Collapse
Affiliation(s)
- Kuo-Kuang Huang
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital, National Defense University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
42
|
Santos AAD, Miranda CDO, Alves MTDS, Faloppa F. O papel da proteína morfogenética óssea na reparação do tecido ósseo. ACTA ORTOPEDICA BRASILEIRA 2005. [DOI: 10.1590/s1413-78522005000400009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Este estudo de revisão da literatura aborda os avanços do uso da proteína morfogenética óssea (BMP) na reparação do tecido ósseo e seus mecanismos de ação no tecido lesionado. As BMPs são moléculas pleiotrópicas que são envolvidas na quimiotaxia, mitose e diferenciação de células mesenquimais no tecido ósseo.
Collapse
|
43
|
Klepp M, Hinrichs JE, Eastlund T, Schaffer EM. Histologic evaluation of demineralized freeze-dried bone allografts in barrier membrane covered periodontal fenestration wounds and ectopic sites in dogs. J Clin Periodontol 2004; 31:534-44. [PMID: 15191589 DOI: 10.1111/j.1600-051x.2004.00520.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND/AIM The aim of this study was to investigate healing responses to demineralized freeze-dried bone powder allografts in standardized periodontal fenestration defects, compared with subcutaneous wounds in a dog model. METHODS Circular periodontal fenestration defects were created buccally at all four canines in 14 mongrel dogs. Each site received one of the following underneath a barrier membrane: (a) ethylene oxide (EO)-sterilized demineralized freeze-dried bone allografts (DFDBA), (b) heat-treated DFDBA, (c) non-sterilized DFDBA and (d) ungrafted control. Twelve of the 14 dogs had three subcutaneous chest wall pouches created and one of the three DFDBA materials placed in each. The animals were necropsied at 4 weeks. Histologic sections were prepared through the center of the fenestration sites in an apico-coronal direction. Quantitative analysis using computer-assisted imaging technique was performed. Subcutaneous implants were evaluated histologically and quantified for associated inflammatory cell infiltrate. RESULTS Fenestration defects healed by partial osseous fill and cementum regeneration with formation of a periodontal ligament. The graft particles generally appeared isolated from the site of osteogenesis and covered by cementum-like substance. Graft particles incorporated into newly formed bone at a distance from the root surface was the exception. No statistically significant differences in new bone formation were observed between treatment groups within animals, but significant inter-animal variation was found (p<0.01). Quantities of retained graft particles were limited, and without cellular resorption. A bone augmentation effect was associated with the barrier in the majority of sites. No bone formation was evident at the subcutaneous sites where graft particles displayed distinctly modified surface zones and multinucleated giant cell resorption. Significantly more inflammatory infiltrate was associated with EO-sterilized grafts compared with heat-treated grafts (p=0.05). CONCLUSION Implantation of DFDBA neither enhanced osseous healing in periodontal fenestration defects, nor resulted in ectopic bone induction. DFDBA particles implanted in either periodontal fenestration or subcutaneous wounds evoked distinctly different healing responses.
Collapse
|
44
|
Reynolds MA, Aichelmann-Reidy ME, Branch-Mays GL, Gunsolley JC. The efficacy of bone replacement grafts in the treatment of periodontal osseous defects. A systematic review. ACTA ACUST UNITED AC 2004; 8:227-65. [PMID: 14971256 DOI: 10.1902/annals.2003.8.1.227] [Citation(s) in RCA: 270] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Bone replacement grafts (BRG) are widely used in the treatment of periodontal osseous defects; however, the clinical benefits of this therapeutic practice require further clarification through a systematic review of randomized controlled studies. RATIONALE The purpose of this systematic review is to access the efficacy of bone replacement grafts in proving demonstrable clinical improvements in periodontal osseous defects compared to surgical debridement alone. FOCUSED QUESTION What is the effect of bone replacement grafts compared to other interventions on clinical, radiographic, adverse, and patient-centered outcomes in patients with periodontal osseous defects? SEARCH PROTOCOL The computerized bibliographical databases MEDLINE and EMBASE were searched from 1966 and 1974, respectively, to October 2002 for randomized controlled studies in which bone replacement grafts were compared to other surgical interventions in the treatment of periodontal osseous defects. The search strategy included screening of review articles and reference lists of retrieved articles as well as hand searches of selected journals. INCLUSION CRITERIA All searches were limited to human studies in English language publications. EXCLUSION CRITERIA Non-randomized observational studies (e.g., case reports, case series), publications providing summary statistics without variance estimates or data to permit computation, and studies without BRG intervention alone were excluded. DATA COLLECTION AND ANALYSIS The therapeutic endpoints examined included changes in bone level, clinical attachment level, probing depth, gingival recession, and crestal resorption. For purposes of meta-analysis, change in bone level (bone fill) was used as the primary outcome measure, measured upon surgical re-entry or transgingival probing (sounding). MAIN RESULTS 1. Forty-nine controlled studies met eligibility criteria and provided clinical outcome data on intrabony defects following grafting procedures. 2. Seventeen studies provided clinical outcome data on BRG materials for the treatment of furcation defects. REVIEWERS' CONCLUSIONS 1. With respect to the treatment of intrabony defects, the results of meta-analysis supported the following conclusions: 1) bone grafts increase bone level, reduce crestal bone loss, increase clinical attachment level, and reduce probing depth compared to open flap debridement (OFD) procedures; 2) No differences in clinical outcome measures emerge between particulate bone allograft and calcium phosphate (hydroxyapatite) ceramic grafts; and 3) bone grafts in combination with barrier membranes increase clinical attachment level and reduce probing depth compared to graft alone. 2. With respect to the treatment of furcation defects, 15 controlled studies provided data on clinical outcomes. Insufficient studies of comparable design were available to submit data to meta-analysis. Nonetheless, outcome data from these studies generally indicated positive clinical benefits with the use of grafts in the treatment of Class II furcations. 3. With respect to histological outcome parameters, 2 randomized controlled studies provide evidence that demineralized freeze-dried bone allograft (DFDBA) supports the formation of a new attachment apparatus in intrabony defects, whereas OFD results in periodontal repair characterized primarily by the formation of a long junctional epithelial attachment. Multiple observational studies provide consistent histological evidence that autogenous and demineralized allogeneic bone grafts support the formation of new attachment. Limited data also suggest that xenogenic bone grafts can support the formation of a new attachment apparatus. In contrast, essentially all available data indicate that alloplastic grafts support periodontal repair rather than regeneration. 4. The results of this systematic review indicate that bone replacement grafts provide demonstrable clinical improvements in periodontal osseous defects compared to surgical debridement alone.
Collapse
Affiliation(s)
- Mark A Reynolds
- Department of Periodontics, Baltimore College of Dental Surgery, University of Maryland, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|
45
|
Giannobile WV, Somerman MJ. Growth and Amelogenin-Like Factors in Periodontal Wound Healing. A Systematic Review. ACTA ACUST UNITED AC 2003; 8:193-204. [PMID: 14971254 DOI: 10.1902/annals.2003.8.1.193] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Regeneration of tooth-supporting structures destroyed by periodontitis is a major goal of periodontal therapy. Periodontal tissue engineering utilizing growth and amelogenin-like factors (GAFs) applies advances in materials science and biology to regenerate alveolar bone, periodontal ligament, and cementum. Amelogenin-like factors (e.g., enamel matrix derivative [EMD]) and growth factors (e.g., platelet-derived growth factor [PDGF] and bone morphogenetic proteins [BMPs, also considered morphogens]) have demonstrated pleotrophic effects on the stimulation of several key events required for tissue regeneration including DNA synthesis, chemotaxis, differentiation, and matrix synthesis. RATIONALE GAFs have been used for the treatment of periodontal disease as shown in preclinical and clinical studies. This systematic review evaluates the evidence to support the utilization of EMD and growth factors (GFs) for periodontal repair and regeneration associated with natural teeth. FOCUSED QUESTION In patients with periodontal osseous defects, what is the effect of GAFs compared with controls on clinical, radiographic, histologic, adverse, and patient-centered outcomes? SEARCH PROTOCOL Two investigators searched MEDLINE, pre-MEDLINE, and the Cochrane Oral Health Group trials register for clinical and preclinical studies published in English. Hand searches were performed on the International Journal of Periodontics and Restorative Dentistry, Journal of Clinical Periodontology, Journal of Dental Research, Journal of Periodontology, and Journal of Periodontal Research. Searches were performed for articles published through April 2002. In addition, investigators contacted manufacturers of GAF products for related unpublished data and studies in progress. SELECTION CRITERIA INCLUSION CRITERIA Randomized controlled clinical trials (RCTs), cohort studies, case-control studies, case reports, and preclinical (animal) randomized controlled investigations that included a cohort population diagnosed with periodontal disease and presenting data on intrabony/interproximal defects and/or furcation defects were screened. EXCLUSION CRITERIA In vitro studies or those that did not include quantifiable data with respect to clinical or bone measures were not included. DATA COLLECTION AND ANALYSIS Meta-analyses were performed for studies that fulfilled the eligibility criteria for the following continuous variables: clinical attachment level (CAL), probing depth (PD), or bone level (radiographic, re-entry, or histologic). Heterogeneity was assessed to determine whether the differences among therapies were due to systematic confounding factors (as noted in study quality assessments). MAIN RESULTS 1. Eight studies, representing 7 RCTs and 1 quasi-experimental study, representing a total population of 511 subjects were analyzed with respect to EMD. 2. The majority of the remaining papers had a low evidence rating. 3. Most reports were case studies or case series without controls. 4. There were insufficient data to conduct a meta-analysis on the effect of growth factors used in periodontal repair around teeth. REVIEWERS' CONCLUSIONS 1. There is evidence supporting the use of EMD for periodontal osseous defects to improve CAL and reduce PD, although long-term benefits have not been established. 2. EMD has demonstrated notable consistency among the studies investigated in terms of superiority to controls (in general compared to open flap debridement [OFD]). 3. EMD appears to be safe for single and multiple administrations in terms of lack of elicitation of antibody responses or other local/systemic inflammatory events. 4. Preclinical and initial clinical data for growth factors appear promising but are insufficient to draw definitive conclusions at this time.
Collapse
Affiliation(s)
- William V Giannobile
- Department of Periodontics/Prevention/Geriatrics, Center for Craniofacial Regeneration, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA.
| | | |
Collapse
|
46
|
Cochran DL, Jones A, Heijl L, Mellonig JT, Schoolfield J, King GN. Periodontal Regeneration with a Combination of Enamel Matrix Proteins and Autogenous Bone Grafting. J Periodontol 2003; 74:1269-81. [PMID: 14584859 DOI: 10.1902/jop.2003.74.9.1269] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Attempts to stimulate periodontal regeneration in the past have focused on either filling the defect with some type of material or providing a space for host cells to repopulate the site and elicit new tissue. In some cases, these approaches have been combined with the assumption that the filler material will help maintain the space necessary for the host cells to invade the area. Growth stimulating substances such as growth factors and other proteins have also been used to encourage periodontal tissue regeneration and histological evaluation supports the use of these substances. Thus, the role for and the necessity of a certain amount of space maintenance for periodontal regeneration is not exactly understood. In addition, it is not known if there is some critical size required for space maintenance or for exactly how long the space must be maintained in order for the host cells to stimulate new cementum, periodontal ligament, and bone. The goal of this study was to evaluate periodontal regeneration in intrabony defects of various sizes treated with a combination of enamel matrix proteins and autogenous bone graft. METHODS Periodontal defects ranging in size from 1 to 6 mm were randomized and created bilaterally beside three teeth in the mandibles of baboons. Plaque was allowed to accumulate around wire ligatures placed into the defects. After 2 months, the wire ligatures were removed, the teeth and roots scaled and root planed, and a notch was placed with a chisel at the base of the defect. On one side of the mandible, neutral ethylene diamine tetracetic acid and enamel matrix derivative (EMD) were first used to treat the defect. Autogenous bone taken from the same surgical site was treated with enamel matrix derivative in a dampen dish and then added to the EMD-treated defects. The other side of the mandible served as control with neutral ethylene diamine tetracetic acid and scaling and root planing. Flaps were sutured and the animals were allowed to heal without oral hygiene procedures. After 5 months, the animals were sacrificed and the teeth were processed for histological evaluation. RESULTS The results revealed new cementum, periodontal ligament with Sharpey's fibers, and new bone tissue similar to native periodontal tissues. Remnants of the autogenous bone chips were still present at this 5-month post-healing period. Thus periodontal regeneration occurred in all sizes of the periodontal defects. In general, EMD plus autogenous graft treatment resulted in greater tissue formation than controls. In fact, in many cases, very dramatic tissue formation occurred far coronal to the base of the defects in the EMD plus autogenous graft-treated lesions. In addition, horizontal bone fill occurred in the defects and was prominent in the 4 or 6 mm wide lesions. When evaluating the combined 1 and 2 mm defects, the height of new cementum with EMD plus graft was 3.88 mm versus 2.03 mm in the controls, a statistically significant (P < 0.005) difference. In the wider (4 and 6 mm) lesions, this difference was not significant and was much less between treated and control lesions with 2.78 and 2.57 mm of new cementum respectively. In the case of new bone height, in the smaller lesions EMD plus graft resulted in 4.00 mm new bone versus 2.22 mm in the controls, again a statistically significant (P < 0.005) difference. In the larger lesions, EMD plus autogenous bone graft had 3.24 mm new bone height compared to 2.71 mm in the controls, a difference that was not statistically significant. Additionally, in the smaller lesions, new cementum width at the level of the notch was twice as great (statistically significant, P < 0.015) in the EMD plus graft sites compared to control. The width of the periodontal ligament at the coronal aspect of the new bone tissue was similar in the smaller lesions between treated and control sites. The results from the wider defects must be interpreted cautiously as the interproximal bone heights were remodeled adjacent to the wider defects and likely limited the potential for regeneration. CONCLUSIONS The combination of enamel matrix derivative plus autogenous bone graft stimulated statistically significant periodontal regeneration in the more narrow 1 and 2 mm lesions. No statistically significant difference was observed in the wider 4 and 6 mm lesions. In many cases, dramatic amounts of new cementum, Sharpey's fibers, periodontal ligament, and bone tissue were formed far above the notch placed at the base of the contaminated defects. This was especially significant considering the width of some of the defects and the fact that no oral hygiene was performed over the 5-month healing period. This periodontal regeneration occurred in the absence of exogenous growth factors or barrier membranes. In summary, the combination of enamel matrix derivative and autogenous bone represents a therapeutic combination that can be highly effective in stimulating significant amounts of periodontal regeneration.
Collapse
Affiliation(s)
- David L Cochran
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Wikesjö UME, Xiropaidis AV, Thomson RC, Cook AD, Selvig KA, Hardwick WR. Periodontal repair in dogs: rhBMP-2 significantly enhances bone formation under provisions for guided tissue regeneration. J Clin Periodontol 2003; 30:705-14. [PMID: 12887339 DOI: 10.1034/j.1600-051x.2003.00363.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Recombinant human bone morphogenetic protein-2 (rhBMP-2) has been shown to support the regeneration of alveolar bone and periodontal attachment in surgically created periodontal defects and in defects with a history of dental plaque and calculus exposure. Periodontal regeneration has also been shown following guided tissue regeneration using space-providing expanded polytetrafluoroethylene (ePTFE) devices. The objective of this study was to evaluate the influence of rhBMP-2 on regeneration of alveolar bone and periodontal attachment used in conjunction with a space-providing ePTFE device. METHODS Routine, critical-size, 5-6 mm, supra-alveolar, periodontal defects were created around the third and fourth mandibular premolar teeth in four young adult Hound Labrador mongrel dogs. rhBMP-2 (0.2 mg/ml) in an absorbable collagen sponge (rhBMP-2/ACS) or buffer/ACS (control) implants were randomly assigned to be placed around the premolar teeth in the left and right jaw quadrants in subsequent animals. Space-providing ePTFE devices with 300-microm laser-drilled pores, 0.8 mm apart, were used to cover the rhBMP-2 and control implants. The gingival flaps were advanced for primary wound closure. The animals were euthanized at 8 weeks postsurgery for histologic and histometric analyses. RESULTS Bone regeneration and ankylosis were significantly increased in jaw quadrants receiving rhBMP-2/ACS compared to control (bone height 4.8+/-0.3 versus 2.0+/-0.2 mm, p=0.001; bone area 10.9+/-1.3 versus 1.4+/-0.1 mm2; p=0.009, and ankylosis 2.2+/-0.2 versus 0.04+/-0.7 mm; p=0.01). No differences between groups were found for cementum regeneration and root resorption. CONCLUSIONS rhBMP-2 significantly enhances regeneration of alveolar bone in conjunction with a space-providing, macroporous ePTFE device for GTR.
Collapse
Affiliation(s)
- Ulf M E Wikesjö
- Laboratory for Applied Periodontal and Craniofacial Regeneration, Department of Periodontology, Temple University School of Dentistry, Philadelphia, PA 19140, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Okuda K, Kawase T, Momose M, Murata M, Saito Y, Suzuki H, Wolff LF, Yoshie H. Platelet-rich plasma contains high levels of platelet-derived growth factor and transforming growth factor-beta and modulates the proliferation of periodontally related cells in vitro. J Periodontol 2003; 74:849-57. [PMID: 12886996 DOI: 10.1902/jop.2003.74.6.849] [Citation(s) in RCA: 270] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Platelet-rich plasma (PRP) is a fraction of plasma, in which platelet-derived growth factor (PDGF) and transforming growth factor-beta (TGF-beta) are thought to be concentrated. It is plausible that topically-applied PRP up-regulates cellular activity and subsequently promotes periodontal regeneration in vivo. However, the concentrations of these growth factors in PRP have not been specifically determined and the biological effects of PRP at the cellular and molecular levels have not been determined. METHODS PRP obtained from 20 healthy subjects was prepared from plasma by centrifugation. These PRP preparations were immediately subjected to an evaluation for PDGF-AB and TGF-beta1 using enzyme-linked immunosorbent assay (ELISA) kits. The biological effects of the PRP preparations were evaluated on osteoblastic, epithelial, fibroblastic, and periodontal ligament cells. Cellular mitogenic activity was evaluated by counting cell numbers or evaluating 5-bromodeoxyuridine (BrdU) incorporation. Expression of alkaline phosphatase (ALP) was immunocytochemically evaluated. RESULTS In the PRP preparations, platelets were concentrated up to 70.9 x 10(4) cells/microl (283.4% of the unconcentrated plasma). The levels of PDGF-AB and TGF-beta1 were also concentrated up to 182.0 ng/ml (440.6%) and 140.9 ng/ml (346.6%), respectively. Scatter plots revealed significant correlations between platelet counts and levels of these growth factors. PRP stimulated osteoblastic DNA synthesis and cell division (138% of control), with simultaneous down-regulation of ALP, but suppressed epithelial cell division (80% of control). PRP also stimulated DNA synthesis in gingival fibroblasts and periodontal ligament cells. CONCLUSIONS These data demonstrated that both PDGF-AB and TGF-beta1 were highly concentrated in the PRP preparations. It is suggested PRP modulates cell proliferation in a cell type-specific manner similar to what has been observed with TGF-beta1. Since synchronized behavior of related cell types is thought to be required for successful periodontal regeneration, it is further suggested these cell type-specific actions may be beneficial for periodontal regenerative therapy.
Collapse
Affiliation(s)
- Kazuhiro Okuda
- Division of Periodontology, Department of Oral Biological Science, Course for Oral Life Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Leung G, Jin L. A combined approach of enamel matrix derivative gel and autogenous bone grafts in treatment of intrabony periodontal defects. A case report. PRIMARY DENTAL CARE : JOURNAL OF THE FACULTY OF GENERAL DENTAL PRACTITIONERS (UK) 2003; 10:41-3. [PMID: 12736957 DOI: 10.1308/135576103322500700] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Enamel matrix derivative (EMD) has recently been introduced as a new modality in regenerative periodontal therapy. This case report demonstrates a combined approach in topical application of EMD gel (Emdogain) and autogenous bone grafts for treatment of intrabony defects and furcation involvement defects in a patient with chronic periodontitis. The seven-month post-surgery clinical and radiographic results were presented. The combined application of EMD gel with autogenous bone grafts in intrabony osseous defects resulted in clinically significant gain of attachment on diseased root surfaces and bone fill on radiographs. Further controlled clinical studies are required to confirm the long-term effectiveness of the combination of EMD gel and autogenous bone grafts in treatment of various osseous defects in subjects with chronic periodontitis.
Collapse
Affiliation(s)
- George Leung
- Faculty of Dentistry, Periodontology, University of Hong Kong, Hong Kong, PR China
| | | |
Collapse
|
50
|
Blumenthal NM, Alves MEAF, Al-Huwais S, Hofbauer AM, Koperski RD. Defect-determined regenerative options for treating periodontal intrabony defects in baboons. J Periodontol 2003; 74:10-24. [PMID: 12593591 DOI: 10.1902/jop.2003.74.1.10] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND In an effort to regenerate periodontal intrabony defects, the healing potential of the defect should determine what therapeutic modalities and materials are employed. The purpose of this study was to compare regenerative outcomes in baboon intrabony defects that were contained versus non-contained, using various regenerative therapies. METHODS Nine adult baboons (Papio anubis) in good health were treated. Eighty-six interproximal, intrabony defects were surgically created: 43 contained by 3 walls of bone; 43 non-contained with a missing buccal wall. Chronicity and plaque accumulation were encouraged with wire ligature placement for 8 weeks. After ligature removal, scaling, and a 2- to 4-week healing period, the defects were treated with the following therapies: collagen membrane (GTR), human demineralized freeze-dried bone (DFDB) grafting (BG), combined therapy (GTR + BG) and a DFDB-glycoprotein sponge matrix (MAT). Clinical healing responses were evaluated in 58 sites by changes in soft tissue (recession, probing, clinical attachment) and hard tissue (resorption, defect fill) parameters 6 months post-treatment. Histologic evaluation (defect regeneration, connective tissue attachment, epithelial migration) was done on 26 sites. RESULTS For contained defects, no real significant clinical (ANOVA) or histologic differences existed among treatments. However, for non-contained defects, combined therapy (GTR + BG) demonstrated clinically significant (P < or = 0.05, ANOVA) and histologically superior healing results over the other therapies tested. CONCLUSION These results confirm a defect morphology directed rationale for periodontal intrabony therapy.
Collapse
Affiliation(s)
- Neil M Blumenthal
- Department of Periodontics, University of Illinois at Chicago, College of Dentistry, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|