1
|
Solovieva OA, Gruden MA, Kudrin VS, Mikhailova NP, Narkevich VB, Sherstnev VV, Storozheva ZI. Motor and Cognitive Functions in Aging C57BL/6 Mice: Association with Activity of the Monoaminergic Systems in the Cerebellum and Frontal Cortex. Bull Exp Biol Med 2023; 175:739-743. [PMID: 37978148 DOI: 10.1007/s10517-023-05936-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Indexed: 11/19/2023]
Abstract
The activity in the open field, short- and long-term memory in the novel object recognition test, and gait features were evaluated in 6- and 12-month-old male C57BL/6 mice. The levels of norepinephrine, dopamine, serotonin, and their metabolites were determined in the cerebellum and frontal cortex. In the observed age range, a decrease in locomotion speed, impairment of gait initiation and stability, and long-term memory deficit were revealed. In the cerebral cortex, reduced levels of dopamine and its metabolites and accelerated metabolism of all neurotransmitters under study were found. In the cerebellum, the content of all studied monoamines was elevated, while dopamine metabolism was decelerated. Analysis of correlations between the neurochemical and behavioral parameters showed that the mechanisms of compensation of brain functions during the early aging may be associated with an increase in activity of the monoaminergic systems in the cerebellum.
Collapse
Affiliation(s)
- O A Solovieva
- P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia
| | - M A Gruden
- P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia
| | - V S Kudrin
- V. V. Zakusov Research Institute of Pharmacology, Moscow, Russia
| | - N P Mikhailova
- P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia
| | - V B Narkevich
- V. V. Zakusov Research Institute of Pharmacology, Moscow, Russia
| | - V V Sherstnev
- P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia
| | - Z I Storozheva
- P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia.
| |
Collapse
|
2
|
Kim KH, Cho Y, Lee J, Jeong H, Lee Y, Kim SI, Kim CH, Lee HW, Nam KT. Sexually dimorphic leanness and hypermobility in p16 Ink4a/CDKN2A-deficient mice coincides with phenotypic changes in the cerebellum. Sci Rep 2019; 9:11167. [PMID: 31371816 PMCID: PMC6671985 DOI: 10.1038/s41598-019-47676-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 07/22/2019] [Indexed: 12/31/2022] Open
Abstract
p16Ink4a/CDKN2A is a tumor suppressor that critically regulates the cell cycle. Indeed, p16Ink4a deficiency promotes tumor formation in various tissues. We now report that p16Ink4a deficiency in female mice, but not male mice, induces leanness especially in old age, as indicated by lower body weight and smaller white adipose tissue, although other major organs are unaffected. Unexpectedly, the integrity, number, and sizes of adipocytes in white adipose tissue were unaffected, as was macrophage infiltration. Hence, hypermobility appeared to be accountable for the phenotype, since food consumption was not altered. Histological analysis of the cerebellum and deep cerebellar nuclei, a vital sensorimotor control center, revealed increased proliferation of neuronal cells and improved cerebellum integrity. Expression of estrogen receptor β (ERβ) and PCNA also increased in deep cerebellar nuclei, implying crosstalk between p16Ink4a and ERβ. Furthermore, p16Ink4a deficiency expands LC3B+ cells and GFAP+ astrocytes in response to estrogen. Collectively, the data suggest that loss of p16INK4a induces sexually dimorphic leanness in female mice, which appears to be due to protection against cerebellar senescence by promoting neuronal proliferation and homeostasis via ERβ.
Collapse
Affiliation(s)
- Kwang H Kim
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Yejin Cho
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jaehoon Lee
- Department of Biochemistry, College of Life Science and Biotechnology and Yonsei Laboratory Animal Research Center, Yonsei University, Seoul, 03722, Republic of Korea
| | - Haengdueng Jeong
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Yura Lee
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Soo In Kim
- Department of Otorhinolaryngology, Korea Mouse Sensory Phenotyping Center, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Chang-Hoon Kim
- Department of Otorhinolaryngology, Korea Mouse Sensory Phenotyping Center, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology and Yonsei Laboratory Animal Research Center, Yonsei University, Seoul, 03722, Republic of Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
3
|
Creed RB, Menalled L, Casey B, Dave KD, Janssens HB, Veinbergs I, van der Hart M, Rassoulpour A, Goldberg MS. Basal and Evoked Neurotransmitter Levels in Parkin, DJ-1, PINK1 and LRRK2 Knockout Rat Striatum. Neuroscience 2019; 409:169-179. [PMID: 31029729 DOI: 10.1016/j.neuroscience.2019.04.033] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder and is characterized by the loss of neurons in the substantia nigra that project to the striatum and release dopamine (DA), which is required for normal movement. Common non-motor symptoms likely involve abnormalities with other neurotransmitters, such as serotonin, norepinephrine, acetylcholine, glycine, glutamate and gamma-aminobutyric acid (GABA). As part of a broad effort to provide better PD research tools, the Michael J. Fox Foundation for Parkinson's Research funded the generation and characterization of knockout (KO) rats for genes with PD-linked mutations, including PINK1, Parkin, DJ-1 and LRRK2. Here we extend the phenotypic characterization of these lines of KO rats to include in vivo microdialysis to measure both basal and potassium-induced release of the above neurotransmitters and their metabolites in the striatum of awake and freely moving rats at ages 4, 8 and 12 months compared to wild-type (WT) rats. We found age-dependent abnormalities in basal DA, glutamate and acetylcholine in PINK1 KO rats and age-dependent abnormalities in basal DA metabolites in Parkin and LRRK2 KO rats. Parkin KO rats had increased glycine release while DJ-1 KO rats had decreased glutamate release and increased acetylcholine release compared to WT rats. All lines except DJ-1 KO rats showed age-dependent changes in release of one or more neurotransmitters. Our data suggest these rats may be useful for studies of PD-related synaptic dysfunction and neurotransmitter dynamics as well as studies of the normal and pathogenic functions of these genes with PD-linked mutations.
Collapse
Affiliation(s)
- Rose B Creed
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, Alabama 35294; Department of Neurology, The University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Liliana Menalled
- The Michael J. Fox Foundation for Parkinson's Research, 111 West 33(rd) Street, 10(th) Floor, New York, NY 10001
| | - Bradford Casey
- The Michael J. Fox Foundation for Parkinson's Research, 111 West 33(rd) Street, 10(th) Floor, New York, NY 10001
| | - Kuldip D Dave
- The Michael J. Fox Foundation for Parkinson's Research, 111 West 33(rd) Street, 10(th) Floor, New York, NY 10001
| | | | - Isaac Veinbergs
- Brains On-Line, 7000 Shoreline Court, South San Francisco, CA 94080
| | | | | | - Matthew S Goldberg
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, Alabama 35294; Department of Neurology, The University of Alabama at Birmingham, Birmingham, Alabama 35294; Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, Alabama 35294.
| |
Collapse
|