1
|
Tufail M, Jiang CH, Li N. Wnt signaling in cancer: from biomarkers to targeted therapies and clinical translation. Mol Cancer 2025; 24:107. [PMID: 40170063 PMCID: PMC11963613 DOI: 10.1186/s12943-025-02306-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/15/2025] [Indexed: 04/03/2025] Open
Abstract
The Wnt signaling pathway plays a crucial role in development and tissue homeostasis, regulating key cellular processes such as proliferation, differentiation, and apoptosis. However, its abnormal activation is strongly associated with tumorigenesis, metastasis, and resistance to therapy, making it a vital target for cancer treatment. This review provides a comprehensive insight into the role of Wnt signaling in cancer, examining its normal physiological functions, dysregulation in malignancies, and therapeutic potential. We emphasize the importance of predicting Wnt signaling sensitivity and identify key biomarkers across various cancer types. Additionally, we address the challenges and future prospects of Wnt-targeted therapies, including biomarker discovery, advancements in emerging technologies, and their application in clinical practice.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Can-Hua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China.
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
2
|
Zhi-Xiong C. Single-cell RNA sequencing in ovarian cancer: Current progress and future prospects. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:100-129. [PMID: 39778630 DOI: 10.1016/j.pbiomolbio.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/25/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
Ovarian cancer is one of the most prevalent gynaecological malignancies. The rapid development of single-cell RNA sequencing (scRNA-seq) has allowed scientists to use this technique to study ovarian cancer development, heterogeneity, and tumour environment. Although multiple original research articles have reported the use of scRNA-seq in understanding ovarian cancer and how therapy resistance occurs, there is a lack of a comprehensive review that could summarize the findings from multiple studies. Therefore, this review aimed to fill this gap by comparing and summarizing the results from different studies that have used scRNA-seq in understanding ovarian cancer development, heterogeneity, tumour microenvironment, and treatment resistance. This review will begin with an overview of scRNA-seq workflow, followed by a discussion of various applications of scRNA-seq in studying ovarian cancer. Next, the limitations and future directions of scRNA-seq in ovarian cancer research will be presented.
Collapse
Affiliation(s)
- Chong Zhi-Xiong
- Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500 Selangor, Malaysia; Victor Biotech, 81200 Johor Bahru, Johor, Malaysia.
| |
Collapse
|
3
|
Chen K, Li J, Ouyang Y, Xie Y, Xu G, Xia T, You R, Liu G, He H, Huang R, Chen M. Prognostic significance of Dickkopf-1 in head and neck squamous cell carcinoma. Expert Rev Anticancer Ther 2024; 24:147-154. [PMID: 38044867 DOI: 10.1080/14737140.2023.2289597] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/15/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND Dickkopf-1 (DKK1) exhibits abnormal expression in various cancers and correlates with poor prognosis. This study investigates DKK1's prognostic relevance in head and neck squamous cell carcinoma (HNSC). METHODS We conducted a comprehensive search across literature and sequencing databases to gather eligible studies and HNSC datasets. We calculated pooled standardized mean differences (SMD) and 95% confidence intervals (CI) for clinical characteristics, as well as hazard ratios (HR) with 95% CIs for overall survival (OS) and progression-free/disease-free survival (PFS/DFS). Sensitivity analysis gauged result stability, and Egger's test assessed publication bias. RESULTS Pooled results indicated that HNSC patients with higher T-stage exhibited elevated DKK1 expression levels, and this elevated expression was associated with shorter OS and PFS/DFS. While sensitivity analysis identified some studies significantly affecting pooled results, most were unaffected, and no publication bias was detected. CONCLUSION DKK1 holds promise as a potential biomarker for predicting poor prognosis in HNSC patients, but further research is needed for confirmation.
Collapse
Affiliation(s)
- Kai Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
- Department of Radiotherapy, Cancer Center, The First People's Hospital of Foshan, Foshan, Guangdong, China
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jin Li
- Department of Radiotherapy, Cancer Center, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Yanfeng Ouyang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Yulong Xie
- Department of Radiotherapy, Cancer Center, The People's Hospital of Zhongshan, Zhongshan, Guangdong, China
| | - Guiqiong Xu
- Department of Radiotherapy, Cancer Center, The People's Hospital of Zhongshan, Zhongshan, Guangdong, China
| | - Tianliang Xia
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Rui You
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Guichao Liu
- Department of Radiotherapy, Cancer Center, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Han He
- Department of Radiotherapy, Cancer Center, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Rong Huang
- Department of Radiotherapy, Cancer Center, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Mingyuan Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Gliga AR, Grahn K, Gustavsson P, Ljungman P P, Albin M, Selander J, Broberg K. Short and long-term associations between serum proteins linked to cardiovascular disease and particle exposure among constructions workers. Scand J Work Environ Health 2023; 49:145-154. [PMID: 36409488 PMCID: PMC10577013 DOI: 10.5271/sjweh.4071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES Construction workers are exposed to respirable dust, including respirable crystalline silica (RCS), which is a potential risk factor for cardiovascular disease (CVD). The aim of this study was to evaluate whether exposure to particles among construction workers is associated with short- and long-term alterations in CVD-related serum proteins. METHODS Using proximity extension assay, we measured 92 serum proteins linked to CVD among active male construction workers (N=65, non-smokers) sampled on two occasions: during work and after vacation. First, we used linear models to identify short-term changes in proteins associated with particle exposure (assessed as respirable dust and RCS) during work. Secondly, we used linear mixed models to evaluate whether these associations were long-term, ie, persistent after vacation. RESULTS The median exposure to respirable dust and RCS during work were 0.25 mg/m3 and 0.01 mg/m3, respectively. Respirable dust was associated with short-term changes in six proteins (tissue factor, growth hormone, heme oxygenase-1, dickkopf-related protein-1, platelet-derived growth factor-B, stem cell factor); long-term associations were observed for the former three proteins. RCS was associated with short-term changes in five proteins (carcinoembryonic antigen-related cell adhesion molecule-8, hydroxyacid oxidase-1, tissue factor, carbonic anhydrase-5A, lectin-like oxidized LDL receptor-1); long-term associations were observed for the former four proteins. CONCLUSIONS Moderate exposure to particles in the construction industry is associated with both short- and long-term changes in circulating CVD-related proteins. Further studies are needed to evaluate if these changes are predictors of occupationally induced clinical CVD.
Collapse
Affiliation(s)
- Anda R Gliga
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 171 77 Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
5
|
Xu D, Wang Y, Chen Y, Zheng J. Identification of the molecular subtype and prognostic characteristics of pancreatic cancer based on CD8 + T cell-related genes. Cancer Immunol Immunother 2023; 72:647-664. [PMID: 36036290 DOI: 10.1007/s00262-022-03269-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 07/27/2022] [Indexed: 11/26/2022]
Abstract
CD8 + T lymphocytes are immune cells that play a crucial anti-tumor role in the human body, and prognostic value of CD8 + T cell-related regulatory genes in PAAD remains elusive. Data on 179 expression profiles across 13 immune cell datasets were downloaded from the GEO database, and the expression profiles of CD8 + T cell-related genes were obtained using WGCNA. Molecular subtypes based on CD8 + T cell-related genes were constructed using the ConsensusClusterPlus algorithm. Lasso regression analysis was performed to build a 10-gene signature. GSVA was performed to explore the pathways related to these ten genes. The IMvigor210 cohort was used to explore the predictive efficacy of the signature in terms of immunotherapy response. Four hundred and forty-six CD8 + T cell-related genes were obtained. One hundred and nine genes in TCGA and GEO datasets were closely related to the prognosis of patients and were included in the next study. PAAD samples were divided into two subtypes (IC1 and IC2) according to consensus cluster analysis. These two immune subtypes were significantly different in terms of immune checkpoint genes, immune function, and drug treatment response. Additionally, the 10-gene signature constructed based on CD8 + T cell-related genes showed a stable prognostic performance in TCGA and GEO cohorts. Moreover, it served as an independent prognostic factor for patients with PAAD. Furthermore, the 10-gene signature could effectively predict the response to immunotherapy. The immunophenotyping-derived prognostic model based on CD8 T cell-related genes provides a basis for the clinical treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Dafeng Xu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yu Wang
- Geriatric Medicine Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yonghai Chen
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Jinfang Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
6
|
DNA Methylation as a Diagnostic, Prognostic, and Predictive Biomarker in Head and Neck Cancer. Int J Mol Sci 2023; 24:ijms24032996. [PMID: 36769317 PMCID: PMC9917637 DOI: 10.3390/ijms24032996] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a term collectively used to describe all cancers that develop in the oral and nasal cavities, the paranasal sinuses, the salivary glands, the pharynx, and the larynx. The majority (75%) of all newly diagnosed cases are observed in patients with locally advanced and aggressive disease, associated with significant relapse rates (30%) and poor prognostic outcomes, despite advances in multimodal treatment. Consequently, there is an unmet need for the identification and application of tools that would enable diagnosis at the earliest possible stage, accurately predict prognostic outcomes, contribute to the timely detection of relapses, and aid in the decision for therapy selection. Recent evidence suggests that DNA methylation can alter the expression of genes in a way that it favors tumorigenesis and tumor progression in HNSCC, and therefore represents a potential source for biomarker identification. This study summarizes the current knowledge on how abnormally methylated DNA profiles in HNSCC patients may contribute to the pathogenesis of HNSCC and designate the methylation patterns that have the potential to constitute clinically valuable biomarkers for achieving significant advances in the management of the disease and for improving survival outcomes in these patients.
Collapse
|
7
|
Ye X, Liu J, Quan R, Lu Y, Zhang J. DKK1 affects survival of patients with head and neck squamous cell carcinoma by inducing resistance to radiotherapy and immunotherapy. Radiother Oncol 2023; 181:109485. [PMID: 36690301 DOI: 10.1016/j.radonc.2023.109485] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have been approved to treat various types of tumors, including head and neck squamous cell carcinoma (HNSC). However, most HNSC patients do not respond to ICIs. Radioimmunotherapy has been proposed to enhance the immune response rate in HNSC. Dickkopf-1 (DKK1), a secreted protein, plays important roles in the Wnt signaling pathways. Herein, we aimed to explore the effect of DKK1 on radioimmunotherapy in HNSC. METHODS We collected the gene expression profile and clinical information of HNSC patients from TCGA and GEO databases. The immune cell infiltration and immune score were assessed using R package CIBERSORT and ESTIMATE. The level of related pathways and biological processes were analyzed by GSEA. The signature scores of gene sets of interest were calculated by GSVA. We also performed cell viability and apoptosis assay, and clonogenic assay to investigate the radiation sensitivity of HSC-3 cells and CNE-2 cells after silencing DKK1 by siRNA. RESULTS We found DKK1 was significantly higher expressed in HNSC, and closely correlated with patients' survival time, especially the patients who received radiotherapy. DKK1-knockdown HSC-3 cells or CNE-2 cells showed a decrease in cell viability and colony formation, and an increase in apoptotic rate after radiation. DKK1high tumors showed a more immunosuppressive microenvironment with lower infiltration of T cells and higher infiltration of marrow-derived suppressor cells (MDSCs). CONCLUSION Our data show that DKK1 can affect both radiotherapy and immunotherapy in HNSC, suggesting that DKK1 can be a potential target for radioimmunology in HNSC.
Collapse
Affiliation(s)
- Xinyu Ye
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jingwen Liu
- Department of Radiation Oncology, Shenzhen People's Hospital, The First Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Rencui Quan
- Department of Radiation Oncology, Shenzhen People's Hospital, The First Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yi Lu
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Jian Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
8
|
Pan S, Cesarek M, Godoy C, Co CM, Schindler C, Padilla K, Haskell A, Barreda H, Story C, Poole R, Dabney A, Gregory CA. Morpholino-driven blockade of Dkk-1 in osteosarcoma inhibits bone damage and tumour expansion by multiple mechanisms. Br J Cancer 2022; 127:43-55. [PMID: 35277659 PMCID: PMC9276700 DOI: 10.1038/s41416-022-01764-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 02/02/2022] [Accepted: 02/15/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Background
Osteosarcoma (OS) is the most common primary bone malignancy. Chemotherapy plays an essential role in OS treatment, potentially doubling 5-year event-free survival if tumour necrosis can be stimulated. The canonical Wnt inhibitor Dickkopf-1 (Dkk-1) enhances OS survival in part through upregulation of aldehyde-dehydrogenase-1A1 which neutralises reactive oxygen species originating from nutritional stress and chemotherapeutic challenge.
Methods
A vivo morpholino (DkkMo) was employed to block the expression of Dkk-1 in OS cells. Cell mitosis, gene expression and bone destruction were measured in vitro and in vivo in the presence and absence of doxorubicin (DRB).
Results
DkkMo reduced the expression of Dkk-1 and Aldh1a1, reduced expansion of OS tumours, preserved bone volume and architecture and stimulated tumour necrosis. This was observed in the presence or absence of DRB.
Conclusion
These results indicate that administration of DkkMo with or without chemotherapeutics can substantially improve OS outcome with respect to tumour expansion and osteolytic corruption of bone in experimental OS model.
Collapse
|
9
|
Kasoha M, Takacs Z, Fackiner L, Gerlinger C, Sklavounos P, Radosa J, Solomayer EF, Hamza A. Comparison of Maternal Serum Levels and Placental mRNA Levels of Dickkopf-1 in Preeclamptic and Normal Pregnant Women at Delivery. Geburtshilfe Frauenheilkd 2021; 81:1247-1255. [PMID: 34754274 PMCID: PMC8568501 DOI: 10.1055/a-1557-1234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/22/2021] [Indexed: 11/17/2022] Open
Abstract
Background
Preeclampsia remains a major cause of perinatal and maternal mortality and morbidity worldwide. Wnt/β-catenin signaling is known to be critically involved in placenta development processes. Dickkopf-1 (DKK1) is a key regulator of this transduction pathway. The aim of this study is to compare maternal serum DKK1 levels and placental mRNA levels of
DKK1
and β-catenin in preeclamptic and normal pregnant women at delivery.
Methods
The present study included 30 women with preeclampsia and 30 women with normal pregnancy. Maternal serum DKK1 levels were measured by ELISA. Placental mRNA levels of
DKK1
and β-catenin were detected using RT-PCR.
Results
Decreased maternal serum DKK1 levels were associated with worse maternal and fetal complications including HELLP syndrome, determination of one or more pathological symptom and IUGR diagnosis. No significant difference in maternal serum DKK1 levels was reported between preeclamptic women and women with normal pregnancy. Placental mRNA
DKK1
levels were lower in preeclamptic women compared with normal pregnant women. Placental mRNA β-catenin levels showed no significant difference between two groups.
Conclusions
Our findings reported the aberrant placental mRNA
DKK1
levels in patients with preeclampsia. In addition, worse preeclampsia features were associated with decreased maternal serum DKK1 levels. Hence, aberrant Wnt/β-catenin signaling might present a plausible mechanism in preeclampsia pathogenicity. Dysregulated expression of DKK1 at gene level in the placenta but not at protein level in the maternal serum might confirm the notion that preeclampsia is a type of placenta-derived disease.
Collapse
Affiliation(s)
- Mariz Kasoha
- Department of Gynecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, Homburg/Saar, Germany
| | - Zoltan Takacs
- Department of Gynecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, Homburg/Saar, Germany
| | - Lena Fackiner
- Department of Gynecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, Homburg/Saar, Germany
| | - Christoph Gerlinger
- Department of Gynecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, Homburg/Saar, Germany
| | - Panagiotis Sklavounos
- Department of Gynecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, Homburg/Saar, Germany
| | - Julia Radosa
- Department of Gynecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, Homburg/Saar, Germany
| | - Erich-Franz Solomayer
- Department of Gynecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, Homburg/Saar, Germany
| | - Amr Hamza
- Department of Gynecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, Homburg/Saar, Germany
| |
Collapse
|
10
|
Furuya TK, Murta CB, Murillo Carrasco AG, Uno M, Sichero L, Villa LL, Cardilli L, Coelho RF, Guglielmetti GB, Cordeiro MD, Leite KRM, Nahas WC, Chammas R, Pontes J. Disruption of miRNA-mRNA Networks Defines Novel Molecular Signatures for Penile Carcinogenesis. Cancers (Basel) 2021; 13:cancers13194745. [PMID: 34638231 PMCID: PMC8507530 DOI: 10.3390/cancers13194745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/13/2021] [Accepted: 09/18/2021] [Indexed: 11/16/2022] Open
Abstract
Penile cancer (PeC) carcinogenesis is not fully understood, and no biomarkers are reported in clinical practice. We aimed to investigate molecular signatures based on miRNA and mRNA and perform an integrative analysis to identify molecular drivers and pathways for PeC development. Affymetrix miRNA microarray was used to identify differentially expressed miRNAs (DEmiRs) comparing 11 tumoral tissues (TT) paired with non-neoplastic tissues (NNT) with further validation in an independent cohort (n = 13). We also investigated the mRNA expression of 83 genes in the total sample. Experimentally validated targets of DEmiRs, miRNA-mRNA networks, and enriched pathways were evaluated in silico. Eight out of 69 DEmiRs identified by microarray analysis were validated by qRT-PCR (miR-145-5p, miR-432-5p, miR-487b-3p, miR-30a-5p, miR-200a-5p, miR-224-5p, miR-31-3p and miR-31-5p). Furthermore, 37 differentially expressed genes (DEGs) were identified when comparing TT and NNT. We identified four downregulated DEmiRs (miR-30a-5p, miR-432-5p, miR-487b-3p, and miR-145-5p) and six upregulated DEGs (IL1A, MCM2, MMP1, MMP12, SFN and VEGFA) as potential biomarkers in PeC by their capacity of discriminating TT and NNT with accuracy. The integration analysis showed eight dysregulated miRNA-mRNA pairs in penile carcinogenesis. Taken together, our findings contribute to a better understanding of the regulatory roles of miRNAs and altered transcripts levels in penile carcinogenesis.
Collapse
Affiliation(s)
- Tatiane Katsue Furuya
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Sao Paulo CEP 01246-000, SP, Brazil; (A.G.M.C.); (M.U.); (L.S.); (L.L.V.); (R.C.)
- Correspondence: (T.K.F.); (C.B.M.)
| | - Claudio Bovolenta Murta
- Departamento de Urologia, ICESP, HCFMUSP, Sao Paulo CEP 01246-000, SP, Brazil; (R.F.C.); (G.B.G.); (M.D.C.); (K.R.M.L.); (W.C.N.); (J.P.J.)
- Correspondence: (T.K.F.); (C.B.M.)
| | - Alexis Germán Murillo Carrasco
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Sao Paulo CEP 01246-000, SP, Brazil; (A.G.M.C.); (M.U.); (L.S.); (L.L.V.); (R.C.)
| | - Miyuki Uno
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Sao Paulo CEP 01246-000, SP, Brazil; (A.G.M.C.); (M.U.); (L.S.); (L.L.V.); (R.C.)
| | - Laura Sichero
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Sao Paulo CEP 01246-000, SP, Brazil; (A.G.M.C.); (M.U.); (L.S.); (L.L.V.); (R.C.)
| | - Luisa Lina Villa
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Sao Paulo CEP 01246-000, SP, Brazil; (A.G.M.C.); (M.U.); (L.S.); (L.L.V.); (R.C.)
| | - Leonardo Cardilli
- Departamento de Patologia, ICESP, HCFMUSP, Sao Paulo CEP 01246-000, SP, Brazil;
| | - Rafael Ferreira Coelho
- Departamento de Urologia, ICESP, HCFMUSP, Sao Paulo CEP 01246-000, SP, Brazil; (R.F.C.); (G.B.G.); (M.D.C.); (K.R.M.L.); (W.C.N.); (J.P.J.)
| | - Giuliano Betoni Guglielmetti
- Departamento de Urologia, ICESP, HCFMUSP, Sao Paulo CEP 01246-000, SP, Brazil; (R.F.C.); (G.B.G.); (M.D.C.); (K.R.M.L.); (W.C.N.); (J.P.J.)
| | - Mauricio Dener Cordeiro
- Departamento de Urologia, ICESP, HCFMUSP, Sao Paulo CEP 01246-000, SP, Brazil; (R.F.C.); (G.B.G.); (M.D.C.); (K.R.M.L.); (W.C.N.); (J.P.J.)
| | - Katia Ramos Moreira Leite
- Departamento de Urologia, ICESP, HCFMUSP, Sao Paulo CEP 01246-000, SP, Brazil; (R.F.C.); (G.B.G.); (M.D.C.); (K.R.M.L.); (W.C.N.); (J.P.J.)
| | - William Carlos Nahas
- Departamento de Urologia, ICESP, HCFMUSP, Sao Paulo CEP 01246-000, SP, Brazil; (R.F.C.); (G.B.G.); (M.D.C.); (K.R.M.L.); (W.C.N.); (J.P.J.)
| | - Roger Chammas
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Sao Paulo CEP 01246-000, SP, Brazil; (A.G.M.C.); (M.U.); (L.S.); (L.L.V.); (R.C.)
| | - José Pontes
- Departamento de Urologia, ICESP, HCFMUSP, Sao Paulo CEP 01246-000, SP, Brazil; (R.F.C.); (G.B.G.); (M.D.C.); (K.R.M.L.); (W.C.N.); (J.P.J.)
| |
Collapse
|
11
|
Fu Y, Sun S, Bi J, Kong C, Yin L. A novel immune-related gene pair prognostic signature for predicting overall survival in bladder cancer. BMC Cancer 2021; 21:810. [PMID: 34266411 PMCID: PMC8281685 DOI: 10.1186/s12885-021-08486-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 06/11/2021] [Indexed: 12/15/2022] Open
Abstract
Background Bladder cancer (BC) is the ninth most common malignant tumor. We constructed a risk signature using immune-related gene pairs (IRGPs) to predict the prognosis of BC patients. Methods The mRNA transcriptome, simple nucleotide variation and clinical data of BC patients were downloaded from The Cancer Genome Atlas (TCGA) database (TCGA-BLCA). The mRNA transcriptome and clinical data were also extracted from Gene Expression Omnibus (GEO) datasets (GSE31684). A risk signature was built based on the IRGPs. The ability of the signature to predict prognosis was analyzed with survival curves and Cox regression. The relationships between immunological parameters [immune cell infiltration, immune checkpoints, tumor microenvironment (TME) and tumor mutation burden (TMB)] and the risk score were investigated. Finally, gene set enrichment analysis (GSEA) was used to explore molecular mechanisms underlying the risk score. Results The risk signature utilized 30 selected IRGPs. The prognosis of the high-risk group was significantly worse than that of the low-risk group. We used the GSE31684 dataset to validate the signature. Close relationships were found between the risk score and immunological parameters. Finally, GSEA showed that gene sets related to the extracellular matrix (ECM), stromal cells and epithelial-mesenchymal transition (EMT) were enriched in the high-risk group. In the low-risk group, we found a number of immune-related pathways in the enriched pathways and biofunctions. Conclusions We used a new tool, IRGPs, to build a risk signature to predict the prognosis of BC. By evaluating immune parameters and molecular mechanisms, we gained a better understanding of the mechanisms underlying the risk signature. This signature can also be used as a tool to predict the effect of immunotherapy in patients with BC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08486-0.
Collapse
Affiliation(s)
- Yang Fu
- Department of Urology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Shanshan Sun
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jianbin Bi
- Department of Urology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Chuize Kong
- Department of Urology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China.
| | - Lei Yin
- Department of Urology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
12
|
CYP2J2 Is a Diagnostic and Prognostic Biomarker Associated with Immune Infiltration in Kidney Renal Clear Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3771866. [PMID: 34258261 PMCID: PMC8249128 DOI: 10.1155/2021/3771866] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/20/2021] [Accepted: 06/11/2021] [Indexed: 01/08/2023]
Abstract
Cytochrome P450 family 2 subfamily J member 2 (CYP2J2), a member of the monooxygenase cytochrome P450 (CYP) family and the only member of the human CYP2J subfamily, has many functions, including regulation of oxidative stress, inflammation, apoptosis, and immune responses. However, its role in cancer development has not been clearly elucidated. In this study, expression levels of CYP2J2 in various cancer types were determined using the Oncomine, the Gene Expression Profiling Interactive Analysis (GEIPA), DriverDBv3, UALCAN, and Tumor Immune Estimation Resource (TIMER) databases. The prognostic value of CYP2J2 for KIRC was analyzed using GEPIA, UALCAN, OSkirc, and DriverDBv3 databases. We evaluated the expression levels of CYP2J2 transcript, protein, and promoter methylation at different clinical characteristics in KIRC through the UALCAN database. Simultaneously, CYP2J2 network-related functions were evaluated using the GeneMANIA interactive tool while the biological processes involved in CYP2J2 and its interactive genes were investigated through Metascape and FunRich. Then, we used TIMER to determine the correlation between CYP2J2 expression levels and immune infiltration levels in KIRC. In KIRC, the CYP2J2 gene, RNA, and protein were found to be overexpressed. However, the methylation level of CYP2J2 promoter in KIRC was lower than in normal tissues. Surprisingly, elevated expression levels of CYP2J2 exhibited better prognostic outcomes in KIRC. Evaluation of protein-protein interaction networks and biological processes revealed that CYP2J2 was principally involved in immune responses, apoptosis, and other metabolic processes. Moreover, we found that the expression levels of CYP2J2 were positively correlated with infiltration levels of B cells, CD8 + T cells, neutrophils, and dendritic cells in KIRC. Therefore, we speculated that the overexpression of CYP2J2 prolonged the survival outcome of KIRC patients, which may be related to the change of tumor immune microenvironment. Moreover, all these new understandings of CYP2J2 may provide important value for the early diagnosis and new targeted drug therapy of KIRC.
Collapse
|
13
|
Chu HY, Chen Z, Wang L, Zhang ZK, Tan X, Liu S, Zhang BT, Lu A, Yu Y, Zhang G. Dickkopf-1: A Promising Target for Cancer Immunotherapy. Front Immunol 2021; 12:658097. [PMID: 34093545 PMCID: PMC8174842 DOI: 10.3389/fimmu.2021.658097] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/04/2021] [Indexed: 01/15/2023] Open
Abstract
Clinical studies in a range of cancers have detected elevated levels of the Wnt antagonist Dickkopf-1 (DKK1) in the serum or tumors of patients, and this was frequently associated with a poor prognosis. Our analysis of DKK1 gene profile using data from TCGA also proves the high expression of DKK1 in 14 types of cancers. Numerous preclinical studies have demonstrated the cancer-promoting effects of DKK1 in both in vitro cell models and in vivo animal models. Furthermore, DKK1 showed the ability to modulate immune cell activities as well as the immunosuppressive cancer microenvironment. Expression level of DKK1 is positively correlated with infiltrating levels of myeloid-derived suppressor cells (MDSCs) in 20 types of cancers, while negatively associated with CD8+ T cells in 4 of these 20 cancer types. Emerging experimental evidence indicates that DKK1 has been involved in T cell differentiation and induction of cancer evasion of immune surveillance by accumulating MDSCs. Consequently, DKK1 has become a promising target for cancer immunotherapy, and the mechanisms of DKK1 affecting cancers and immune cells have received great attention. This review introduces the rapidly growing body of literature revealing the cancer-promoting and immune regulatory activities of DKK1. In addition, this review also predicts that by understanding the interaction between different domains of DKK1 through computational modeling and functional studies, the underlying functional mechanism of DKK1 could be further elucidated, thus facilitating the development of anti-DKK1 drugs with more promising efficacy in cancer immunotherapy.
Collapse
Affiliation(s)
- Hang Yin Chu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Zihao Chen
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong, China.,School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Luyao Wang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Zong-Kang Zhang
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong, China.,School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xinhuan Tan
- Department of Microsurgery (II), Wendeng Hospital of Traditional Chinese Orthopedics and Traumatology of Shandong Province, Wendeng, China
| | - Shuangshuang Liu
- Department of Microsurgery (II), Wendeng Hospital of Traditional Chinese Orthopedics and Traumatology of Shandong Province, Wendeng, China
| | - Bao-Ting Zhang
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong, China.,School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong, China
| |
Collapse
|