1
|
Akanmori NN, Junop MS, Gupta RS, Park J. Conformational flexibility of human ribokinase captured in seven crystal structures. Int J Biol Macromol 2025; 299:140109. [PMID: 39837438 DOI: 10.1016/j.ijbiomac.2025.140109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 01/23/2025]
Abstract
d-ribose is a critical sugar substrate involved in the biosynthesis of nucleotides, amino acids, and cofactors, with its phosphorylation to ribose-5-phosphate by ribokinase (RK) constituting the initial step in its metabolism. RK is conserved across all domains of life, and its activity is significantly enhanced by monovalent metal (M+) ions, particularly K+, although the precise mechanism of this activation remains unclear. In this study, we present several crystal structures of human RK in both unliganded and substrate-bound states, offering detailed insights into its substrate binding process, reaction mechanism, and conformational changes throughout the catalytic cycle. Notably, bound ATP exhibited significant conformational flexibility in its triphosphate moiety, a feature shared with other RK homologues, suggesting that achieving a catalytically productive triphosphate configuration plays a key role in regulating enzyme activity. We also identified a unique conformational change in the M+ ion binding loop of human RK, specifically the flipping of the Gly306-Thr307 peptide plane, likely influenced by the ionic radius of the bound ion. These findings provide new insights into the RK reaction mechanism and its activation by M+ ions, paving the way for future investigations into the allosteric regulation of human RK and related sugar kinase enzymes.
Collapse
Affiliation(s)
- Naomi N Akanmori
- Department of Biochemistry, Memorial University of Newfoundland, 45 Arctic Avenue, St. John's, Newfoundland and Labrador, Canada
| | - Murray S Junop
- Department of Biochemistry, Western University, 1151 Richmond Street, London, Ontario, Canada
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada
| | - Jaeok Park
- Department of Biochemistry, Memorial University of Newfoundland, 45 Arctic Avenue, St. John's, Newfoundland and Labrador, Canada.
| |
Collapse
|
2
|
Liu H, Yan C, Teng Y, Guo J, Liang C, Xia X. Gut microbiota and D-ribose mediate the anti-colitic effect of punicalagin in DSS-treated mice. Food Funct 2024; 15:7108-7123. [PMID: 38874578 DOI: 10.1039/d4fo00741g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Background: Inflammatory bowel disease (IBD) is an increasing health burden worldwide. Punicalagin, a bioactive component rich in pomegranate rind, has been shown to attenuate chemical or bacteria-induced experimental colitis in mice, but whether punicalagin exerts its function through modulating gut microbiota and metabolites remains unexplored. Results: Punicalagin (100 mg per kg per day) administered orally to mice alleviated dextran-sodium sulfate (DSS)-induced colitis. Gut microbiota analyzed by 16S rRNA sequencing showed that punicalagin altered gut microbiota by increasing the Lachnospiraceae_NK4A136_group and Bifidobacterium abundance. To evaluate the effect of punicalagin-modulated microbiota and its metabolites in colitis mice, we transplanted fecal microbiota and sterile fecal filtrate (SFF) to mice treated with oral antibiotics. The results of fecal microbiota transplantation (FMT) demonstrated that punicalagin's anti-colitic effect is transferable by transplanting punicalagin-modulated gut microbiota and its metabolites. Additionally, we discovered that punicalagin-modulated sterile fecal filtrate also exhibits anti-colitis effects, as evidenced by improved intestinal barrier integrity and decreased inflammation. Subsequently, fecal metabolites were analyzed using liquid chromatography-mass spectrometry (LC-MS). The analysis revealed that punicalagin significantly increased the level of D-ribose. In vitro experiments showed that D-ribose has both anti-inflammatory and antioxidant properties. Furthermore, D-ribose significantly mitigated DSS-induced colitis symptoms in mice. Conclusions: Overall, this study demonstrated that gut microbiota and its metabolites partly mediate the protective effect of punicalagin against DSS-induced colitis in mice. D-ribose is a key metabolite that contributes to the anti-colitic effect of punicalagin in mice.
Collapse
Affiliation(s)
- Huanhuan Liu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, 1 Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, China.
| | - Chunhong Yan
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, 1 Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, China.
| | - Yue Teng
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, 1 Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, China.
| | - Jian Guo
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, 1 Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, China.
| | - Chencheng Liang
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, 1 Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, China.
| | - Xiaodong Xia
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, 1 Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, China.
| |
Collapse
|
3
|
Tai Y, Zhang Z, Liu Z, Li X, Yang Z, Wang Z, An L, Ma Q, Su Y. D-ribose metabolic disorder and diabetes mellitus. Mol Biol Rep 2024; 51:220. [PMID: 38281218 PMCID: PMC10822815 DOI: 10.1007/s11033-023-09076-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/21/2023] [Indexed: 01/30/2024]
Abstract
D-ribose, an ubiquitous pentose compound found in all living cells, serves as a vital constituent of numerous essential biomolecules, including RNA, nucleotides, and riboflavin. It plays a crucial role in various fundamental life processes. Within the cellular milieu, exogenously supplied D-ribose can undergo phosphorylation to yield ribose-5-phosphate (R-5-P). This R-5-P compound serves a dual purpose: it not only contributes to adenosine triphosphate (ATP) production through the nonoxidative phase of the pentose phosphate pathway (PPP) but also participates in nucleotide synthesis. Consequently, D-ribose is employed both as a therapeutic agent for enhancing cardiac function in heart failure patients and as a remedy for post-exercise fatigue. Nevertheless, recent clinical studies have suggested a potential link between D-ribose metabolic disturbances and type 2 diabetes mellitus (T2DM) along with its associated complications. Additionally, certain in vitro experiments have indicated that exogenous D-ribose exposure could trigger apoptosis in specific cell lines. This article comprehensively reviews the current advancements in D-ribose's digestion, absorption, transmembrane transport, intracellular metabolic pathways, impact on cellular behaviour, and elevated levels in diabetes mellitus. It also identifies areas requiring further investigation.
Collapse
Affiliation(s)
- Yu Tai
- Institute of Biochemistry and Molecular Biology, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Zehong Zhang
- Institute of Biochemistry and Molecular Biology, Baotou Medical College, Baotou, Inner Mongolia, China
- Department of Clinical Laboratory, the Fourth Hospital of Baotou, Baotou, Inner Mongolia, China
| | - Zhi Liu
- Institute of Biochemistry and Molecular Biology, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Xiaojing Li
- Institute of Biochemistry and Molecular Biology, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Zhongbin Yang
- Institute of Biochemistry and Molecular Biology, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Zeying Wang
- Institute of Biochemistry and Molecular Biology, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Liang An
- Department of Clinical Laboratory, the Fourth Hospital of Baotou, Baotou, Inner Mongolia, China
| | - Qiang Ma
- Institute of Biochemistry and Molecular Biology, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Yan Su
- Institute of Biochemistry and Molecular Biology, Baotou Medical College, Baotou, Inner Mongolia, China.
| |
Collapse
|
4
|
Shen Y, Kim IM, Weintraub NL, Tang Y. Identification of the metabolic state of surviving cardiomyocytes in the human infarcted heart by spatial single-cell transcriptomics. CARDIOLOGY PLUS 2023; 8:18-26. [PMID: 37187809 PMCID: PMC10180026 DOI: 10.1097/cp9.0000000000000038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/07/2023] [Indexed: 05/17/2023] Open
Abstract
The metabolic status of surviving cardiomyocytes (CM) in the myocardial tissues of patients who sustained myocardial infarction (MI) is largely unknown. Spatial single-cell RNA-sequencing (scRNA-seq) is a novel tool that enables the unbiased analysis of RNA signatures within intact tissues. We employed this tool to assess the metabolic profiles of surviving CM in the myocardial tissues of patients post-MI. Methods A spatial scRNA-seq dataset was used to compare the genetic profiles of CM from patients with MI and control patients; we analyzed the metabolic adaptations of surviving CM within the ischemic niche. A standard pipeline in Seurat was used for data analysis, including normalization, feature selection, and identification of highly variable genes using principal component analysis (PCA). Harmony was used to remove batch effects and integrate the CM samples based on annotations. Uniform manifold approximation and projection (UMAP) was used for dimensional reduction. The Seurat "FindMarkers" function was used to identify differentially expressed genes (DEGs), which were analyzed by the Gene Ontology (GO) enrichment pathway. Finally, the scMetabolism R tool pipeline with parameters method = VISION (Vision is a flexible system that utilizes a high-throughput pipeline and an interactive web-based report to annotate and explore scRNA-seq datasets in a dynamic manner) and metabolism.type = Kyoto Encyclopedia of Genes and Genomes (KEGG) was used to quantify the metabolic activity of each CM. Results Analysis of spatial scRNA-seq data showed fewer surviving CM in infarcted hearts than in control hearts. GO analysis revealed repressed pathways in oxidative phosphorylation, cardiac cell development, and activated pathways in response to stimuli and macromolecular metabolic processes. Metabolic analysis showed downregulated energy and amino acid pathways and increased purine, pyrimidine, and one-carbon pool by folate pathways in surviving CM. Conclusions Surviving CM within the infarcted myocardium exhibited metabolic adaptations, as evidenced by the downregulation of most pathways linked to oxidative phosphorylation, glucose, fatty acid, and amino acid metabolism. In contrast, pathways linked to purine and pyrimidine metabolism, fatty acid biosynthesis, and one-carbon metabolism were upregulated in surviving CM. These novel findings have implications for the development of effective strategies to improve the survival of hibernating CM within the infarcted heart.
Collapse
Affiliation(s)
- Yan Shen
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Il-man Kim
- Anatomy, Cell Biology & Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Neal L. Weintraub
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yaoliang Tang
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
5
|
Parra-Lucares A, Romero-Hernández E, Villa E, Weitz-Muñoz S, Vizcarra G, Reyes M, Vergara D, Bustamante S, Llancaqueo M, Toro L. New Opportunities in Heart Failure with Preserved Ejection Fraction: From Bench to Bedside… and Back. Biomedicines 2022; 11:70. [PMID: 36672578 PMCID: PMC9856156 DOI: 10.3390/biomedicines11010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a growing public health problem in nearly 50% of patients with heart failure. Therefore, research on new strategies for its diagnosis and management has become imperative in recent years. Few drugs have successfully improved clinical outcomes in this population. Therefore, numerous attempts are being made to find new pharmacological interventions that target the main mechanisms responsible for this disease. In recent years, pathological mechanisms such as cardiac fibrosis and inflammation, alterations in calcium handling, NO pathway disturbance, and neurohumoral or mechanic impairment have been evaluated as new pharmacological targets showing promising results in preliminary studies. This review aims to analyze the new strategies and mechanical devices, along with their initial results in pre-clinical and different phases of ongoing clinical trials for HFpEF patients. Understanding new mechanisms to generate interventions will allow us to create methods to prevent the adverse outcomes of this silent pandemic.
Collapse
Affiliation(s)
- Alfredo Parra-Lucares
- Critical Care Unit, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380420, Chile
- MD PhD Program, Faculty of Medicine, Universidad de Chile, Santiago 8380420, Chile
| | - Esteban Romero-Hernández
- MD PhD Program, Faculty of Medicine, Universidad de Chile, Santiago 8380420, Chile
- Division of Internal Medicine, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380420, Chile
| | - Eduardo Villa
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago 8380420, Chile
| | - Sebastián Weitz-Muñoz
- Division of Internal Medicine, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380420, Chile
| | - Geovana Vizcarra
- Division of Internal Medicine, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380420, Chile
| | - Martín Reyes
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago 8380420, Chile
| | - Diego Vergara
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago 8380420, Chile
| | - Sergio Bustamante
- Coronary Care Unit, Cardiovascular Department, Hospital Clínico Universidad de Chile, Santiago 8380420, Chile
| | - Marcelo Llancaqueo
- Coronary Care Unit, Cardiovascular Department, Hospital Clínico Universidad de Chile, Santiago 8380420, Chile
| | - Luis Toro
- Division of Nephrology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380420, Chile
- Centro de Investigación Clínica Avanzada, Hospital Clínico, Universidad de Chile, Santiago 8380420, Chile
| |
Collapse
|