1
|
Liu Z, Huang S, Luo R, Shi X, Xiu M, Wang Y, Wang R, Zhang W, Lv M, Tang X. EXO1's pan-cancer roles: diagnostic, prognostic, and immunological analyses through bioinformatics. Discov Oncol 2025; 16:310. [PMID: 40074873 PMCID: PMC11903978 DOI: 10.1007/s12672-025-02045-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Cancer remains a leading cause of mortality worldwide, with human exonuclease 1 (EXO1) emerging as a key player in DNA repair and damage response pathways, critical for genomic stability and tumor evolution. The aim of this study was to conduct a comprehensive pan-cancer analysis to elucidate the multifaceted roles of EXO1 in various malignancies. Leveraging public databases including TCGA, GTEx, HPA, cBioPortal, UALCAN, STRING, CancerSEA and TISIDB database, we examined EXO1's expression, diagnostic potential, prognostic significance, mutational characteristics, functional roles, and immunological effects across different cancer types. EXO1 was found to be upregulated in multiple cancers, with significant diagnostic potential as indicated by high AUC values in ROC analyses. Elevated EXO1 expression correlated with adverse prognosis in several cancer types, including breast, lung, and pancreatic cancers. Epigenetic alterations, including DNA methylation and mRNA modifications, were also associated with EXO1 expression. Enrichment analyses identified EXO1-related genes involved in DNA recombination, replication, and repair, with GSEA implicating EXO1 in cell cycle regulation and DNA processing pathways. Importantly, immunogenomic analyses revealed EXO1's significant role in modulating the tumor microenvironment, as it is associated with immune cell infiltration and cytokine expression, suggesting its involvement in tumor immunology and immune response regulation. These results implied that EXO1 as a significant biomarker with prognostic and diagnostic potential across various malignancies, suggesting its potential as a therapeutic target and its involvement in immunomodulatory processes within the tumor microenvironment.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Taiping No.25, Jiangyang, Luzhou, Sichuan, China
| | - Shu Huang
- Department of Gastroenterology, Lianshui County People' Hospital, Huaian, China
- Department of Gastroenterology, Lianshui People' Hospital of Kangda College Affiliated to Nanjing Medical University, Huaian, China
| | - Rui Luo
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Taiping No.25, Jiangyang, Luzhou, Sichuan, China
| | - Xiaomin Shi
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Taiping No.25, Jiangyang, Luzhou, Sichuan, China
| | - Mingzhu Xiu
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Taiping No.25, Jiangyang, Luzhou, Sichuan, China
| | - Yizhou Wang
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Taiping No.25, Jiangyang, Luzhou, Sichuan, China
| | - Ruiyu Wang
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Taiping No.25, Jiangyang, Luzhou, Sichuan, China
| | - Wei Zhang
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Taiping No.25, Jiangyang, Luzhou, Sichuan, China
| | - Muhan Lv
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Taiping No.25, Jiangyang, Luzhou, Sichuan, China.
| | - Xiaowei Tang
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Taiping No.25, Jiangyang, Luzhou, Sichuan, China.
| |
Collapse
|
2
|
Shi R, Ran L, Tian Y, Guo W, Zhao L, Jin S, Cheng J, Zhang Z, Ma Y. Prospects and challenges of neoantigen applications in oncology. Int Immunopharmacol 2024; 143:113329. [PMID: 39405926 DOI: 10.1016/j.intimp.2024.113329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/11/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024]
Abstract
Neoantigen, unique peptides resulting from tumor-specific mutations, represent a promising frontier in oncology for personalized cancer immunotherapy. Their unique features allow for the development of highly specific and effective cancer treatments, which can potentially overcome the limitations of conventional therapies. This paper explores the current prospects and challenges associated with the application of neoantigens in oncology. We examine the latest advances in neoantigen identification, vaccine development, and adoptive T cell therapy. Additionally, we discuss the obstacles related to neoantigen heterogeneity, immunogenicity prediction, and the tumor microenvironment. Through a comprehensive analysis of current research and clinical trials, this paper aims to provide a detailed overview of how neoantigens could revolutionize cancer treatment and the hurdles that must be overcome to realize their full potential.
Collapse
Affiliation(s)
- Ranran Shi
- Department of Basic Medical Sciences, Luohe Medical College, Luohe 462000, China; Henan Province Engineering & Technology Research Center of Foods for Special Medical Purpose, Luohe Medical College, Luohe 462000, China
| | - Ling Ran
- Department of Basic Medical Sciences, Luohe Medical College, Luohe 462000, China; Henan Province Engineering & Technology Research Center of Foods for Special Medical Purpose, Luohe Medical College, Luohe 462000, China
| | - Yuan Tian
- Department of Basic Medical Sciences, Luohe Medical College, Luohe 462000, China; Henan Province Engineering & Technology Research Center of Foods for Special Medical Purpose, Luohe Medical College, Luohe 462000, China
| | - Wei Guo
- Department of Basic Medical Sciences, Luohe Medical College, Luohe 462000, China
| | - Lifang Zhao
- Department of Basic Medical Sciences, Luohe Medical College, Luohe 462000, China; Henan Province Engineering & Technology Research Center of Foods for Special Medical Purpose, Luohe Medical College, Luohe 462000, China
| | - Shaoju Jin
- Department of Basic Medical Sciences, Luohe Medical College, Luohe 462000, China; Henan Province Engineering & Technology Research Center of Foods for Special Medical Purpose, Luohe Medical College, Luohe 462000, China
| | - Jiang Cheng
- Department of Basic Medical Sciences, Luohe Medical College, Luohe 462000, China; Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan 750000, China
| | - Zhe Zhang
- School of Sciences, Henan University of Technology, Zhengzhou 450001, China.
| | - Yongchao Ma
- Department of Basic Medical Sciences, Luohe Medical College, Luohe 462000, China.
| |
Collapse
|
3
|
Zhou K, Zhang M, Zhai D, Wang Z, Liu T, Xie Y, Shi Y, Shi H, Chen Q, Li X, Xu J, Cai Z, Zhang Y, Shao N, Lin Y. Genomic and transcriptomic profiling of inflammatory breast cancer reveals distinct molecular characteristics to non-inflammatory breast cancers. Breast Cancer Res Treat 2024; 208:441-459. [PMID: 39030466 DOI: 10.1007/s10549-024-07437-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
PURPOSE Inflammatory breast cancer (IBC), a rare and highly aggressive form of breast cancer, accounts for 10% of breast cancer-related deaths. Previous omics studies of IBC have focused solely on one of genomics or transcriptomics and did not discover common differences that could distinguish IBC from non-IBC. METHODS Seventeen IBC patients and five non-IBC patients as well as additional thirty-three Asian breast cancer samples from TCGA-BRCA were included for the study. We performed whole-exon sequencing (WES) to investigate different somatic genomic alterations, copy number variants, and large structural variants between IBC and non-IBC. Bulk RNA sequencing (RNA-seq) was performed to examine the differentially expressed genes, pathway enrichment, and gene fusions. WES and RNA-seq data were further investigated in combination to discover genes that were dysregulated in both genomics and transcriptomics. RESULTS Copy number variation analysis identified 10 cytobands that showed higher frequency in IBC. Structural variation analysis showed more frequent deletions in IBC. Pathway enrichment and immune infiltration analysis indicated increased immune activation in IBC samples. Gene fusions including CTSC-RAB38 were found to be more common in IBC. We demonstrated more commonly dysregulated RAS pathway in IBC according to both WES and RNA-seq. Inhibitors targeting RAS signaling and its downstream pathways were predicted to possess promising effects in IBC treatment. CONCLUSION We discovered differences unique in Asian women that could potentially explain IBC etiology and presented RAS signaling pathway as a potential therapeutic target in IBC treatment.
Collapse
Affiliation(s)
- Kaiwen Zhou
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Mengmeng Zhang
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Duanyang Zhai
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zilin Wang
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ting Liu
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yubin Xie
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yawei Shi
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Huijuan Shi
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qianjun Chen
- Department of Breast Oncology, Traditional Chinese Medicine Hospital of Guangdong Province, Guangzhou, Guangdong, China
| | - Xiaoping Li
- Department of Breast Oncology, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Juan Xu
- Department of Breast Oncology, Maternal and Child Health Care Hospital of Guangdong Province, Guangzhou, China
| | - Zhenhai Cai
- Department of Breast Oncology, Jieyang People's Hospital, Jieyang, Guangdong, China
| | - Yunjian Zhang
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Nan Shao
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Ying Lin
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
4
|
Shen WX, Li GH, Li YJ, Zhang PF, Yu JX, Shang D, Wang QS. Prognostic Significance of Tumor Mutation Burden among Patients with Non-small Cell Lung Cancer Who Received Platinum-based Adjuvant Chemotherapy: An Exploratory Study. J Cancer Prev 2023; 28:175-184. [PMID: 38205359 PMCID: PMC10774481 DOI: 10.15430/jcp.2023.28.4.175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 01/12/2024] Open
Abstract
This study aimed to investigate the prognostic significance of tumor mutation burden (TMB) among patients with non-small cell lung cancer (NSCLC) who received platinum-based adjuvant chemotherapy. Tumor tissue specimens after surgical resection were collected for DNA extraction. Somatic mutation detection and TMB analysis were conducted using next-generation sequencing (NGS). Recurrence status of the patients was assessed in the hospital during the adjuvant chemotherapy period, and long-term survival data of patients were obtained by telephone follow-up. Univariate analysis between TMB status and prognosis was carried out by survival analysis. A retrospective review of 78 patients with non-squamous NSCLC who received platinum-based adjuvant chemotherapy showed a median disease-free survival of 3.6 years and median overall survival (OS) of 5.3 years. NGS analysis exhibited that the most common mutated somatic genes among the 78 patients were tumor suppressor protein p53 (TP53), epidermal growth factor receptor, low-density lipoprotein receptor related protein 1B, DNA methyltransferase 3 alpha and FAT atypical cadherin 3, and their prevalence was 56.4%, 48.7%, 37.2%, 30.7%, and 25.6%, respectively. TMB status was divided into TMB-L (≤ 4.5/Mb) and TMB-H (> 4.5/Mb) based on the median TMB threshold. Relevance of TMB to prognosis suggested that the median OS of patients with TMB-L was significantly longer than that of patients with TMB-H (NR vs. 4.6, P = 0.014). Higher TMB status conferred a worse implication on OS among patients with non-squamous NSCLC who received platinum-based adjuvant chemotherapy.
Collapse
Affiliation(s)
- Wei-Xi Shen
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guang-Hua Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu-Jia Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peng-Fei Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jia-Xing Yu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Di Shang
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qiu-Shi Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
Yuan T, Zhang S, He S, Ma Y, Chen J, Gu J. Bacterial lipopolysaccharide related genes signature as potential biomarker for prognosis and immune treatment in gastric cancer. Sci Rep 2023; 13:15916. [PMID: 37741901 PMCID: PMC10517958 DOI: 10.1038/s41598-023-43223-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/21/2023] [Indexed: 09/25/2023] Open
Abstract
The composition of microbial microenvironment is an important factor affecting the development of tumor diseases. However, due to the limitations of current technological levels, we are still unable to fully study and elucidate the depth and breadth of the impact of microorganisms on tumors, especially whether microorganisms have an impact on cancer. Therefore, the purpose of this study is to conduct in-depth research on the role and mechanism of prostate microbiome in gastric cancer (GC) based on the related genes of bacterial lipopolysaccharide (LPS) by using bioinformatics methods. Through comparison in the Toxin Genomics Database (CTD), we can find and screen out the bacterial LPS related genes. In the study, Venn plots and lasso analysis were used to obtain differentially expressed LPS related hub genes (LRHG). Afterwards, in order to establish a prognostic risk score model and column chart in LRHG features, we used univariate and multivariate Cox regression analysis for modeling and composition. In addition, we also conducted in-depth research on the clinical role of immunotherapy with TMB, MSI, KRAS mutants, and TIDE scores. We screened 9 LRHGs in the database. We constructed a prognostic risk score and column chart based on LRHG, indicating that low risk scores have a protective effect on patients. We particularly found that low risk scores are beneficial for immunotherapy through TIDE score evaluation. Based on LPS related hub genes, we established a LRHG signature, which can help predict immunotherapy and prognosis for GC patients. Bacterial lipopolysaccharide related genes can also be biomarkers to predict progression free survival in GC patients.
Collapse
Affiliation(s)
- Tianyi Yuan
- Nantong Integrated Traditional Chinese and Western Medicine Hospital, Nantong, Jiangsu, China
| | - Siming Zhang
- Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Songnian He
- Nantong Integrated Traditional Chinese and Western Medicine Hospital, Nantong, Jiangsu, China
| | - Yijie Ma
- Nantong Integrated Traditional Chinese and Western Medicine Hospital, Nantong, Jiangsu, China
| | - Jianhong Chen
- Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China.
| | - Jue Gu
- Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
6
|
Qin BD, Jiao XD, Wang Z, Liu K, Wu Y, Ling Y, Chen SQ, Zhong X, Duan XP, Qin WX, Xue L, Guo ZH, Zang YS. Pan-cancer efficacy and safety of anlotinib plus PD-1 inhibitor in refractory solid tumor: A single-arm, open-label, phase II trial. Int J Cancer 2023. [PMID: 37155342 DOI: 10.1002/ijc.34546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/24/2023] [Accepted: 04/05/2023] [Indexed: 05/10/2023]
Abstract
The combination of immunotherapy and antiangiogenic agents for the treatment of refractory solid tumor has not been well investigated. Thus, our study aimed to evaluate the efficacy and safety of a new regimen of anlotinib plus PD-1 inhibitor to treat refractory solid tumor. APICAL-RST is an investigator-initiated, open-label, single-arm, phase II trial in patients with heavily treated, refractory, metastatic solid tumor. Eligible patients experienced disease progression during prior therapy without further effective regimen. All patients received anlotinib and PD-1 inhibitor. The primary endpoints were objective response and disease control rates. The secondary endpoints included the ratio of progression-free survival 2 (PFS2)/PFS1, overall survival (OS) and safety. Forty-one patients were recruited in our study; 9 patients achieved a confirmed partial response and 21 patients had stable disease. Objective response rate and disease control rate were 22.0% and 73.2% in the intention-to-treat cohort, and 24.3% and 81.1% in the efficacy-evaluable cohort, respectively. A total of 63.4% (95% confidence interval [CI]: 46.9%-77.4%) of the patients (26/41) presented PFS2/PFS1 >1.3. The median OS was 16.8 months (range: 8.23-24.4), and the 12- and 36-month OS rates were 62.8% and 28.9%, respectively. No significant association was observed between concomitant mutation and efficacy. Thirty-one (75.6%) patients experienced at least one treatment-related adverse event. The most common adverse events were hypothyroidism, hand-foot syndrome and malaise. This phase II trial showed that anlotinib plus PD-1 inhibitor exhibits favorable efficacy and tolerability in patients with refractory solid tumor.
Collapse
Affiliation(s)
- Bao-Dong Qin
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiao-Dong Jiao
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhan Wang
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ke Liu
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ying Wu
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yan Ling
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Shi-Qi Chen
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xue Zhong
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiao-Peng Duan
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wen-Xing Qin
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Lei Xue
- Department of Thoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhen-Hong Guo
- National Key Laboratory of Medical Immunology & Institute of Immunology, Naval Medical University, Shanghai, China
| | - Yuan-Sheng Zang
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
7
|
Zhou B, Ying X, Chen Y, Cai X. A Comprehensive Pan-Cancer Analysis of the Tumorigenic Effect of Leucine-Zipper-Like Transcription Regulator (LZTR1) in Human Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2663748. [PMID: 36304963 PMCID: PMC9593223 DOI: 10.1155/2022/2663748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022]
Abstract
The elucidation of the action site, mechanism of Leucine-Zipper-like Transcription Regulator-1 (LZTR1) and its relationship with RAS-MAPK signaling pathway attracts more and more scholars to focus on the researches of LZTR1 and its role in tumorigenesis. However, there was no pan-cancer analysis between LZTR1 and human tumors reported before. Therefore, we are the first to investigate the potential oncogenic roles of LZTR1 across all tumor types based on the datasets of TCGA (The Cancer Genome Atlas) and GEO (Gene Expression Omnibus). LZTR1 plays a double-edged role in tumor development and prognosis. We found that the high expression of LZTR1 brings better outcomes in esophageal carcinoma (ESCA) and head and neck squamous cell carcinoma (HNSC) but brings worth outcomes in uveal melanoma (UVM), adrenocortical carcinoma (ACC), liver hepatocellular carcinoma (LIHC), and prostate adenocarcinoma (PRAD). Moreover, the expression of LZTR1 also strongly associated with pathological in ACC and bladder urothelial carcinoma (BLCA). We also found that the LZTR1 expression was associated with some immune cell infiltration including endothelial cells, regulatory T cells (Tregs), T cell CD8+, natural killer cells (NK cell), macrophages, neutrophil granulocyte, and cancer-associated fibroblasts in different cancers. Missense mutation in LZTR1 was detected in most cancers from TCGA datasets. Finally, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Body (GO) method was used to explain the pathogenesis of LZTR1. Our pan-cancer study provides a relatively comprehensive understanding of the carcinogenic role of LZTR1 in human tumors.
Collapse
Affiliation(s)
- Bo Zhou
- Department of General Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo 315040, China
| | - Xinyu Ying
- Department of Clinical Laboratory, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo 315040, China
| | - Yingcong Chen
- Department of Clinical Laboratory, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo 315040, China
| | - Xingchen Cai
- Medical School, Ningbo University, Ningbo 315211, China
| |
Collapse
|
8
|
Gupta P, Jindal A, Ahuja G, Jayadeva, Sengupta D. A new deep learning technique reveals the exclusive functional contributions of individual cancer mutations. J Biol Chem 2022; 298:102177. [PMID: 35753349 PMCID: PMC9304782 DOI: 10.1016/j.jbc.2022.102177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022] Open
Abstract
Cancers are caused by genomic alterations that may be inherited, induced by environmental carcinogens, or caused due to random replication errors. Postinduction of carcinogenicity, mutations further propagate and drastically alter the cancer genomes. Although a subset of driver mutations has been identified and characterized to date, most cancer-related somatic mutations are indistinguishable from germline variants or other noncancerous somatic mutations. Thus, such overlap impedes appreciation of many deleterious but previously uncharacterized somatic mutations. The major bottleneck arises due to patient-to-patient variability in mutational profiles, making it difficult to associate specific mutations with a given disease outcome. Here, we describe a newly developed technique Continuous Representation of Codon Switches (CRCS), a deep learning-based method that allows us to generate numerical vector representations of mutations, thereby enabling numerous machine learning-based tasks. We demonstrate three major applications of CRCS; first, we show how CRCS can help detect cancer-related somatic mutations in the absence of matched normal samples, which has applications in cell-free DNA–based assessment of tumor mutation burden. Second, the proposed approach also enables identification and exploration of driver genes; our analyses implicate DMD, RSK4, OFD1, WDR44, and AFF2 as potential cancer drivers. Finally, we used CRCS to score individual mutations in a tumor sample, which was found to be predictive of patient survival in bladder urothelial carcinoma, hepatocellular carcinoma, and lung adenocarcinoma. Taken together, we propose CRCS as a valuable computational tool for analysis of the functional significance of individual cancer mutations.
Collapse
Affiliation(s)
- Prashant Gupta
- Department of Electrical Engineering, Indian Institute of Technology Delhi, Hauz Khas, Delhi 110016, India
| | - Aashi Jindal
- Department of Electrical Engineering, Indian Institute of Technology Delhi, Hauz Khas, Delhi 110016, India
| | - Gaurav Ahuja
- Center for Computational Biology, Indraprastha Institute of Information Technology, Delhi 110020, India
| | - Jayadeva
- Department of Electrical Engineering, Indian Institute of Technology Delhi, Hauz Khas, Delhi 110016, India.
| | - Debarka Sengupta
- Center for Computational Biology, Indraprastha Institute of Information Technology, Delhi 110020, India; Department of Computer Science and Engineering, Indraprastha Institute of Information Technology, Delhi 110020, India; Center for Artificial Intelligence, Indraprastha Institute of Information Technology, Delhi 110020, India.
| |
Collapse
|
9
|
[Expert Consensus on Tumor Mutational Burden for Immunotherapy in Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2021; 24:743-752. [PMID: 34802204 PMCID: PMC8607287 DOI: 10.3779/j.issn.1009-3419.2021.101.40] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Lung cancer is one of the malignant tumors with the highest morbidity and mortality in the world. Immune checkpoint inhibitors (ICIs), including programmed cell death 1 (PD-1) antibody, programmed cell death ligand 1 (PD-L1) antibody, and cytotoxic T lymphocyte associated protein 4 (CTLA-4) antibody. It has brought significant survival benefits to some patients with advanced lung cancer and changed the treatment pattern of advanced lung cancer. Previous studies have shown that the objective response rate of PD-1/PD-L1 antibody in advanced non-small cell lung cancer (NSCLC) is only about 20%. So reliable biomarkers are urgently needed to screen out the potential benefit population of ICIs and improve the clinical response rate. Tumor mutational burden (TMB) is an emerging biomarker of immunotherapy in addition to PD-L1 expression. There is little correlation between PD-L1 expression and TMB in lung cancer. It is estimated that TMB can expand the benefit population of immunotherapy. However, in clinical practice, the detection of TMB, the determination of cut-off value and the clinical guidance strategy are still not standardized. This consensus will give guiding suggestions on the detection and application scenarios of TMB, so as to promote the standardization of TMB application for immunotherapy in lung cancer.
.
Collapse
|
10
|
Sun LY, Cen WJ, Tang WT, Long YK, Yang XH, Ji XM, Yang JJ, Zhang RJ, Wang F, Shao JY, Du ZM. Smoking status combined with tumor mutational burden as a prognosis predictor for combination immune checkpoint inhibitor therapy in non-small cell lung cancer. Cancer Med 2021; 10:6610-6617. [PMID: 34469045 PMCID: PMC8495280 DOI: 10.1002/cam4.4197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/08/2021] [Accepted: 07/16/2021] [Indexed: 12/17/2022] Open
Abstract
Background This study aimed to explore the prognostic value of tumor mutational burden (TMB) combined with smoking status in advanced non‐small cell lung cancer (NSCLC) patients who received immune checkpoint inhibitor therapy (anti PD‐1/PD‐L1 therapy) combined with chemotherapy or anti‐angiogenesis therapy. Methods We conducted a retrospective analysis of NSCLC patients who underwent next‐generation sequencing test (either 295‐gene panel NGS or 1021‐gene panel NGS) from September 2017 to November 2020. The relationship between TMB and smoking status was investigated. Kaplan–Meier survival analysis was used to compare progression‐free survival (PFS) of the NSCLC patients who received combination immunotherapy grouped by TMB value and smoking status. Results We enrolled 323 cases and 388 cases of NSCLC patients in the 295‐gene panel cohort and 1021‐gene panel cohort, respectively. Positive correlation between TMB and smoking status was found in lung adenocarcinoma, but not in lung squamous cell carcinoma. Participants with both high TMB and smoking status who received immune checkpoint therapy combined with chemotherapy or anti‐angiogenesis therapy had longer PFS than other participants (p < 0.05). Conclusions The combination of TMB with smoking status might be a potential predictor for the efficacy of combination immunotherapy in advanced NSCLC.
Collapse
Affiliation(s)
- Li-Yue Sun
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wen-Jian Cen
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wen-Ting Tang
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ya-Kang Long
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xin-Hua Yang
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Meng Ji
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiao-Jiao Yang
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ren-Jing Zhang
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jian-Yong Shao
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zi-Ming Du
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
11
|
Guan R, Lyu Q, Lin A, Liang J, Ding W, Cao M, Luo P, Zhang J. Influence of Different Age Cutoff Points on the Prediction of Prognosis of Cancer Patients Receiving ICIs and Potential Mechanistic Exploration. Front Oncol 2021; 11:670927. [PMID: 34249711 PMCID: PMC8260982 DOI: 10.3389/fonc.2021.670927] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/28/2021] [Indexed: 12/28/2022] Open
Abstract
Age is a potential predictive marker for the prognosis of cancer patients treated with immune checkpoint inhibitors (ICIs), but the appropriate age cutoff point is still controversial. We aimed to explore the influence of different age cutoff points on the prediction of prognosis for patients receiving ICIs and explore the mechanism underlying the appropriate age cutoff point from the aspects of gene mutation and expression, immune cell infiltration and so on. We applied cutoff points of 50, 55, 60, 65, 70, and 75 years old to divide 1660 patients from the Memorial Sloan-Kettering Cancer Center (MSKCC) immunotherapy cohort into older and younger groups and performed survival analysis of the six subgroups. The results showed that older patients had better survival than younger patients in accordance with the cutoff point of 50 years old [median overall survival (OS) (95% CI): 13.0 (10.5-15.5) months vs. 20.0 (16.7-23.3) months; p=0.002; unadjusted hazard ratio (HR) (95% CI): 0.77 (0.65-0.91)], whereas no significant difference was observed with other cutoff points. Further analysis of The Cancer Genome Atlas (TCGA) database and the MSKCC immunotherapy cohort data showed that the tumor mutation burden (TMB), neoantigen load (NAL), DNA damage response and repair (DDR) pathway mutation status, mutation frequencies of most genes (except IDH1, BRAF and ATRX), the expression of most immune-related genes and the degree of infiltration of most immune cells (such as CD8+ T cells and M1 macrophages) were higher in the elderly group (aged ≥50 years).
Collapse
Affiliation(s)
- Rui Guan
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qiong Lyu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Junyi Liang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Weimin Ding
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Manming Cao
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|