1
|
Mostafa RE, Ali DE, El-Shiekh RA, El-Alfy AN, Hafeez MSAE, Reda AM, Fayek NM. Therapeutic applications of natural products in the management of venous diseases: a comprehensive review. Inflammopharmacology 2025; 33:1673-1712. [PMID: 40074995 PMCID: PMC11992006 DOI: 10.1007/s10787-025-01688-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/10/2025] [Indexed: 03/14/2025]
Abstract
The occurrence of venous diseases among adults is approximately 77% in females and 57% in males. These conditions are prevalent, progressive disorders that significantly affect individuals socially, physically, and psychologically, often resulting in various venous abnormalities that hinder effective blood circulation in the lower limbs. This review provides a comprehensive overview of venous diseases, focusing on their pathophysiology, symptoms, causes, risk factors, diagnosis, and complications. The symptoms associated with venous diseases are diverse and can include pain, heaviness, swelling, ulcers, and skin changes. Risk factors such as age, obesity, hormonal influences, and genetic predispositions are discussed in relation to their contribution to disease progression. The therapeutic modalities for managing venous diseases are explored, with a particular emphasis on natural products in alleviating symptoms and improving vascular health. Natural compounds, i.e., flavonoids, play a vital role in the circulatory system, supporting blood vessels and promoting healthy blood flow, in addition to their vasoprotective, antioxidant, anti-inflammatory, and anti-platelet properties. Overall, the ongoing research efforts on the efficacy of natural products will significantly enhance the management of several venous diseases in the coming years.
Collapse
Affiliation(s)
- Rasha E Mostafa
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Bohouth St., Dokki, P.O. 12622, Cairo, Egypt
| | - Dalia E Ali
- Pharmacognosy and Natural Products Department, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, 21648, Egypt
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Ahmed N El-Alfy
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, 11829, Egypt
| | - Mohamed S Abd El Hafeez
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, 11829, Egypt
- Department of Pharmacy, Kut University College, Al Kut, Wasit, 52001, Iraq
| | - Ahmed M Reda
- Department of Pharmacy, Kut University College, Al Kut, Wasit, 52001, Iraq
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, Egypt
| | - Nesrin M Fayek
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
2
|
Yang X, Dai L, Yan F, Ma Y, Guo X, Jenis J, Wang Y, Zhang J, Miao X, Shang X. The phytochemistry and pharmacology of three Rheum species: A comprehensive review with future perspectives. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 131:155772. [PMID: 38852474 DOI: 10.1016/j.phymed.2024.155772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Rheum palmatum, R. tanguticum, and R. officinale, integral species of the genus Rheum, are widely used across global temperate and subtropical regions. These species are incorporated in functional foods, medicines, and cosmetics, recognized for their substantial bioactive components. PURPOSE This review aims to synthesize developments from 2014 to 2023 concerning the botanical characteristics, ethnopharmacology, nutritional values, chemical compositions, pharmacological activities, mechanisms of action, and toxicity of these species. METHODS Data on the three Rheum species were gathered from a comprehensive review of peer-reviewed articles, patents, and clinical trials accessed through PubMed, Google Scholar, Web of Science, and CNKI. RESULTS The aerial parts are nutritionally rich, providing essential amino acids, fatty acids, and minerals, suitable for use as health foods or supplements. Studies have identified 143 chemical compounds, including anthraquinones, anthrones, flavonoids, and chromones, which contribute to their broad pharmacological properties such as laxative, anti-diarrheal, neuroprotective, hepatoprotective, cardiovascular, antidiabetic, antitumor, anti-inflammatory, antiviral, and antibacterial effects. Notably, the materials science approach has enhanced understanding of their medicinal capabilities through the evaluation of bioactive compounds in different therapeutic contexts. CONCLUSION As medicinal and economically significant herb species, Rheum species provide both edible aerial parts and medicinal underground components that offer substantial health benefits. These characteristics present new opportunities for developing nutritional ingredients and therapeutic products, bolstering the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Xiaorong Yang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Lixia Dai
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; College of Veterinary Medicine, Gansu Agricultural Univerisity, Lanzhou 730070, PR China
| | - Fengyuan Yan
- The First People`s Hospital of Lanzhou City, Lanzhou 730050, PR China
| | - Yudong Ma
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Xiao Guo
- College of Tibetan Medicine, Qinghai University, Xining 810016, PR China
| | - Janar Jenis
- The Research Center for Medicinal Plants, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Yu Wang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Jiyu Zhang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; College of Veterinary Medicine, Gansu Agricultural Univerisity, Lanzhou 730070, PR China.
| | - Xiaolou Miao
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China.
| | - Xiaofei Shang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; College of Veterinary Medicine, Gansu Agricultural Univerisity, Lanzhou 730070, PR China.
| |
Collapse
|
3
|
YU Z, YU L, CHEN Y, LI M, CAI W. Effectiveness and safety of Qidong Huoxue decoction in treatment of acute lung injury and acute respiratory distress syndrome: a randomized, controlled trial. J TRADIT CHIN MED 2024; 44:381-387. [PMID: 38504544 PMCID: PMC10927401 DOI: 10.19852/j.cnki.jtcm.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/19/2023] [Indexed: 03/21/2024]
Abstract
OBJECTIVE To evaluate the efficacy of Qidong Huoxue decoction (,QDHX) in treating acute lung injury and acute respiratory distress syndrome (ALI/ARDS) when used as an adjunctive treatment. METHODS ALI/ARDS patients admitted to our medical intensive care unit were randomly allocated to the control group or the QDHX group and received standard therapy. The QDHX group received QDHX (50 mL per day for 14 d) orally or via a gastric tube. The primary outcome was measured according to Traditional Chinese Medicine (TCM) syndrome scores, with partial pressure of oxygen/fraction of inspired oxygen (PaO2/FiO2) levels as the secondary outcome. RESULTS A total of 73 patients completed the study (36 in the TCM and 37 in the conventional group), and their records were analyzed. After 14-d treatment, the TCM group showed a significant decrease in TCM syndrome scores (P < 0.05) and increased PaO2/FiO2 levels (P < 0.05). The therapeutic effect of integrated Chinese and western medicine was more significant than that of Western Medicine alone. No serious side effects were observed. CONCLUSIONS Our study results show that QDHX in combination with conventional drug therapy can significantly reduce some clinical symptoms in patients with ALI/ARDS.
Collapse
Affiliation(s)
- Zhengqiu YU
- 1 School of Medicine, Xiamen University, Xiamen 361005, China
| | - Liuda YU
- 2 the Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ye CHEN
- 3 Department of Respiratory Medical, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China
| | - Mingjing LI
- 3 Department of Respiratory Medical, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China
| | - Wanru CAI
- 4 Department of Respiratory Medical, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China
| |
Collapse
|
4
|
Nguyen LTH, Ahn SH, Shin HM, Yang IJ. Anti-Psoriatic Effect of Rheum palmatum L. and Its Underlying Molecular Mechanisms. Int J Mol Sci 2022; 23:16000. [PMID: 36555642 PMCID: PMC9781959 DOI: 10.3390/ijms232416000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Psoriasis is a chronic, immune-mediated inflammatory skin disorder. Rheum palmatum L. is a common traditional medicinal herb with anti-inflammatory and immunomodulatory activities. This study aimed to investigate the anti-psoriatic effects of the ethanolic extract from R. palmatum L. (RPE) and its chemical constituents, as well as the mechanisms underlying their therapeutic significance. An imiquimod (IMQ)-induced psoriasis-like mouse model was used to examine the anti-psoriatic effect of RPE in vivo. Network pharmacological analysis was performed to investigate the potential targets and related pathways of the RPE components, including rhein, emodin, chrysophanol, aloe-emodin, and physcion. The anti-inflammatory effects and underlying mechanisms of these components were examined using in vitro models. Topical application of RPE alleviated psoriasis-like symptoms and reduced levels of inflammatory cytokines and proliferation markers in the skin. Network pharmacological analysis revealed that RPE components target 20 genes that are linked to psoriasis-related pathways, such as IL-17, MAPK, and TNF signaling pathways. Among the five components of RPE, rhein and emodin showed inhibitory effects on TNF-α and IL-17 production in EL-4 cells, attenuated the production of CXCL8, CXCL10, CCL20, and MMP9, and reduced proliferation in HaCaT cells. Chrysophanol, aloe-emodin, and physcion were less effective than rhein and emodin in suppressing inflammatory responses and keratinocyte proliferation. The effects of these compounds might occur through the inhibition of the ERK, STAT3, and NF-κB signaling pathways. This study suggested the anti-psoriatic effect of RPE, with rhein and emodin as the main contributors that regulate multiple signaling pathways.
Collapse
Affiliation(s)
- Ly Thi Huong Nguyen
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Sang-Hyun Ahn
- Department of Anatomy, College of Korean Medicine, Semyung University, Jecheon-si 27136, Republic of Korea
| | - Heung-Mook Shin
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - In-Jun Yang
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| |
Collapse
|
5
|
Xie P, Yan LJ, Zhou HL, Cao HH, Zheng YR, Lu ZB, Yang HY, Ma JM, Chen YY, Huo C, Tian C, Liu JS, Yu LZ. Emodin Protects Against Lipopolysaccharide-Induced Acute Lung Injury via the JNK/Nur77/c-Jun Signaling Pathway. Front Pharmacol 2022; 13:717271. [PMID: 35370650 PMCID: PMC8968870 DOI: 10.3389/fphar.2022.717271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 02/07/2022] [Indexed: 12/11/2022] Open
Abstract
Background: Acute lung injury (ALI) is a serious inflammatory disease with clinical manifestations of hypoxemia and respiratory failure. Presently, there is no effective treatment of ALI. Although emodin from Rheum palmatum L. exerts anti-ALI properties, the underlying mechanisms have not been fully explored. Purpose: This study aimed to investigate the therapeutic effect and mechanism of emodin on LPS-induced ALI in mice. Methods: RAW264.7 cells and zebrafish larvae were stimulated by LPS to establish inflammatory models. The anti-inflammatory effect of emodin was assessed by ELISA, flow cytometric analysis, and survival analysis. In vitro mechanisms were explored by using Western blotting, luciferase assay, electrophoretic mobility shift assay (EMSA), and small interfering RNA (siRNA) approach. The acute lung injury model in mice was established by the intratracheal administration of LPS, and the underlying mechanisms were assessed by detecting changes in histopathological and inflammatory markers and Western blotting in lung tissues. Results: Emodin inhibited the inflammatory factor production and oxidative stress in RAW264.7 cells, and prolonged the survival of zebrafish larvae after LPS stimulation. Emodin suppressed the expression levels of phosphorylated JNK at Thr183/tyr182 and phosphorylated Nur77 at Ser351 and c-Jun, and increased the expression level of Nur77 in LPS-stimulated RAW264.7 cells, while these regulatory effects of emodin on Nur77/c-Jun were counteracted by JNK activators. The overexpression of JNK dampened the emodin-mediated increase in Nur77 luciferase activity and Nur77 expression. Moreover, the inhibitory effect of emodin on c-Jun can be attenuated by Nur77 siRNA. Furthermore, emodin alleviated LPS-induced ALI in mice through the regulation of the JNK/Nur77/c-Jun pathway. Conclusions: Emodin protects against LPS-induced ALI through regulation on JNK/Nur77/c-Jun signaling. Our results indicate the potential of emodin in the treatment of ALI.
Collapse
Affiliation(s)
- Pei Xie
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, China
| | - Li-Jun Yan
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, China
| | - Hong-Ling Zhou
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, China
| | - Hui-Hui Cao
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, China
| | - Yuan-Ru Zheng
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, China
| | - Zi-Bin Lu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, China
| | - Hua-Yi Yang
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, China
| | - Jia-Mei Ma
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, China
| | - Yu-Yao Chen
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, China
| | - Chuying Huo
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, China
| | - Chunyang Tian
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, China
| | - Jun-Shan Liu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, China
| | - Lin-Zhong Yu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, China
| |
Collapse
|
6
|
Lee IH, Lee HS, Kang K, Park SI, Kwon TW, Moon SJ, Lee CH, Lee DY. Influence of Decoction Duration of FDY2004 on Its Physicochemical Components and Antioxidant and Antiproliferative Activities. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20968437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
FDY2004 (Medicinal herbs: Rheum palmatum, Paeonia suffruticosa Andrews, and Prunus davidiana), an herbal drug composition with an antiproliferative effect, is prepared by boiling, which is the most common herbal extraction method in traditional Korean medicine. Several parameters are considered in the process, including herb-to-solvent ratio, extraction temperature and pressure, and total decoction time. The aim of this study was to examine the physicochemical changes, index compound analysis results, antioxidant activity, and antiproliferative activity of FDY2004 according to the decoction duration to establish the conditions that ensure efficacy while minimizing side effects. Different samples of FDY2004 were obtained by decocting for 30, 60, 90, 120, 180, and 240 minutes. Each sample was evaluated for hydrogen ion concentration (pH), total soluble solid content (TSSC), index compound profiles, and antioxidative and antiproliferative activity. pH was found to decrease, while TSSC increased with an increase in decoction duration. Index compound contents for FDY2004 (aloe emodin, emodin, rhein, chrysophanol, physcion, and sennoside A for R. palmatum, paeonol for P. suffruticosa Andrews, and amygdalin for P. davidiana) increased when the decoction duration was 120 minutes or more, while the content of sennoside A did not increase. The total d-glucose amount increased with an increase in boiling duration. Antioxidant activity of FDY2004 increased when the decoction duration was 120 minutes or more, and the antiproliferative activity of FDY2004 was concentration dependent. The decoction duration for FDY2004 needs to be carefully determined so as to maintain efficacy while reducing side effects related to digestive absorption.
Collapse
Affiliation(s)
- In-Hee Lee
- The Fore, Ogeum-ro, Songpa-gu, Seoul, Republic of Korea
| | - Ho-Sung Lee
- The Fore, Ogeum-ro, Songpa-gu, Seoul, Republic of Korea
- Forest Hospital, Ogeum-ro, Songpa-gu, Seoul, Republic of Korea
| | - Kyungrae Kang
- Forest Hospital, Ogeum-ro, Songpa-gu, Seoul, Republic of Korea
| | - Sang-In Park
- Forestheal Hospital, Ogeum-ro, Songpa-gu, Seoul, Republic of Korea
| | - Tae-wook Kwon
- Forest Hospital, Ogeum-ro, Songpa-gu, Seoul, Republic of Korea
| | - Seung-Joon Moon
- Forest Hospital, Ogeum-ro, Songpa-gu, Seoul, Republic of Korea
| | - Chol Hee Lee
- Forest Hospital, Ogeum-ro, Songpa-gu, Seoul, Republic of Korea
| | - Dae Yeon Lee
- The Fore, Ogeum-ro, Songpa-gu, Seoul, Republic of Korea
- Forest Hospital, Ogeum-ro, Songpa-gu, Seoul, Republic of Korea
| |
Collapse
|
7
|
Treatment Efficacy of Chuang Ling Ye, a Traditional Chinese Herbal Medicine Compound, on Idiopathic Granulomatous Mastitis: A Randomized Controlled Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6964801. [PMID: 32714413 PMCID: PMC7341429 DOI: 10.1155/2020/6964801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/26/2020] [Indexed: 12/17/2022]
Abstract
Objective To explore whether Chuang Ling Ye (CLY), a traditional Chinese herbal medicine compound, could improve the treatment of idiopathic granulomatous mastitis (IGM) via decreasing inflammatory response. Methods Herein, 40 patients with IGM who had wounds requiring dressing change were enrolled and randomly divided into two groups: the CLY group and the control group. The size of the neoplasm and pain score of patients were followed-up for 4 weeks. Local tissues were taken during dressing change and examined by commercial enzyme-linked immunosorbent assay (ELISA) kits. The levels of inflammatory markers, including interleukin-1β (IL-1β), IL-2, IL-6, interferon gamma (IFN-γ), and tumor necrosis factor-α (TNF-α) were measured. Results After treatment, the size of the neoplasm in the CLY group was significantly smaller than that in the control group (14.28 cm ± 8.96 cm vs. 21.14 cm ± 0.12 cm, P=0.038), and the pain scores were markedly reduced (P=0.004). Besides, CLY downregulated the expression levels of IL-1β, IFN-γ, and TNF-α. Conclusion External use of CLY could reduce the neoplasm of IGM by inhibiting local inflammation. This trial is registered with ChiCTR1800017744.
Collapse
|
8
|
Systems pharmacology reveals the mechanism of activity of Ge-Gen-Qin-Lian decoction against LPS-induced acute lung injury: A novel strategy for exploring active components and effective mechanism of TCM formulae. Pharmacol Res 2020; 156:104759. [PMID: 32200026 DOI: 10.1016/j.phrs.2020.104759] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/07/2020] [Accepted: 03/16/2020] [Indexed: 12/16/2022]
Abstract
Acute lung injury (ALI), a severe and life-threatening inflammation of the lung, with high morbidity and mortality, underscoring the urgent need for novel treatments. Ge-Gen-Qin-Lian decoction (GQD), a classic Chinese herbal formula, has been widely used to treat intestine-related diseases in the clinic for centuries. In recent years, a growing number of studies have found that GQD has a favorable anti-inflammatory effect. With the further study on the viscera microbiota, the link between the lungs and the gut-the gut-lung axis has been established. Based on the theory of the gut-lung axis, we used systems pharmacology to explore the effects and mechanisms of GQD treatment in ALI. Hypothesizing that GQD inhibits ALI progression, we used the experimental model of lipopolysaccharide (LPS)-induced ALI in Balb/c mice to evaluate the therapeutic potential of GQD. Our results showed that GQD exerted protective effects against LPS-induced ALI by reducing pulmonary edema and microvascular permeability. Meanwhile, GQD can downregulate the expression of LPS-induced TNF-α, IL-1β, and IL-6 in lung tissue, bronchoalveolar lavage fluid (BLAF), and serum. To further understand the molecular mechanism of GQD in the treatment of ALI, we used the network pharmacology to predict the disease targets of the active components of GQD. Lung tissue and serum samples of the mice were separately analyzed by transcriptomics and metabolomics. KEGG pathway analysis of network pharmacology and transcriptomics indicated that PI3K/Akt signaling pathway was significantly enriched, suggesting that it may be the main regulatory pathway for GQD treatment of ALI. By immunohistochemical analysis and apoptosis detection, it was verified that GQD can inhibit ALI apoptosis through PI3K/Akt signaling pathway. Then, we used the PI3K inhibitor LY294002 to block the PI3K/Akt signaling pathway, and reversely verified that the PI3K/Akt signaling pathway is the main pathway of GQD anti-ALI. In addition, differential metabolites in mice serum samples indicate that GQD can inhibit the inflammatory process of ALI by reversing the imbalance of energy metabolism. Our study showed that, GQD did have a better therapeutic effect on ALI, and initially elucidated its molecular mechanism. Thus, GQD could be exploited to develop novel therapeutics for ALI. Moreover, our study also provides a novel strategy to explore active components and effective mechanism of TCM formula combined with TCM theory to treat ALI.
Collapse
|