1
|
Qu Z, Zeng J, Zeng L, Li X, Zhang F. Esculetin triggers ferroptosis via inhibition of the Nrf2-xCT/GPx4 axis in hepatocellular carcinoma. Chin J Nat Med 2025; 23:443-456. [PMID: 40274347 DOI: 10.1016/s1875-5364(25)60853-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/27/2024] [Accepted: 05/04/2024] [Indexed: 04/26/2025]
Abstract
Esculetin, a natural dihydroxy coumarin derived from the Chinese herbal medicine Cortex Fraxini, has demonstrated significant pharmacological activities, including anticancer properties. Ferroptosis, an iron-dependent form of regulated cell death, has garnered considerable attention due to its lethal effect on tumor cells. However, the exact role of ferroptosis in esculetin-mediated anti-hepatocellular carcinoma (HCC) effects remains poorly understood. This study investigated the impact of esculetin on HCC cells both in vitro and in vivo. The findings indicate that esculetin effectively inhibited the growth of HCC cells. Importantly, esculetin promoted the accumulation of intracellular Fe2+, leading to an increase in ROS production through the Fenton reaction. This event subsequently induced lipid peroxidation (LPO) and triggered ferroptosis within the HCC cells. The occurrence of ferroptosis was confirmed by the elevation of malondialdehyde (MDA) levels, the depletion of glutathione peroxidase (GSH-Px) activity, and the disruption of mitochondrial morphology. Notably, the inhibitor of ferroptosis, ferrostatin-1 (Fer-1), attenuated the anti-tumor effect of esculetin in HCC cells. Furthermore, the findings revealed that esculetin inhibited the Nrf2-xCT/GPx4 axis signaling in HCC cells. Overexpression of Nrf2 upregulated the expression of downstream SLC7A11 and GPX4, consequently alleviating esculetin-induced ferroptosis. In conclusion, this study suggests that esculetin exerts an anti-HCC effect by inhibiting the activity of the Nrf2-xCT/GPx4 axis, thereby triggering ferroptosis in HCC cells. These findings may contribute to the potential clinical use of esculetin as a candidate for HCC treatment.
Collapse
Affiliation(s)
- Zhixin Qu
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Jing Zeng
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Laifeng Zeng
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Xianmei Li
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Fenghua Zhang
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
2
|
Liu H, Li Y, Karsidag M, Tu T, Wang P. Technical and Biological Biases in Bulk Transcriptomic Data Mining for Cancer Research. J Cancer 2025; 16:34-43. [PMID: 39744578 PMCID: PMC11660120 DOI: 10.7150/jca.100922] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/26/2024] [Indexed: 02/03/2025] Open
Abstract
Cancer research has been significantly advanced by the integration of transcriptomic data through high-throughput sequencing technologies like RNA sequencing (RNA-seq). This paper reviews the transformative impact of transcriptomics on understanding cancer biology, focusing on the use of extensive datasets such as The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx). While transcriptomic data provides crucial insights into gene expression patterns and disease mechanisms, the analysis is fraught with technical and biological biases. Technical biases include issues related to microarray, RNA-seq, and nanopore sequencing methods, while biological biases arise from factors like tumor heterogeneity and sample purity. Additionally, misinterpretations often occur when correlational data is erroneously assumed to imply causality or when bulk data is misattributed to specific cell types. This review emphasizes the need for researchers to understand and mitigate these biases to ensure accurate data interpretation and reliable clinical outcomes. By addressing these challenges, the paper aims to enhance the robustness of cancer research and improve the application of transcriptomic data in developing effective therapies and diagnostic tools.
Collapse
Affiliation(s)
- Hengrui Liu
- Cancer Research Institute, Jinan University, Guangzhou, China
- Yinuo Biomedical., Tianjin, China
| | - Yiying Li
- Qingdao Public Health Clinical Center, Qingdao, China
| | | | - Tiffany Tu
- Hinsdale Central High School, Hinsdale, IL, USA
| | - Panpan Wang
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Huang Y, Jiang W, Zhou R. DAMP sensing and sterile inflammation: intracellular, intercellular and inter-organ pathways. Nat Rev Immunol 2024; 24:703-719. [PMID: 38684933 DOI: 10.1038/s41577-024-01027-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2024] [Indexed: 05/02/2024]
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous molecules that are released from host cells as a result of cell death or damage. The release of DAMPs in tissues is associated with loss of tissue homeostasis. Sensing of DAMPs by innate immune receptors triggers inflammation, which can be beneficial in initiating the processes that restore tissue homeostasis but can also drive inflammatory diseases. In recent years, the sensing of intracellular DAMPs has received extensive attention in the field of sterile inflammation. However, emerging studies have shown that DAMPs that originate from neighbouring cells, and even from distal tissues or organs, also mediate sterile inflammatory responses. This multi-level sensing of DAMPs is crucial for intercellular, trans-tissue and trans-organ communication. Here, we summarize how DAMP-sensing receptors detect DAMPs from intracellular, intercellular or distal tissue and organ sources to mediate sterile inflammation. We also discuss the possibility of targeting DAMPs or their corresponding receptors to treat inflammatory diseases.
Collapse
Affiliation(s)
- Yi Huang
- Key Laboratory of Immune Response and Immunotherapy, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Wei Jiang
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Rongbin Zhou
- Key Laboratory of Immune Response and Immunotherapy, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China.
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
4
|
Zhou X, Ma S, Xu Y, Sun C, Liao J, Song M, Li G, Yuchen L, Chen P, Hu Y, Wang Y, Yu B. Nicotine promotes Staphylococcus aureus-induced osteomyelitis by activating the Nrf2/Slc7a11 signaling axis. Int Immunopharmacol 2024; 135:112223. [PMID: 38772295 DOI: 10.1016/j.intimp.2024.112223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/23/2024]
Abstract
Although smoking is a significant risk factor for osteomyelitis, there is limited experimental evidence that nicotine, a key tobacco constituent, is associated with this condition, leaving its mechanistic implications uncharacterized. This study revealed that nicotine promotes Staphylococcus aureus-induced osteomyelitis by increasing Nrf2 and Slc7a11 expression in vivo and in vitro. Inhibition of Slc7a11 using Erastin augmented bacterial phagocytosis/killing capabilities and fortified antimicrobial responses in an osteomyelitis model. Moreover, untargeted metabolomic analysis demonstrated that Erastin mitigated the effects of nicotine on S. aureus-induced osteomyelitis by altering glutamate/glutathione metabolism. These findings suggest that nicotine aggravates S. aureus-induced osteomyelitis by activating the Nrf2/Slc7a11 signaling pathway and that Slc7a11 inhibition can counteract the detrimental health effects of nicotine.
Collapse
Affiliation(s)
- Xuyou Zhou
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sushuang Ma
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Orthopaedics, The Fifth Affiliated Hospital, Southerm Medical University, Guangzhou, China
| | - Yuan Xu
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chongkai Sun
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Juncheng Liao
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingrui Song
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guanzhi Li
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liu Yuchen
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Chen
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Orthopedics, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Yanjun Hu
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yutian Wang
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Bin Yu
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
De los Santos-Jiménez J, Campos-Sandoval JA, Alonso FJ, Márquez J, Matés JM. GLS and GLS2 Glutaminase Isoenzymes in the Antioxidant System of Cancer Cells. Antioxidants (Basel) 2024; 13:745. [PMID: 38929183 PMCID: PMC11200642 DOI: 10.3390/antiox13060745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
A pathway frequently altered in cancer is glutaminolysis, whereby glutaminase (GA) catalyzes the main step as follows: the deamidation of glutamine to form glutamate and ammonium. There are two types of GA isozymes, named GLS and GLS2, which differ considerably in their expression patterns and can even perform opposing roles in cancer. GLS correlates with tumor growth and proliferation, while GLS2 can function as a context-dependent tumor suppressor. However, both isoenzymes have been described as essential molecules handling oxidant stress because of their involvement in glutathione production. We reviewed the literature to highlight the critical roles of GLS and GLS2 in restraining ROS and regulating both cellular signaling and metabolic stress due to their function as indirect antioxidant enzymes, as well as by modulating both reductive carboxylation and ferroptosis. Blocking GA activity appears to be a potential strategy in the dual activation of ferroptosis and inhibition of cancer cell growth in a ROS-mediated mechanism.
Collapse
Affiliation(s)
- Juan De los Santos-Jiménez
- Canceromics Lab, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain; (J.D.l.S.-J.); (J.A.C.-S.); (F.J.A.); (J.M.)
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Universidad de Málaga, 29590 Málaga, Spain
| | - José A. Campos-Sandoval
- Canceromics Lab, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain; (J.D.l.S.-J.); (J.A.C.-S.); (F.J.A.); (J.M.)
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Universidad de Málaga, 29590 Málaga, Spain
| | - Francisco J. Alonso
- Canceromics Lab, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain; (J.D.l.S.-J.); (J.A.C.-S.); (F.J.A.); (J.M.)
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Universidad de Málaga, 29590 Málaga, Spain
| | - Javier Márquez
- Canceromics Lab, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain; (J.D.l.S.-J.); (J.A.C.-S.); (F.J.A.); (J.M.)
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Universidad de Málaga, 29590 Málaga, Spain
| | - José M. Matés
- Canceromics Lab, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain; (J.D.l.S.-J.); (J.A.C.-S.); (F.J.A.); (J.M.)
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Universidad de Málaga, 29590 Málaga, Spain
| |
Collapse
|
6
|
Tossetta G, Inversetti A. Special Issue "Ovarian Cancer: Advances on Pathophysiology and Therapies". Int J Mol Sci 2024; 25:5282. [PMID: 38791323 PMCID: PMC11121163 DOI: 10.3390/ijms25105282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Ovarian cancer is a gynecologic cancer with a high mortality rate, and its incidence has increased significantly over the past 50 years [...].
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Annalisa Inversetti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| |
Collapse
|
7
|
Pecchillo Cimmino T, Punziano C, Panico I, Petrone Z, Cassese M, Faraonio R, Barresi V, Esposito G, Ammendola R, Cattaneo F. Formyl-Peptide Receptor 2 Signaling Modulates SLC7A11/xCT Expression and Activity in Tumor Cells. Antioxidants (Basel) 2024; 13:552. [PMID: 38790657 PMCID: PMC11118824 DOI: 10.3390/antiox13050552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Cancer cells exhibit high levels of oxidative stress and consequently require a high amount of cysteine for glutathione synthesis. Solute Carrier Family 7 Member 11 (SLC7A11), or xCT, mediates the cellular uptake of cystine in exchange for intracellular glutamate; imported extracellular cystine is reduced to cysteine in the cytosol through a NADPH-consuming reduction reaction. SLC7A11/xCT expression is under the control of stress-inducing conditions and of several transcription factors, such as NRF2 and ATF4. Formyl-peptide receptor 2 (FPR2) belongs to the FPR family, which transduces chemotactic signals mediating either inflammatory or anti-inflammatory responses according to the nature of its ligands and/or FPR2 binding with other FPR isoforms. The repertoire of FPR2 agonists with anti-inflammatory activities comprises WKYMVm peptide and Annexin A1 (ANXA1), and the downstream effects of the intracellular signaling cascades triggered by FPR2 include NADPH oxidase (NOX)-dependent generation of reactive oxygen species. Herein, we demonstrate that stimulation of CaLu-6 cells with either WKYMVm or ANXA1: (i) induces the redox-regulated activation of SLC7A11/xCT; (ii) promotes the synthesis of glutathione; (iii) prevents lipid peroxidation; and (iv) favors NRF2 nuclear translocation and activation. In conclusion, our overall results demonstrate that FPR2 agonists and NOX modulate SLC7A11/xCT expression and activity, thereby identifying a novel regulative pathway of the cystine/glutamate antiport that represents a new potential therapeutical target for the treatment of human cancers.
Collapse
Affiliation(s)
- Tiziana Pecchillo Cimmino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (C.P.); (I.P.); (Z.P.); (M.C.); (R.F.); (G.E.); (R.A.)
| | - Carolina Punziano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (C.P.); (I.P.); (Z.P.); (M.C.); (R.F.); (G.E.); (R.A.)
| | - Iolanda Panico
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (C.P.); (I.P.); (Z.P.); (M.C.); (R.F.); (G.E.); (R.A.)
| | - Zeudi Petrone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (C.P.); (I.P.); (Z.P.); (M.C.); (R.F.); (G.E.); (R.A.)
| | - Myrhiam Cassese
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (C.P.); (I.P.); (Z.P.); (M.C.); (R.F.); (G.E.); (R.A.)
| | - Raffaella Faraonio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (C.P.); (I.P.); (Z.P.); (M.C.); (R.F.); (G.E.); (R.A.)
| | - Vincenza Barresi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Gabriella Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (C.P.); (I.P.); (Z.P.); (M.C.); (R.F.); (G.E.); (R.A.)
| | - Rosario Ammendola
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (C.P.); (I.P.); (Z.P.); (M.C.); (R.F.); (G.E.); (R.A.)
| | - Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (C.P.); (I.P.); (Z.P.); (M.C.); (R.F.); (G.E.); (R.A.)
| |
Collapse
|
8
|
Liu Y, Meng J, Ruan X, Wei F, Zhang F, Qin X. A disulfidptosis-related lncRNAs signature in hepatocellular carcinoma: prognostic prediction, tumor immune microenvironment and drug susceptibility. Sci Rep 2024; 14:746. [PMID: 38185671 PMCID: PMC10772085 DOI: 10.1038/s41598-024-51459-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/05/2024] [Indexed: 01/09/2024] Open
Abstract
Disulfidptosis, a novel type of programmed cell death, has attracted researchers' attention worldwide. However, the role of disulfidptosis-related lncRNAs (DRLs) in liver hepatocellular carcinoma (LIHC) not yet been studied. We aimed to establish and validate a prognostic signature of DRLs and analyze tumor microenvironment (TME) and drug susceptibility in LIHC patients. RNA sequencing data, mutation data, and clinical data were obtained from the Cancer Genome Atlas Database (TCGA). Lasso algorithm and cox regression analysis were performed to identify a prognostic DRLs signature. Kaplan-Meier curves, principal component analysis (PCA), nomogram and calibration curve, function enrichment, TME, immune dysfunction and exclusion (TIDE), tumor mutation burden (TMB), and drug sensitivity analyses were analyzed. External datasets were used to validate the predictive value of DRLs. qRT-PCR was also used to validate the differential expression of the target lncRNAs in tissue samples and cell lines. We established a prognostic signature for the DRLs (MKLN1-AS and TMCC1-AS1) in LIHC. The signature could divide the LIHC patients into low- and high-risk groups, with the high-risk subgroup associated with a worse prognosis. We observed discrepancies in tumor-infiltrating immune cells, immune function, function enrichment, and TIDE between two risk groups. LIHC patients in the high-risk group were more sensitive to several chemotherapeutic drugs. External datasets, clinical tissue, and cell lines confirmed the expression of MKLN1-AS and TMCC1-AS1 were upregulated in LIHC and associated with a worse prognosis. The novel signature based on the two DRLs provide new insight into LIHC prognostic prediction, TME, and potential therapeutic strategies.
Collapse
Affiliation(s)
- Yanqiong Liu
- Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiyu Meng
- Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xuelian Ruan
- Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Fangyi Wei
- Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Fuyong Zhang
- Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xue Qin
- Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|