1
|
Guo H, Bai X, Wang X, Qiang J, Sha T, Shi Y, Zheng K, Yang Z, Shi C. Development and regeneration of periodontal supporting tissues. Genesis 2022; 60:e23491. [PMID: 35785409 DOI: 10.1002/dvg.23491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 11/08/2022]
Abstract
Periodontal tissues, including gingiva, cementum, periodontal ligament, and alveolar bone, play important roles in oral health. Under physiological conditions, periodontal tissues surround and support the teeth, maintaining the stability of the teeth and distributing the chewing forces. However, under pathological conditions, with the actions of various pathogenic factors, the periodontal tissues gradually undergo some irreversible changes, that is, gingival recession, periodontal ligament rupture, periodontal pocket formation, alveolar bone resorption, eventually leading to the loosening and even loss of the teeth. Currently, the regenerations of the periodontal tissues are still challenging. Therefore, it is necessary to study the development of the periodontal tissues, the principles and processes of which can be used to develop new strategies for the regeneration of periodontal tissues. This review summarizes the development of periodontal tissues and current strategies for periodontal healing and regeneration.
Collapse
Affiliation(s)
- Hao Guo
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Xueying Bai
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Xiaoling Wang
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Jinbiao Qiang
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Tong Sha
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Yan Shi
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Kaijuan Zheng
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Zhenming Yang
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Ce Shi
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| |
Collapse
|
2
|
Abstract
Periodontal disease is one of the most common diagnoses in small animal veterinary medicine. This infectious disease of the periodontium is characterized by the inflammation and destruction of the supporting structures of teeth, including periodontal ligament, cementum, and alveolar bone. Traditional periodontal repair techniques make use of open flap debridement, application of graft materials, and membranes to prevent epithelial downgrowth and formation of a long junctional epithelium, which inhibits regeneration and true healing. These techniques have variable efficacy and are made more challenging in veterinary patients due to the cost of treatment for clients, need for anesthesia for surgery and reevaluation, and difficulty in performing necessary diligent home care to maintain oral health. Tissue engineering focuses on methods to regenerate the periodontal apparatus and not simply to repair the tissue, with the possibility of restoring normal physiological functions and health to a previously diseased site. This paper examines tissue engineering applications in periodontal disease by discussing experimental studies that focus on dogs and other animal species where it could potentially be applied in veterinary medicine. The main areas of focus of tissue engineering are discussed, including scaffolds, signaling molecules, stem cells, and gene therapy. To date, although outcomes can still be unpredictable, tissue engineering has been proven to successfully regenerate lost periodontal tissues and this new possibility for treating veterinary patients is discussed.
Collapse
Affiliation(s)
- Emily Ward
- Eastside Veterinary Dentistry, Woodinville, WA, USA
| |
Collapse
|
3
|
Khijmatgar S, Panda S, Das M, Arbildo-Vega H, Del Fabbro M. Recombinant factors for periodontal intrabony defects: A systematic review and network meta-analysis of preclinical studies. J Tissue Eng Regen Med 2021; 15:1069-1081. [PMID: 34585856 DOI: 10.1002/term.3250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/17/2021] [Accepted: 09/17/2021] [Indexed: 12/17/2022]
Abstract
The use of bioactive agents combined with osteoconductive scaffolds for the regeneration of periodontal intrabony defects has been the subject of intensive research in the past 20 years. Most studies reported that such agents, used in different concentrations, doses and combined with various scaffolds, might promote periodontal tissue regeneration, but evidence for the most effective combination of such agents is lacking. The objective of this study 13 was to rank the different combinations of recombinant human-derived growth and differentiation factors with/without scaffold biomaterial in the treatment of periodontal intrabony defects, through network meta-analysis of pre-clinical studies. The systematic review and network meta-analysis protocol was registered on the PROSPERO Systematic Review database with reference number: CRD42021213673. Relevant published articles were obtained after searching five electronic databases. A specific search strategy was followed by using keywords related to intrabony defects, regenerative materials, scaffolds and recombinant factors, and animal studies. All pre-clinical studies used for periodontal regeneration were included. The primary outcomes were: regeneration of junctional epithelium (mm), new cementum, connective tissue attachment, percentage of new bone formation (%), bone area (mm2 ), bone volume density (g/cm3 ) and bone height (mm) data was extracted. The analysis was carried out using network meta-analysis methods, that is illustrating network plots, contribution plots, predictive and confidence interval plot, surface under the cumulative ranking (SUCRA), multidimensional scale ranking and net funnel plots using STATA IC statistical software. An SYRCLE's tool for assessing risk of bias was used for reporting risk of bias among individual studies. A total of N = 24 for qualitative and N = 21 studies for quantitative analysis published till 2020 were included. The cumulative total number of animals included in the control and test groups were N = 162 and N = 339, respectively. The duration of the study was between 3 and 102 weeks rhBMP-2 ranked higher in SUCRA as the agent associated with the best performance for bone volume density. rhGDF-5/TCP ranked best in the bone area (mm2), rhPDGF-BB/Equine ranked best in bone height (mm), rhBMP-2 ranked best in the percentage of new bone fill, rhBMP-2/ACS ranked best in new cementum formation, and rhGDF-5/b- TCP/PLGA ranked best in connective tissue attachment and junctional epithelium. There were no adverse effects identified in the literature that could affect the different outcomes for regeneration in intrabony defects. Various recombinant factors are effective in promoting the regeneration of both soft and hard tissue supporting structures of the periodontium. However, when considering different outcomes, different agents, associated or not with biomaterials, ranked best. Keeping into account the limited transferability of results from animal studies to the clinical setting, the choice of the most appropriate formulation of bioactive agents may depend on clinical needs and purpose.
Collapse
Affiliation(s)
- Shahnawaz Khijmatgar
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.,Nitte (Deemed to be University), AB Shetty Memorial Institute of Dental Sciences, Department of Oral Biology and Genomic Studies, Mangalore, India
| | - Saurav Panda
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.,Department of Periodontics and Oral Implantology, Institute of Dental Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar, Odisha, India
| | - Mohit Das
- Department of Periodontics and Oral Implantology, Institute of Dental Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar, Odisha, India
| | - Heber Arbildo-Vega
- Department of General Dentistry, Dentistry School, Universidad San Martín de Porres, Chiclayo, Peru.,Department of General Dentistry, Dentistry School, Universidad Particular de Chiclayo, Chiclayo, Peru
| | - Massimo Del Fabbro
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.,IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| |
Collapse
|
4
|
Koopaie M. Scaffolds for gingival tissues. HANDBOOK OF TISSUE ENGINEERING SCAFFOLDS: VOLUME ONE 2019:521-543. [DOI: 10.1016/b978-0-08-102563-5.00025-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Offner D, Wagner Q, Idoux-Gillet Y, Gegout H, Ferrandon A, Schwinté P, Musset AM, Benkirane-Jessel N, Keller L. Hybrid collagen sponge and stem cells as a new combined scaffold able to induce the re-organization of endothelial cells into clustered networks. Biomed Mater Eng 2017; 28:S185-S192. [PMID: 28372294 DOI: 10.3233/bme-171640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The time needed to obtain functional regenerated bone tissue depends on the existence of a reliable vascular support. Current techniques used in clinic, for example after tooth extraction, do not allow regaining or preserving the same bone volume. Our aim is to develop a cellularized active implant of the third generation, equipped with human mesenchymal stem cells to improve the quality of implant vascularization. We seeded a commercialized collagen implant with human mesenchymal stem cells (hMSCs) and then with human umbilical vein endothelial cells (HUVECs). We analyzed the biocompatibility and the behavior of endothelial cells with this implant. We observed a biocompatibility of the active implant, and a re-organization of endothelial cells into clustered networks. This work shows the possibility to develop an implant of the third generation supporting vascularization, improving the medical care of patients.
Collapse
Affiliation(s)
- Damien Offner
- INSERM (French National Institute of Health and Medical Research), 'Osteoarticular and Dental Regenerative Nanomedicine' Laboratory, UMR 1109, Faculté de Médecine, F-67085 Strasbourg cedex, FMTS, France.,Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, F-67000 Strasbourg, France.,Hôpitaux Universitaires de Strasbourg (HUS), 1 place de l'Hôpital, F-67000 Strasbourg, France
| | - Quentin Wagner
- INSERM (French National Institute of Health and Medical Research), 'Osteoarticular and Dental Regenerative Nanomedicine' Laboratory, UMR 1109, Faculté de Médecine, F-67085 Strasbourg cedex, FMTS, France.,Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, F-67000 Strasbourg, France
| | - Ysia Idoux-Gillet
- INSERM (French National Institute of Health and Medical Research), 'Osteoarticular and Dental Regenerative Nanomedicine' Laboratory, UMR 1109, Faculté de Médecine, F-67085 Strasbourg cedex, FMTS, France.,Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, F-67000 Strasbourg, France
| | - Hervé Gegout
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, F-67000 Strasbourg, France
| | - Arielle Ferrandon
- INSERM (French National Institute of Health and Medical Research), 'Osteoarticular and Dental Regenerative Nanomedicine' Laboratory, UMR 1109, Faculté de Médecine, F-67085 Strasbourg cedex, FMTS, France.,Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, F-67000 Strasbourg, France
| | - Pascale Schwinté
- INSERM (French National Institute of Health and Medical Research), 'Osteoarticular and Dental Regenerative Nanomedicine' Laboratory, UMR 1109, Faculté de Médecine, F-67085 Strasbourg cedex, FMTS, France.,Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, F-67000 Strasbourg, France
| | - Anne-Marie Musset
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, F-67000 Strasbourg, France.,Hôpitaux Universitaires de Strasbourg (HUS), 1 place de l'Hôpital, F-67000 Strasbourg, France
| | - Nadia Benkirane-Jessel
- INSERM (French National Institute of Health and Medical Research), 'Osteoarticular and Dental Regenerative Nanomedicine' Laboratory, UMR 1109, Faculté de Médecine, F-67085 Strasbourg cedex, FMTS, France.,Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, F-67000 Strasbourg, France
| | - Laetitia Keller
- INSERM (French National Institute of Health and Medical Research), 'Osteoarticular and Dental Regenerative Nanomedicine' Laboratory, UMR 1109, Faculté de Médecine, F-67085 Strasbourg cedex, FMTS, France.,Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, F-67000 Strasbourg, France
| |
Collapse
|
6
|
Diao S, Lin X, Wang L, Dong R, Du J, Yang D, Fan Z. Analysis of gene expression profiles between apical papilla tissues, stem cells from apical papilla and cell sheet to identify the key modulators in MSCs niche. Cell Prolif 2017; 50. [DOI: 18.doi: 10.1111/cpr.12337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2025] Open
Abstract
AbstractObjectivesThe microenvironmental niche plays the key role for maintaining the cell functions. The stem cells from apical papilla (SCAPs) are important for tooth development and regeneration. However, there is limited knowledge about the key factors in niche for maintaining the function of SCAPs. In this study, we analyse the gene expression profiles between apical papilla tissues, SCAPs and SCAPs cell sheet to identify the key genes in SCAPs niche.Materials and methodsMicroarray assays and bioinformatic analysis were performed to screen the differential genes between apical papilla tissues and SCAPs, and SCAPs and SCAPs cell sheet. Recombinant human BMP6 protein was used in SCAPs. Then CCK‐8 assay, CFSE assay, alkaline phosphatase activity, alizarin red staining, quantitative calcium analysis and real‐time reverse transcriptase‐polymerase chain reaction were performed to investigate the cell proliferation and differentiation potentials of SCAPs.ResultsMicroarray analysis found that 846 genes were up‐regulated and 1203 genes were down‐regulated in SCAPs compared with apical papilla tissues. While 240 genes were up‐regulated and 50 genes were down‐regulated in SCAPs compared to in SCAPs cell sheet. Moreover, only 31 gene expressions in apical papilla tissues were recovered in cell sheet compared with SCAPs. Bioinformatic analysis identified that TGF‐β, WNT and MAPK signalling pathways may play an important role in SCAPs niche. Based on the analysis, we identified one key growth factor in niche, BMP6, which could enhance the cell proliferation, the osteo/dentinogenic, neurogenic and angiogenic differentiation potentials of SCAPs.ConclusionsOur results provided insight into the mechanisms of the microenvironmental niche which regulate the function of SCAPs, and identified the key candidate genes in niche to promote mesenchymal stem cells‐mediated dental tissue regeneration.
Collapse
Affiliation(s)
- Shu Diao
- Laboratory of Molecular Signaling and Stem Cells Therapy Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction Capital Medical University School of Stomatology Beijing China
- Department of Pediatric dentistry Capital Medical University School of Stomatology Beijing China
| | - Xiao Lin
- Laboratory of Molecular Signaling and Stem Cells Therapy Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction Capital Medical University School of Stomatology Beijing China
- Department of Implant Dentistry Capital Medical University School of Stomatology Beijing China
| | - Liping Wang
- Laboratory of Molecular Signaling and Stem Cells Therapy Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction Capital Medical University School of Stomatology Beijing China
| | - Rui Dong
- Laboratory of Molecular Signaling and Stem Cells Therapy Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction Capital Medical University School of Stomatology Beijing China
| | - Juan Du
- Laboratory of Molecular Signaling and Stem Cells Therapy Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction Capital Medical University School of Stomatology Beijing China
- Molecular Laboratory for Gene Therapy and Tooth Regeneration Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction Capital Medical University School of Stomatology Beijing China
| | - Dongmei Yang
- Laboratory of Molecular Signaling and Stem Cells Therapy Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction Capital Medical University School of Stomatology Beijing China
- Department of Pediatric dentistry Capital Medical University School of Stomatology Beijing China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction Capital Medical University School of Stomatology Beijing China
| |
Collapse
|
7
|
Walker JA, Ewald TJ, Lewallen E, Van Wijnen A, Hanssen AD, Morrey BF, Morrey ME, Abdel MP, Sanchez-Sotelo J. Intra-articular implantation of collagen scaffold carriers is safe in both native and arthrofibrotic rabbit knee joints. Bone Joint Res 2017; 6:162-171. [PMID: 28347978 PMCID: PMC5376662 DOI: 10.1302/2046-3758.63.bjr-2016-0193] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/20/2016] [Indexed: 12/14/2022] Open
Abstract
Objectives Sustained intra-articular delivery of pharmacological agents is an attractive modality but requires use of a safe carrier that would not induce cartilage damage or fibrosis. Collagen scaffolds are widely available and could be used intra-articularly, but no investigation has looked at the safety of collagen scaffolds within synovial joints. The aim of this study was to determine the safety of collagen scaffold implantation in a validated in vivo animal model of knee arthrofibrosis. Materials and Methods A total of 96 rabbits were randomly and equally assigned to four different groups: arthrotomy alone; arthrotomy and collagen scaffold placement; contracture surgery; and contracture surgery and collagen scaffold placement. Animals were killed in equal numbers at 72 hours, two weeks, eight weeks, and 24 weeks. Joint contracture was measured, and cartilage and synovial samples underwent histological analysis. Results Animals that underwent arthrotomy had equivalent joint contractures regardless of scaffold implantation (-13.9° versus -10.9°, equivalence limit 15°). Animals that underwent surgery to induce contracture did not demonstrate equivalent joint contractures with (41.8°) or without (53.9°) collagen scaffold implantation. Chondral damage occurred in similar rates with (11 of 48) and without (nine of 48) scaffold implantation. No significant difference in synovitis was noted between groups. Absorption of the collagen scaffold occurred within eight weeks in all animals Conclusion Our data suggest that intra-articular implantation of a collagen sponge does not induce synovitis or cartilage damage. Implantation in a native joint does not seem to induce contracture. Implantation of the collagen sponge in a rabbit knee model of contracture may decrease the severity of the contracture. Cite this article: J. A. Walker, T. J. Ewald, E. Lewallen, A. Van Wijnen, A. D. Hanssen, B. F. Morrey, M. E. Morrey, M. P. Abdel, J. Sanchez-Sotelo. Intra-articular implantation of collagen scaffold carriers is safe in both native and arthrofibrotic rabbit knee joints. Bone Joint Res 2016;6:162–171. DOI: 10.1302/2046-3758.63.BJR-2016-0193.
Collapse
Affiliation(s)
- J A Walker
- Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - T J Ewald
- Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - E Lewallen
- Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - A Van Wijnen
- Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - A D Hanssen
- Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - B F Morrey
- Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - M E Morrey
- Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - M P Abdel
- Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | |
Collapse
|
8
|
Diao S, Lin X, Wang L, Dong R, Du J, Yang D, Fan Z. Analysis of gene expression profiles between apical papilla tissues, stem cells from apical papilla and cell sheet to identify the key modulators in MSCs niche. Cell Prolif 2017; 50. [PMID: 28145066 DOI: 10.1111/cpr.12337] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/04/2017] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES The microenvironmental niche plays the key role for maintaining the cell functions. The stem cells from apical papilla (SCAPs) are important for tooth development and regeneration. However, there is limited knowledge about the key factors in niche for maintaining the function of SCAPs. In this study, we analyse the gene expression profiles between apical papilla tissues, SCAPs and SCAPs cell sheet to identify the key genes in SCAPs niche. MATERIALS AND METHODS Microarray assays and bioinformatic analysis were performed to screen the differential genes between apical papilla tissues and SCAPs, and SCAPs and SCAPs cell sheet. Recombinant human BMP6 protein was used in SCAPs. Then CCK-8 assay, CFSE assay, alkaline phosphatase activity, alizarin red staining, quantitative calcium analysis and real-time reverse transcriptase-polymerase chain reaction were performed to investigate the cell proliferation and differentiation potentials of SCAPs. RESULTS Microarray analysis found that 846 genes were up-regulated and 1203 genes were down-regulated in SCAPs compared with apical papilla tissues. While 240 genes were up-regulated and 50 genes were down-regulated in SCAPs compared to in SCAPs cell sheet. Moreover, only 31 gene expressions in apical papilla tissues were recovered in cell sheet compared with SCAPs. Bioinformatic analysis identified that TGF-β, WNT and MAPK signalling pathways may play an important role in SCAPs niche. Based on the analysis, we identified one key growth factor in niche, BMP6, which could enhance the cell proliferation, the osteo/dentinogenic, neurogenic and angiogenic differentiation potentials of SCAPs. CONCLUSIONS Our results provided insight into the mechanisms of the microenvironmental niche which regulate the function of SCAPs, and identified the key candidate genes in niche to promote mesenchymal stem cells-mediated dental tissue regeneration.
Collapse
Affiliation(s)
- Shu Diao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Department of Pediatric dentistry, Capital Medical University School of Stomatology, Beijing, China
| | - Xiao Lin
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Department of Implant Dentistry, Capital Medical University School of Stomatology, Beijing, China
| | - Liping Wang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Rui Dong
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Juan Du
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Dongmei Yang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Department of Pediatric dentistry, Capital Medical University School of Stomatology, Beijing, China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| |
Collapse
|
9
|
Susin C, Fiorini T, Lee J, De Stefano JA, Dickinson DP, Wikesjö UME. Wound healing following surgical and regenerative periodontal therapy. Periodontol 2000 2015; 68:83-98. [DOI: 10.1111/prd.12057] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2013] [Indexed: 12/17/2022]
|
10
|
Pilipchuk SP, Plonka AB, Monje A, Taut AD, Lanis A, Kang B, Giannobile WV. Tissue engineering for bone regeneration and osseointegration in the oral cavity. Dent Mater 2015; 31:317-38. [PMID: 25701146 DOI: 10.1016/j.dental.2015.01.006] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 12/19/2014] [Accepted: 01/11/2015] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The focus of this review is to summarize recent advances on regenerative technologies (scaffolding matrices, cell/gene therapy and biologic drug delivery) to promote reconstruction of tooth and dental implant-associated bone defects. METHODS An overview of scaffolds developed for application in bone regeneration is presented with an emphasis on identifying the primary criteria required for optimized scaffold design for the purpose of regenerating physiologically functional osseous tissues. Growth factors and other biologics with clinical potential for osteogenesis are examined, with a comprehensive assessment of pre-clinical and clinical studies. Potential novel improvements to current matrix-based delivery platforms for increased control of growth factor spatiotemporal release kinetics are highlighting including recent advancements in stem cell and gene therapy. RESULTS An analysis of existing scaffold materials, their strategic design for tissue regeneration, and use of growth factors for improved bone formation in oral regenerative therapies results in the identification of current limitations and required improvements to continue moving the field of bone tissue engineering forward into the clinical arena. SIGNIFICANCE Development of optimized scaffolding matrices for the predictable regeneration of structurally and physiologically functional osseous tissues is still an elusive goal. The introduction of growth factor biologics and cells has the potential to improve the biomimetic properties and regenerative potential of scaffold-based delivery platforms for next-generation patient-specific treatments with greater clinical outcome predictability.
Collapse
Affiliation(s)
- Sophia P Pilipchuk
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, 1101 Beal Avenue, Ann Arbor, MI 48109, USA.
| | - Alexandra B Plonka
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, 1011 N. University Avenue, Ann Arbor, MI 48109, USA.
| | - Alberto Monje
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, 1011 N. University Avenue, Ann Arbor, MI 48109, USA.
| | - Andrei D Taut
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, 1011 N. University Avenue, Ann Arbor, MI 48109, USA.
| | - Alejandro Lanis
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, 1011 N. University Avenue, Ann Arbor, MI 48109, USA.
| | - Benjamin Kang
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, 1011 N. University Avenue, Ann Arbor, MI 48109, USA.
| | - William V Giannobile
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, 1011 N. University Avenue, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, 1101 Beal Avenue, Ann Arbor, MI 48109, USA.
| |
Collapse
|
11
|
Coomes AM, Mealey BL, Huynh-Ba G, Barboza-Arguello C, Moore WS, Cochran DL. Buccal bone formation after flapless extraction: a randomized, controlled clinical trial comparing recombinant human bone morphogenetic protein 2/absorbable collagen carrier and collagen sponge alone. J Periodontol 2013; 85:525-35. [PMID: 23826643 DOI: 10.1902/jop.2013.130207] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Flapless extraction of teeth allows for undisturbed preservation of the nearby periosteum and a source of osteoprogenitor cells. Recombinant human bone morphogenetic protein 2 (rhBMP-2) has been used for different bone augmentation purposes with great osteoinductive capacity. The aim of this study is to compare the bone regenerative ability of rhBMP-2 on an absorbable collagen sponge (ACS) carrier to a collagen sponge (CS) alone in extraction sites with ≥50% buccal dehiscence. METHODS Thirty-nine patients requiring extraction of a hopeless tooth with ≥50% buccal dehiscence were enrolled. After flapless extraction and randomization, either rhBMP-2/ACS carrier or CS alone was placed in the extraction site. After extraction, a baseline cone beam computed tomography (CBCT) scan was obtained of the site, and a similar scan was obtained 5 months postoperatively. Medical imaging and viewing software were used to compare the baseline and 5-month postoperative images of the study site and assess ridge width measurements, vertical height changes, and buccal plate regeneration. RESULTS Radiographically, CBCT analysis showed that with ≥50% of buccal bone destruction, rhBMP-2/ACS was able to regenerate a portion of the lost buccal plate, maintain theoretical ridge dimensions, and allow for implant placement 5 months after extraction. The test group performed significantly (P <0.05) better in regard to clinical buccal plate regeneration (4.75 versus 1.85 mm), clinical ridge width at 5 months (6.0 versus 4.62 mm), and radiographic ridge width at 3 mm from the alveolar crest (6.17 versus 4.48 mm) after molar exclusion. There was also significantly (P <0.05) less remaining buccal dehiscence, both clinically (6.81 versus 10.0 mm) and radiographically (3.42 versus 5.16 mm), at 5 months in the test group. Significantly (P <0.05) more implants were placed in the test group without the need for additional augmentation. The mean loss in vertical ridge height (lingual/palatal) was less in the test sites but was not significantly (P = 0.514) different between the test and control groups (0.39 versus 0.64 mm). CONCLUSIONS rhBMP-2/ACS compared to CS alone used in flapless extraction sites with a buccal dehiscence is able to regenerate lost buccal plate, maintain theoretical ridge dimensions, and allow for implant placement 5 months later.
Collapse
Affiliation(s)
- Angela M Coomes
- Department of Periodontics, University of Texas Health Science Center at San Antonio Dental School, San Antonio, TX
| | | | | | | | | | | |
Collapse
|
12
|
Suto M, Nemoto E, Kanaya S, Suzuki R, Tsuchiya M, Shimauchi H. Nanohydroxyapatite increases BMP-2 expression via a p38 MAP kinase dependent pathway in periodontal ligament cells. Arch Oral Biol 2013; 58:1021-8. [PMID: 23518236 DOI: 10.1016/j.archoralbio.2013.02.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 01/18/2013] [Accepted: 02/28/2013] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Bone morphogenetic protein (BMP)-2 promotes the osteoblastic differentiation of human periodontal ligament (PDL) cells, which play a pivotal role in periodontal regeneration. Recently, nano-sized hydroxyapatite (nano-HA) has been highlighted due to its advantageous features over micro-sized materials. DESIGN AND RESULTS We investigated the effect of nano-HA on BMP-2 expression in human PDL cells. Real time PCR analysis revealed that the expression of BMP-2 increased upon stimulation with nano-HA in dose- and time-dependent manners. An immunofluorescence assay demonstrated the synthesis of BMP-2 proteins. Concentrations of Ca(2+) as well as phosphate (Pi) in culture supernatants were unchanged, suggesting that nano-HA functioned as a nanoparticle rather than as a possible source for releasing Ca(2+) and/or Pi extracellularly, which were shown to also enhance the expression of BMP-2. Nano-HA-induced BMP-2 expression was dependent on the p38 MAP kinase pathway because increases in BMP-2 expression were inhibited by treatment with SB203580, a p38 inhibitor, and phosphorylation of p38 was detected by Western blotting. CONCLUSIONS This novel mechanism of nano-HA will be important for the rational design of future periodontal regeneration.
Collapse
Affiliation(s)
- Mizuki Suto
- Division of Periodontology and Endodontology, Tohoku University, Graduate School of Dentistry, Sendai 980-8575, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Oortgiesen DAW, Meijer GJ, Bronckers ALJJ, Walboomers XF, Jansen JA. Regeneration of the periodontium using enamel matrix derivative in combination with an injectable bone cement. Clin Oral Investig 2013; 17:411-21. [PMID: 22552596 PMCID: PMC3579465 DOI: 10.1007/s00784-012-0743-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 04/16/2012] [Indexed: 11/23/2022]
Abstract
OBJECTIVES Enamel matrix derivative (EMD) has proven to enhance periodontal regeneration; however, its effect is mainly restricted to the soft periodontal tissues. Therefore, to stimulate not only the soft tissues, but also the hard tissues, in this study EMD is combined with an injectable calcium phosphate cement (CaP; bone graft material). The aim was to evaluate histologically the healing of a macroporous CaP in combination with EMD. MATERIALS AND METHODS Intrabony, three-wall periodontal defects (2 × 2 × 1.7 mm) were created mesial of the first upper molar in 15 rats (30 defects). Defects were randomly treated according to one of the three following strategies: EMD, calcium phosphate cement and EMD, or left empty. The animals were killed after 12 weeks, and retrieved samples were processed for histology and histomorphometry. RESULTS Empty defects showed a reparative type of healing without periodontal ligament or bone regeneration. As measured with on a histological grading scale for periodontal regeneration, the experimental groups (EMD and CaP/EMD) scored equally, both threefold higher compared with empty defects. However, most bone formation was measured in the CaP/EMD group; addition of CAP to EMD significantly enhanced bone formation with 50 % compared with EMD alone. CONCLUSIONS Within the limits of this animal study, the adjunctive use of EMD in combination with an injectable cement, although it did not affect epithelial downgrowth, appeared to be a promising treatment modality for regeneration of bone and ligament tissues in the periodontium. CLINICAL RELEVANCE The adjunctive use of EMD in combination with an injectable cement appears to be a promising treatment modality for regeneration of the bone and ligament tissues in the periodontium.
Collapse
Affiliation(s)
- Daniël A. W. Oortgiesen
- Department of Biomaterials (309), Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Gert J. Meijer
- Department of Periodontology and Implantology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Antonius L. J. J. Bronckers
- Department of Oral Cell Biology, Academic Center for Dentistry (ACTA), Universiteit van Amsterdam and Vrije Universiteit, Research Institute MOVE, Amsterdam, The Netherlands
| | - X. Frank Walboomers
- Department of Biomaterials (309), Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - John A. Jansen
- Department of Biomaterials (309), Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
14
|
Park JC, Lee JB, Daculsi G, Oh SY, Cho KS, Im GI, Kim BS, Kim CS. Novel analysis model for implant osseointegration using ectopic bone formation via the recombinant human bone morphogenetic protein-2/macroporous biphasic calcium phosphate block system in rats: a proof-of-concept study. J Periodontal Implant Sci 2012; 42:136-43. [PMID: 22977743 PMCID: PMC3439525 DOI: 10.5051/jpis.2012.42.4.136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Accepted: 06/12/2012] [Indexed: 11/08/2022] Open
Abstract
Purpose The osseointegration around titanium mini-implants installed in macroporous biphasic calcium phosphate (MBCP) blocks was evaluated after incubation with recombinant human bone morphogenetic protein-2 (rhBMP-2) in an ectopic subcutaneous rat model. Methods Mini-implants (φ1.8×12 mm) were installed in MBCP blocks (bMBCPs, 4×5×15 mm) loaded with rhBMP-2 at 0.1 mg/mL, and then implanted for 8 weeks into subcutaneous pockets of male Sprague-Dawley rats (n=10). A histomorphometric analysis was performed, and the bone-to-implant contact (BIC) and bone density were evaluated. Results Significant osteoinductive activity was induced in the rhBMP-2/bMBCP group. The percentage of BIC was 41.23±4.13% (mean±standard deviation), while bone density was 33.47±5.73%. In contrast, no bone formation was observed in the bMBCP only group. Conclusions This model represents a more standardized tool for analyzing osseointegration and bone healing along the implant surface and in bMBCPs that excludes various healing factors derived from selected animals and defect models.
Collapse
Affiliation(s)
- Jung-Chul Park
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Reichert JC, Epari DR, Wullschleger ME, Berner A, Saifzadeh S, Nöth U, Dickinson IC, Schuetz MA, Hutmacher DW. [Bone tissue engineering. Reconstruction of critical sized segmental bone defects in the ovine tibia]. DER ORTHOPADE 2012; 41:280-7. [PMID: 22476418 DOI: 10.1007/s00132-011-1855-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Well-established therapies for bone defects are restricted to bone grafts which face significant disadvantages (limited availability, donor site morbidity, insufficient integration). Therefore, the objective was to develop an alternative approach investigating the regenerative potential of medical grade polycaprolactone-tricalcium phosphate (mPCL-TCP) and silk-hydroxyapatite (silk-HA) scaffolds.Critical sized ovine tibial defects were created and stabilized. Defects were left untreated, reconstructed with autologous bone grafts (ABG) and mPCL-TCP or silk-HA scaffolds. Animals were observed for 12 weeks. X-ray analysis, torsion testing and quantitative computed tomography (CT) analyses were performed. Radiological analysis confirmed the critical nature of the defects. Full defect bridging occurred in the autograft and partial bridging in the mPCL-TCP group. Only little bone formation was observed with silk-HA scaffolds. Biomechanical testing revealed a higher torsional moment/stiffness (p < 0.05) and CT analysis a significantly higher amount of bone formation for the ABG group when compared to the silk-HA group. No significant difference was determined between the ABG and mPCL-TCP groups. The results of this study suggest that mPCL-TCP scaffolds combined can serve as an alternative to autologous bone grafting in long bone defect regeneration. The combination of mPCL-TCP with osteogenic cells or growth factors represents an attractive means to further enhance bone formation.
Collapse
Affiliation(s)
- J C Reichert
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australien.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Muthukuru M. Bone morphogenic protein-2 induces apoptosis and cytotoxicity in periodontal ligament cells. J Periodontol 2012; 84:829-38. [PMID: 22839695 DOI: 10.1902/jop.2012.120339] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Periodontal ligament (PDL) expresses endogenous growth factors, such as bone morphogenic proteins (BMPs), which facilitate maintenance of tissue homeostasis. Inflammatory conditions, such as chronic periodontitis, could disrupt this homeostasis, and physiologic levels of growth factors may be insufficient to maintain tissue homeostasis. BMPs facilitate periodontal bone regeneration but also are implicated in causing tooth ankylosis and root resorption. The underlying mechanism of tooth ankylosis is unclear. However, there is evidence that BMPs induce apoptosis in progenitor cells. Little is known about BMP-induced cytotoxicity in PDL cells, which contain a population of progenitor cells. The aim of this study is to determine BMP2-induced osteogenic mediators and cytotoxic effects in PDL cells and compare these cells to osteoblasts. METHODS Human PDL cells and primary osteoblasts were stimulated with doses of 1 to 200 ng/mL BMP2. Expression of alkaline phosphatase (ALP), in vitro mineralization along with osteonectin expression, induction of apoptosis, and cytotoxicity assays were performed. RESULTS PDL cells and osteoblasts upregulated ALP and in vitro mineralization in a dose-dependent manner with BMP2 stimulation. However, at BMP2 concentrations >10 ng/mL, ALP, in vitro mineralization, and osteonectin were downregulated in PDL cells. Relative to osteoblasts, PDL cells were susceptible to apoptosis and cytotoxicity with 10 times lower concentration of BMP2. CONCLUSIONS Relative to osteoblasts, PDL cells are susceptible to BMP2-induced cytotoxicity. BMP-induced tooth ankylosis is controversial and is poorly understood. Disruption of PDL homeostasis by BMP-induced apoptosis could play a role in tooth ankylosis.
Collapse
Affiliation(s)
- Manoj Muthukuru
- Department of Periodontics, University of Washington, Seattle, WA 98195-7444, USA.
| |
Collapse
|
17
|
Yin H, Li YG, Si M, Li JM. Simvastatin-loaded macroporous calcium phosphate cement: preparation, in vitro characterization, and evaluation of in vivo performance. J Biomed Mater Res A 2012; 100:2991-3000. [PMID: 22700467 DOI: 10.1002/jbm.a.34228] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 03/22/2012] [Accepted: 04/23/2012] [Indexed: 11/08/2022]
Abstract
The aim of our study was to construct macroporous calcium phosphate bone cements (CPCs) with enhanced osteogenic potential. For this purpose, 300 mM sodium dodecyl sulfate (SDS) as an air-entraining agent was added to the liquid phase and 1, 5, and 10% simvastatin (SIM) was homogenized with the solid phase. The physical and mechanical characteristics of the test samples were investigated. Biological properties of the new CPCs were examined after intramuscular and endosteal implantation in rabbits. The introduction of SDS produced interconnected macropores and did not significantly affect initial setting time, transformation of solid phase to hydroxyapatite, and biocompatibility of CPCs. Large amounts (10 wt %) of SIM could decrease the compressive strength and induce severe muscular necrosis and inflammatory reaction. Small amounts (1 wt %) of SIM were compatible with the CPCs did not affect the physico-chemical properties or biocompatibility and were sufficient to enhance the osteogenic potential of macroporous CPCs.
Collapse
Affiliation(s)
- Han Yin
- Department of Orthopaedics, Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong, China
| | | | | | | |
Collapse
|
18
|
Oortgiesen DAW, Walboomers XF, Bronckers ALJJ, Meijer GJ, Jansen JA. Periodontal regeneration using an injectable bone cement combined with BMP-2 or FGF-2. J Tissue Eng Regen Med 2012; 8:202-9. [DOI: 10.1002/term.1514] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 01/31/2012] [Accepted: 02/08/2012] [Indexed: 11/08/2022]
Affiliation(s)
- Daniël AW Oortgiesen
- Department of Biomaterials; Radboud University Nijmegen Medical Center; Nijmegen the Netherlands
| | - X Frank Walboomers
- Department of Biomaterials; Radboud University Nijmegen Medical Center; Nijmegen the Netherlands
| | | | - Gert J Meijer
- Departement of Implantology and Periodontology; Radboud University Nijmegen Medical Center; Nijmegen the Netherlands
| | - John A Jansen
- Department of Biomaterials; Radboud University Nijmegen Medical Center; Nijmegen the Netherlands
| |
Collapse
|
19
|
Sun HH, Qu TJ, Zhang XH, Yu Q, Chen FM. Designing biomaterials for in situ periodontal tissue regeneration. Biotechnol Prog 2011; 28:3-20. [PMID: 21913341 DOI: 10.1002/btpr.698] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/11/2011] [Indexed: 01/25/2023]
Abstract
The regeneration of periodontal tissue poses a significant challenge to biomaterial scientists, tissue engineers and periodontal clinicians. Recent advances in this field have shifted the focus from the attempt to recreate tissue replacements/constructs ex vivo to the development of biofunctionalized biomaterials that incorporate and release regulatory signals in a precise and near-physiological fashion to achieve in situ regeneration. The molecular and physical information coded within the biomaterials define a local biochemical and mechanical niche with complex and dynamic regulation that establishes key interactions with host endogenous cells and, hence, may help to unlock latent regenerative pathways in the body by instructing cell homing and regulating cell proliferation/differentiation. In the future, these innovative principles and biomaterial devices promise to have a profound impact on periodontal reconstructive therapy and are also likely to reconcile the clinical and commercial pressures on other tissue engineering endeavors.
Collapse
Affiliation(s)
- Hai-Hua Sun
- Department of Operative Dentistry & Endodontics, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | | | | | | | | |
Collapse
|
20
|
Izumi Y, Aoki A, Yamada Y, Kobayashi H, Iwata T, Akizuki T, Suda T, Nakamura S, Wara-Aswapati N, Ueda M, Ishikawa I. Current and future periodontal tissue engineering. Periodontol 2000 2011; 56:166-87. [DOI: 10.1111/j.1600-0757.2010.00366.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Bone formation of Escherichia coli expressed rhBMP-2 on absorbable collagen block in rat calvarial defects. ACTA ACUST UNITED AC 2011; 111:298-305. [DOI: 10.1016/j.tripleo.2010.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 05/12/2010] [Accepted: 05/13/2010] [Indexed: 11/22/2022]
|
22
|
Wang L, Zou D, Zhang S, Zhao J, Pan K, Huang Y. Repair of bone defects around dental implants with bone morphogenetic protein/fibroblast growth factor-loaded porous calcium phosphate cement: a pilot study in a canine model. Clin Oral Implants Res 2011; 22:173-81. [DOI: 10.1111/j.1600-0501.2010.01976.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Chen FM, An Y, Zhang R, Zhang M. New insights into and novel applications of release technology for periodontal reconstructive therapies. J Control Release 2011; 149:92-110. [DOI: 10.1016/j.jconrel.2010.10.021] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 10/13/2010] [Indexed: 02/09/2023]
|
24
|
Chen FM, Jin Y. Periodontal tissue engineering and regeneration: current approaches and expanding opportunities. TISSUE ENGINEERING PART B-REVIEWS 2010; 16:219-55. [PMID: 19860551 DOI: 10.1089/ten.teb.2009.0562] [Citation(s) in RCA: 226] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The management of periodontal tissue defects that result from periodontitis represents a medical and socioeconomic challenge. Concerted efforts have been and still are being made to accelerate and augment periodontal tissue and bone regeneration, including a range of regenerative surgical procedures, the development of a variety of grafting materials, and the use of recombinant growth factors. More recently, tissue-engineering strategies, including new cell- and/or matrix-based dimensions, are also being developed, analyzed, and employed for periodontal regenerative therapies. Tissue engineering in periodontology applies the principles of engineering and life sciences toward the development of biological techniques that can restore lost alveolar bone, periodontal ligament, and root cementum. It is based on an understanding of the role of periodontal formation and aims to grow new functional tissues rather than to build new replacements of periodontium. Although tissue engineering has merged to create more opportunities for predictable and optimal periodontal tissue regeneration, the technique and design for preclinical and clinical studies remain in their early stages. To date, the reconstruction of small- to moderate-sized periodontal bone defects using engineered cell-scaffold constructs is technically feasible, and some of the currently developed concepts may represent alternatives for certain ideal clinical scenarios. However, the predictable reconstruction of the normal structure and functionality of a tooth-supporting apparatus remains challenging. This review summarizes current regenerative procedures for periodontal healing and regeneration and explores their progress and difficulties in clinical practice, with particular emphasis placed upon current challenges and future possibilities associated with tissue-engineering strategies in periodontal regenerative medicine.
Collapse
Affiliation(s)
- Fa-Ming Chen
- Department of Periodontology and Oral Medicine, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | | |
Collapse
|
25
|
Kwon DH, Bisch FC, Herold RW, Pompe C, Bastone P, Rodriguez NA, Susin C, Wikesjö UME. Periodontal wound healing/regeneration following the application of rhGDF-5 in a beta-TCP/PLGA carrier in critical-size supra-alveolar periodontal defects in dogs. J Clin Periodontol 2010; 37:667-74. [PMID: 20492073 DOI: 10.1111/j.1600-051x.2010.01569.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM The objective of this study was to evaluate the effect of a novel recombinant human GDF-5 (rhGDF-5) construct intended for onlay and inlay indications on periodontal wound healing/regeneration. METHODS Contralateral, surgically created, critical-size, 6-mm, supra-alveolar periodontal defects in five adult Hound Labrador mongrel dogs received rhGDF-5 coated onto beta-tricalcium phosphate (beta-TCP) particles and immersed in a bioresorbable poly(lactic-co-glycolic acid) (PLGA) composite or the beta-TCP/PLGA carrier alone (control). The rhGDF-5 and control constructs were moulded around the teeth and allowed to set. The gingival flaps were then advanced; flap margins were adapted 3-4 mm coronal to the teeth and sutured. The animals were euthanized at 8 weeks post-surgery when block biopsies were collected for histometric analysis. RESULTS Healing was generally uneventful. A few sites exhibited minor exposures. Three control sites and one rhGDF-5 site (in separate animals) experienced more extensive wound dehiscencies. The rhGDF-5 and control constructs were easy to apply and exhibited adequate structural integrity to support the mucoperiosteal flaps in this challenging onlay model. Limited residual beta-TCP particles were observed at 8 weeks for both rhGDF-5/beta-TCP/PLGA and beta-TCP/PLGA control sites. The rhGDF-5/beta-TCP/PLGA sites showed significantly greater cementum (2.34 +/- 0.44 versus 1.13 +/- 0.25 mm, p=0.02) and bone (2.92 +/- 0.66 versus 1.21 +/- 0.30 mm, p=0.02) formation compared with the carrier control. Limited ankylosis was observed in four of five rhGDF-5/beta-TCP/PLGA sites but not in control sites. CONCLUSIONS Within the limitations of this study, the results suggest that rhGDF-5 is a promising candidate technology in support of periodontal wound healing/regeneration. Carrier and rhGDF-5 dose optimization are necessary before further advancement of the technology towards clinical evaluation.
Collapse
Affiliation(s)
- David H Kwon
- U.S. Army Advanced Education Program in Periodontics, Ft. Gordon, GA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Lee J, Stavropoulos A, Susin C, Wikesjö UME. Periodontal regeneration: focus on growth and differentiation factors. Dent Clin North Am 2010; 54:93-111. [PMID: 20103474 DOI: 10.1016/j.cden.2009.09.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Several growth and differentiation factors have shown potential as therapeutic agents to support periodontal wound healing/regeneration, although optimal dosage, release kinetics, and suitable delivery systems are still unknown. Experimental variables, including delivery systems, dose, and the common use of poorly characterized preclinical models, make it difficult to discern the genuine efficacy of each of these factors. Only a few growth and differentiation factors have reached clinical evaluation. It appears that well-defined discriminating preclinical models followed by well-designed clinical trials are needed to further investigate the true potential of these and other candidate factors. Thus, current research is focused on finding relevant growth and differentiation factors, optimal dosages, and the best approaches for delivery to develop clinically meaningful therapies in patient-centered settings.
Collapse
Affiliation(s)
- Jaebum Lee
- Laboratory for Applied Periodontal & Craniofacial Regeneration (LAPCR), Departments of Periodontics and Oral Biology, Medical College of Georgia School of Dentistry, 1120 5th Street AD1434, Augusta, GA 30912, USA
| | | | | | | |
Collapse
|
27
|
Chen FM, Shelton RM, Jin Y, Chapple ILC. Localized delivery of growth factors for periodontal tissue regeneration: role, strategies, and perspectives. Med Res Rev 2009; 29:472-513. [PMID: 19260070 DOI: 10.1002/med.20144] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Difficulties associated with achieving predictable periodontal regeneration, means that novel techniques need to be developed in order to regenerate the extensive soft and hard tissue destruction that results from periodontitis. Localized delivery of growth factors to the periodontium is an emerging and versatile therapeutic approach, with the potential to become a powerful tool in future regenerative periodontal therapy. Optimized delivery regimes and well-defined release kinetics appear to be logical prerequisites for safe and efficacious clinical application of growth factors and to avoid unwanted side effects and toxicity. While adequate concentrations of growth factor(s) need to be appropriately localized, delivery vehicles are also expected to possess properties such as protein protection, precision in controlled release, biocompatibility and biodegradability, self-regulated therapeutic activity, potential for multiple delivery, and good cell/tissue penetration. Here, current knowledge, recent advances, and future possibilities of growth factor delivery strategies are outlined for periodontal regeneration. First, the role of those growth factors that have been implicated in the periodontal healing/regeneration process, general requirements for their delivery, and the different material types available are described. A detailed discussion follows of current strategies for the selection of devices for localized growth factor delivery, with particular emphasis placed upon their advantages and disadvantages and future prospects for ongoing studies in reconstructing the tooth supporting apparatus.
Collapse
Affiliation(s)
- Fa-Ming Chen
- Department of Periodontology and Oral Medicine, School of Stomatology, The Fourth Military Medical University, Shaanxi, People's Republic of China.
| | | | | | | |
Collapse
|
28
|
Kim TG, Wikesjö UME, Cho KS, Chai JK, Pippig SD, Siedler M, Kim CK. Periodontal wound healing/regeneration following implantation of recombinant human growth/differentiation factor-5 (rhGDF-5) in an absorbable collagen sponge carrier into one-wall intrabony defects in dogs: a dose-range study. J Clin Periodontol 2009; 36:589-97. [DOI: 10.1111/j.1600-051x.2009.01420.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Abarrategi A, Moreno-Vicente C, Ramos V, Aranaz I, Sanz Casado JV, López-Lacomba JL. Improvement of porous beta-TCP scaffolds with rhBMP-2 chitosan carrier film for bone tissue application. Tissue Eng Part A 2008; 14:1305-19. [PMID: 18491953 DOI: 10.1089/ten.tea.2007.0229] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Ceramic materials are osteoconductive matrices extensively used in bone tissue engineering approaches. The performance of these types of biomaterials can be greatly enhanced by the incorporation of bioactive agents and materials. It is previously reported that chitosan is a biocompatible, biodegradable material that enhances bone formation. In the other hand, bone morphogenetic protein-2 (BMP-2) is a well-known osteoinductive factor. In this work we coated porous beta-tricalcium phosphate (beta-TCP) scaffolds with recombinant human BMP-2 (rhBMP-2) carrier chitosan films and studied how they could modify the ceramic physicochemical properties, cellular response, and in vivo bone generation. Initial beta-TCP disks with an average diameter of 5.78 mm, 2.9 mm thickness, and 53% porosity were coated with a chitosan film. These coating properties were studied by X-ray diffraction, Fourier transform-infrared analysis, transmission electron microscopy, scanning electron microscopy, and energy dispersive X-ray analysis (EDX). Treatment modified the scaffold porous distribution and increased the average hardness. The biocompatibility did not seem to be altered. In addition, adhered C2C12 cells expressed alkaline phosphatase activity, related to cell differentiation toward osteogenic lineage, due to the incorporation of rhBMP-2. On the other hand, in vivo observations showed new bone formation 3 weeks after surgery, a much shorter time than control beta-TCP ceramics. These results suggest that developed coating improved porous beta-TCP scaffold for bone tissue applications and added osteoinductive properties.
Collapse
Affiliation(s)
- Ander Abarrategi
- Instituto de Estudios Biofuncionales, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
30
|
Kadomatsu H, Matsuyama T, Yoshimoto T, Negishi Y, Sekiya H, Yamamoto M, Izumi Y. Injectable growth/differentiation factor-5-recombinant human collagen composite induces endochondral ossification via Sry-related HMG box 9 (Sox9)expression and angiogenesis in murine calvariae. J Periodontal Res 2008; 43:483-9. [PMID: 18624952 DOI: 10.1111/j.1600-0765.2007.01023.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVE The types of collagens available today as biomaterials are purified from animal tissues. A major growing concern, however, is their safety, since there are risks of viral and prion contamination and of unknown and potentially zoonotic infectious diseases. The present study aimed to assess, using immunohistochemistry, the effects of recombinant human growth/differentiation factor-5 (rhGDF-5) combined with recombinant human collagen I (rhCI) on bone formation in murine calvariae. MATERIAL AND METHODS Composite rhGDF-5-rhCI or rhCI alone was injected subcutaneously into murine calvariae. After 3, 7 or 14 days, tissues were examined radiologically, histologically and immunohistochemically. The production of vascular endothelial growth factor (VEGF) by primary osteoblasts, periosteal cells and connective tissue fibroblasts isolated enzymatically from neonatal murine calvariae was also assessed. RESULTS A protrusion was observed on the calvariae at the site injected with rhGDF-5/rhCI composite. Its mineral density was shown to be different from that of the existing bone by two-dimensional microcomputed tomography. Type II collagen-positive staining was restricted to newly formed tissues. Thus, the newly formed tissues seemed to be bone- and cartilage-like tissues. A number of vessels with positively stained cells for Von Willebrand factor were detected in the newly formed tissues. The rhGDF-5 enhanced VEGF production in cultured connective tissue fibroblasts. Sry-related HMG box 9 (Sox9)-positive cells were detected in the hypertrophic periosteum, and penetrated into the newly formed tissues. CONCLUSIONS These results suggest that rhCI seems to allow the release of rhGDF-5 and that rhGDF-5-rhCI composite induces endochondral ossification via Sox9 expression and angiogenesis in murine calvariae.
Collapse
Affiliation(s)
- H Kadomatsu
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Huang YH, Polimeni G, Qahash M, Wikesjö UME. Bone morphogenetic proteins and osseointegration: current knowledge – future possibilities. Periodontol 2000 2008; 47:206-23. [DOI: 10.1111/j.1600-0757.2007.00240.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Bone Morphogenetic Proteins: A Realistic Alternative to Bone Grafting for Alveolar Reconstruction. Oral Maxillofac Surg Clin North Am 2007; 19:535-51, vi-vii. [DOI: 10.1016/j.coms.2007.07.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Abstract
The treatment of oral and periodontal diseases and associated anomalies accounts for a significant proportion of the healthcare burden, with the manifestations of these conditions being functionally and psychologically debilitating. Growth factors are critical to the development, maturation, maintenance and repair of craniofacial tissues, as they establish an extracellular environment that is conducive to cell and tissue growth. Tissue-engineering principles aim to exploit these properties in the development of biomimetic materials that can provide an appropriate microenvironment for tissue development. These materials have been constructed into devices that can be used as vehicles for delivery of cells, growth factors and DNA. In this review, different mechanisms of drug delivery are addressed in the context of novel approaches to reconstruct and engineer oral- and tooth-supporting structures, namely the periodontium and alveolar bone.
Collapse
Affiliation(s)
- Darnell Kaigler
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
34
|
Yoshimoto T, Yamamoto M, Kadomatsu H, Sakoda K, Yonamine Y, Izumi Y. Recombinant human growth/differentiation factor-5 (rhGDF-5) induced bone formation in murine calvariae. J Periodontal Res 2006; 41:140-7. [PMID: 16499717 DOI: 10.1111/j.1600-0765.2005.00847.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Growth/differentiation factor-5 (GDF-5), a member of the transforming growth factor-beta superfamily, shows a close structural relationship to bone morphogenetic proteins and plays crucial roles in skeletal morphogenesis. Recombinant human (rh) GDF-5 was reported as a suitable factor for enhancing healing in bone defect and inducing ectopic bone formation. The purpose of the present study was to investigate the mechanism of bone formation induced by rhGDF-5 in murine calvariae by radiological, histological and immunohistochemical methods. Cell proliferation was also examined in vitro. MATERIAL AND METHODS Cells including primary osteoblasts, periosteum cells and connective tissue fibroblasts were isolated enzymatically from neonatal murine calvariae or head skin. In the presence or absence of rhGDF-5, cell proliferation was estimated by tetrazolium reduction assay. To examine the mechanism of osteoinduction, rhGDF-5/atelocollagen (AC) composite or 0.01 N HCl/AC composite were injected into murine calvariae subcutaneously. Tissue was examined radiologically, histologically and immunohistochemically. RESULTS In the presence of rhGDF-5, proliferation of primary osteoblasts, periosteum cells, and connective tissue fibroblasts was increased significantly in culture. Immunohistochemical observations showed cells at the site injected with rhGDF-5/AC displayed immunoreactivity for proliferating cell nuclear antigen (PCNA). Newly formed bone- and cartilage-like tissue contained chondrocyte osteocyte and osteoclastic cells, and were immunoreactive for both type I and II collagen. CONCLUSION Exposure to GDF-5 promotes proliferation and differentiation of calvarial cells, which give rise to ectopic bone formation.
Collapse
Affiliation(s)
- Takehiko Yoshimoto
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Harwood PJ, Giannoudis PV. Application of bone morphogenetic proteins in orthopaedic practice: their efficacy and side effects. Expert Opin Drug Saf 2005; 4:75-89. [PMID: 15709900 DOI: 10.1517/14740338.4.1.75] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bone morphogenetic proteins (BMPs) have been extensively studied since the discovery of agents within bone that could induce bone formation at ectopic sites by Urist in the 1960s. Extensive preclinical research has been carried out showing the efficacy of these products in promoting bone healing. Clinical trials are encouraging, with meta-analysis of results revealing better rates of healing than treatment with autologous bone grafting (risk ratio [RR]: 0.845; 95% confidence interval [CI]: 0.772 - 0.924; p < 0.001 for clinical outcome and RR: 0.884; 95% CI: 0.825 - 0.948; p < 0.001 for radiological outcome). Preclinical and clinical safety assessments have revealed little evidence of toxic effects and there have been few reports of adverse events related to their use. A small rate of immunological reaction following administration, resulting in antibody formation, has been observed in some patients, without clinical consequence, although the long-term implications of this are unknown. Ongoing research is revealing that BMPs act on an extremely wide range of body tissues in a variety of manners and this is far from fully understood. It should be noted, however, that given the role of BMP as a differentiation factor, the production of undifferentiated neoplastic tissue seems unlikely. It has also been shown in an animal model that artificially administered BMP can cross the placenta and subsequently be detected in the growing embryo. As this area has been little investigated, use in pregnancy is currently contraindicated. Until the long-term safety profile is more fully documented it would seem sensible to continue to carefully control use and monitor patients closely. However, the current evidence is very promising.
Collapse
Affiliation(s)
- Paul J Harwood
- Leeds University and St. James' University Hospital, Academic Department Orthopaedic Trauma Surgery, Leeds, UK
| | | |
Collapse
|
36
|
Miranda DAO, Blumenthal NM, Sorensen RG, Wozney JM, Wikesjö UME. Evaluation of Recombinant Human Bone Morphogenetic Protein-2 on the Repair of Alveolar Ridge Defects in Baboons. J Periodontol 2005; 76:210-20. [PMID: 15974844 DOI: 10.1902/jop.2005.76.2.210] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The objective of this study was to evaluate alveolar ridge augmentation following surgical implantation of recombinant human bone morphogenetic protein-2 (rhBMP-2) using two novel space-providing carrier technologies in the baboon (Papio anubis) model. METHODS Standardized alveolar ridge defects ( approximately 15 x 8 x 5 mm) were surgically produced in maxillary and mandibular edentulous areas in four baboons. The defect sites were implanted with rhBMP-2 (0.4 mg/mL) in a tricalcium phosphate/hydroxyapatite/ absorbable collagen sponge composite (TCP/HA/ACS) or calcium phosphate cement (alpha-BSM). Control treatments were TCP/HA/ACS and ?-BSM without rhBMP-2 and sham surgery. Stainless steel pins were placed at the mid-apical and coronal level of the defect sites to provide landmarks for clinical measurements pre- and post-implantation. Impressions were obtained pre- and postimplantation to determine changes in alveolar ridge volume. Radiographic registrations were obtained pre- and post-implantation. Block sections of the defect sites were harvested at week 16 postimplantation and processed for histometric analysis including new bone area and bone density. Statistical comparisons between treatments were made using a mixed effect generalized linear model using least squares estimation. RESULTS The carrier systems without rhBMP-2 provided a modest ridge augmentation. The addition of rhBMP-2 resulted in an almost 2-fold increase in alveolar ridge width, including a greater percentage of trabecular bone and a higher bone density compared to controls (P < or =0.05) without significant differences between the two rhBMP-2 protocols. CONCLUSIONS TCP/HA/ACS and alphaBSM appear to be suitable carrier technologies for rhBMP-2. Alveolar augmentation procedures using either technology combined with rhBMP-2, rather than stand-alone therapies, may provide clinically relevant augmentation of alveolar ridge defects for placement of endosseous dental implants.
Collapse
Affiliation(s)
- Dario A O Miranda
- Department of Periodontics, University of Illinois at Chicago, College of Dentistry, Chicago, IL, USA
| | | | | | | | | |
Collapse
|
37
|
Sorensen RG, Wikesjö UME, Kinoshita A, Wozney JM. Periodontal repair in dogs: evaluation of a bioresorbable calcium phosphate cement (Ceredex) as a carrier for rhBMP-2. J Clin Periodontol 2004; 31:796-804. [PMID: 15312104 DOI: 10.1111/j.1600-051x.2004.00544.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Recombinant human bone morphogenetic protein-2 (rhBMP-2) has been shown to induce clinically relevant bone formation for orthopedic, craniofacial, and oral indications. It appears critical, in particular for onlay indications, that the associated carrier technology exhibits structural integrity to offset compressive forces in support of rhBMP-2-induced bone formation. The objective of this study was to evaluate a calcium phosphate (CP) cement, Ceredex, as a candidate carrier for rhBMP-2 in a defect model with limited osteogenic potential. MATERIALS Bilateral, critical size, 6-mm, supra-alveolar, periodontal defects were created in six, adult, male, Hound Labrador mongrels. Three animals received rhBMP-2/Ceredex (rhBMP-2 at 0.20 and 0.40 mg/ml) in contralateral defect sites (implant volume/defect approximately 1 ml). One defect site in each of the three remaining animals received Ceredex without rhBMP-2 (control). The animals were euthanized at 12 weeks postsurgery for histologic and histometric analysis. RESULTS Mean induced bone height exceeded 80% of the defect height for supra-alveolar periodontal defects receiving rhBMP-2/Ceredex without major differences between rhBMP-2 concentrations compared with approximately 40% for the control. The newly formed bone, a mixture of lamellar and woven bone in fibrovascular tissue, circumscribed relatively large portions of the residual Ceredex biomaterial. Inflammatory lesions were associated with limited bone formation in some sites. From a periodontal perspective, sites receiving rhBMP-2/Ceredex exhibited increased cementum formation compared with control, but without a functionally oriented periodontal ligament, and increased ankylosis and root resorption. Control sites exhibited early wound failure and exposure, loss of the Ceredex biomaterial, and limited bone formation. CONCLUSIONS The Ceredex CP cement appears a potentially promising carrier technology for rhBMP-2 onlay indications. However, a slow resorption rate may prevent its wider use. This study does not support use of the rhBMP-2/Ceredex combination for periodontal indications.
Collapse
|
38
|
Wikesjö UME, Sorensen RG, Kinoshita A, Jian Li X, Wozney JM. Periodontal repair in dogs: effect of recombinant human bone morphogenetic protein-12 (rhBMP-12) on regeneration of alveolar bone and periodontal attachment. J Clin Periodontol 2004; 31:662-70. [PMID: 15257745 DOI: 10.1111/j.1600-051x.2004.00541.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Recombinant human bone morphogenetic protein-2 (rhBMP-2) has been shown to stimulate alveolar bone and cementum formation in periodontal defects but not a functionally oriented periodontal ligament (PDL). Subcutaneous and intramuscular implants of BMP-12 have been shown to induce tendon formation and ligament-like tissue. The objective of this study was to evaluate rhBMP-12 for periodontal regeneration, in particular PDL formation. METHODS Six young adult Hound Labrador mongrel dogs were used. Routine supraalveolar periodontal defects were created around the mandibular premolar teeth. Three animals received rhBMP-12(0.04 mg/ml) in an absorbable collagen sponge (ACS) carrier vs. rhBMP-12(0.2 mg/mL)/ACS in contralateral defects. Three animals received rhBMP-12(1.0 mg/ml)/ACS vs. rhBMP-2(0.2 mg/ml)/ACS (total implant volume/defect approximately 1 ml). The animals were euthanized 8 weeks postsurgery and block biopsies were processed for histometric analysis. RESULTS Bone regeneration appeared increased in sites receiving rhBMP-2/ACS compared to sites receiving rhBMP-12/ACS. Cementum regeneration was similar comparing sites implanted with rhBMP-2/ACS to sites implanted with rhBMP-12/ACS. In contrast, sites receiving rhBMP-12/ACS exhibited a functionally oriented PDL bridging the gap between newly formed bone and cementum whereas this was a rare observation in sites receiving rhBMP-2/ACS. Ankylosis appeared increased in sites receiving rhBMP-2/ACS compared to those receiving rhBMP-12/ACS. CONCLUSIONS The outcomes of this study suggest that rhBMP-12 may have significant effects on regeneration of the PDL. Additional preclinical evaluation is needed to confirm these initial observations prior to clinical application.
Collapse
Affiliation(s)
- Ulf M E Wikesjö
- Laboratory for Applied Periodontal and Craniofacial Regeneration, Department of Periodontology, Temple University School of Dentistry, Philadelphia, PA 19140, USA.
| | | | | | | | | |
Collapse
|
39
|
Ruhé PQ, Kroese-Deutman HC, Wolke JGC, Spauwen PHM, Jansen JA. Bone inductive properties of rhBMP-2 loaded porous calcium phosphate cement implants in cranial defects in rabbits. Biomaterials 2004; 25:2123-32. [PMID: 14741627 DOI: 10.1016/j.biomaterials.2003.09.007] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this study, the osteoinductive properties of porous calcium phosphate (Ca-P) cement loaded with bone morphogenetic protein 2 (rhBMP-2) were evaluated and compared with rhBMP-2 loaded absorbable collagen sponge (ACS). Discs with a diameter of 8mm were loaded with a buffer solution with or without 10 microg rhBMP-2 and inserted in 8mm full thickness cranial defects in rabbits for 2 and 10 weeks of implantation. Histological analysis revealed excellent osteoconductive properties of the Ca-P material. It maintained its shape and stability during the implantation time better than the ACS but showed no degradation like the ACS. Quantification of the Ca-P cement implants showed that bone formation was increased significantly by administration of rhBMP-2 (10 weeks pore fill: 53.0+/-5.4%), and also reached a reasonable amount without rhBMP-2 (43.1+/-10.4%). Remarkably, callus-like bone formation outside the implant was observed frequently in the 2 weeks rhBMP-2 loaded Ca-P cement implants, suggesting a correlation with the presence of growth factor in the surrounding tissue. However, an additional in vitro assay revealed an accumulative release of no more than 9.7+/-0.9% after 4 weeks. We conclude that: (1). Porous Ca-P cement is an appropriate candidate scaffold material for bone engineering. (2). Bone formation can be enhanced by lyophilization of rhBMP-2 on the cement. (3). Degradation of porous Ca-P cement is species-, implantation site- and implant dimension-specific.
Collapse
Affiliation(s)
- P Quinten Ruhé
- University Medical Center, Department of Biomaterials, PO Box 9101, THK 117, 6500 HB, Nijmegen, Netherlands
| | | | | | | | | |
Collapse
|