1
|
Zhang L, Yang L, Chen X, Huang Q, Ouyang Z, Wang R, Xiang B, Lu H, Ren W, Wang P. Construction and validation of a prognostic model of lncRNAs associated with RNA methylation in lung adenocarcinoma. Transl Cancer Res 2025; 14:761-777. [PMID: 40104741 PMCID: PMC11912078 DOI: 10.21037/tcr-24-1085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 01/09/2025] [Indexed: 03/20/2025]
Abstract
Background Lung adenocarcinoma (LUAD) is a common type of lung cancer and one of the leading causes of cancer death worldwide. Long non-coding RNAs (lncRNAs) play a crucial role in tumors. The purpose of this study was to explore the expression of lncRNAs associated with RNA methylation modification and their prognostic value in LUAD. Methods The RNA sequencing and clinical data were downloaded from The Cancer Genome Atlas dataset, and the messenger RNA and lncRNAs were annotated by Ensemble. The lncRNAs related to RNA methylation regulators (RMlncRNAs) were filtered by Pearson correlation analysis between differentially expressed lncRNAs and RNA methylation regulators. Univariate Cox regression analysis, multivariate Cox regression analysis, and least absolute shrinkage and selection operator regression analysis were used to construct a prognostic model. The receiver operating characteristic curve (ROC) was plotted to validate the predictive value of the prognostic model. Then, tumor mutational burden (TMB) and microsatellite instability were used to compare the immunotherapy response. Finally, to perform a drug sensitivity analysis, the half-maximal inhibitory concentration (IC50) of targeted drugs was calculated using pRRophetic package. Results In total, 18 RMlncRNAs associated with the prognosis of LUAD patients were identified. Then, six feature lncRNAs (NFYC-AS1, OGFRP1, MIR4435-2HG, TDRKH-AS1, DANCR, and TMPO-AS1) were used to construct a prognostic model. The ROC curves for training, testing, and validation sets showed that the prognosis model was effective. The subindex based on the prognostic model had a high correlation with TMB. The high-risk group might be subject to greater immune resistance according to the comparison of Tumor Immune Dysfunction and Exclusion scores. Finally, the IC50 of 11 drugs had differences between high- and low-risk group, and only three of the drug's target genes (ERBB4, CASP8, and CD86) were differentially expressed. Conclusions In conclusion, a prognostic model based on six feature lncRNAs (NFYC-AS1, OGFRP1, MIR4435-2HG, TDRKH-AS1, DANCR, and TMPO-AS1) was constructed by bioinformatics analysis, which might provide a new insight into the evaluation and treatment of LUAD.
Collapse
Affiliation(s)
- Liren Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lei Yang
- Department of Traditional Chinese Medicine Rehabilitation Medicine, The Affiliated Calmette Hospital of Kunming Medical University, The First People's Hospital of Kunming, Kunming, China
| | - Xiaobo Chen
- First Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Qiubo Huang
- First Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Zhiqiang Ouyang
- Department of Radiology, Kunming Yan'an Hospital, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Ran Wang
- Department of Epidemiology and Biostatistics, University of California Irvine, Irvine, USA
| | - Bingquan Xiang
- Department of Intensive Care Unit, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Hong Lu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenjun Ren
- Department of Thoracic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Ping Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
2
|
李 泳, 奚 欣, 张 萌, 吴 勋, 汪 向. [High expression of LINC00467 promotes proliferation and metastasis of lung adenocarcinoma cells by suppressing autophagy via inhibiting the AMPK/mTOR pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1898-1909. [PMID: 39523090 PMCID: PMC11526448 DOI: 10.12122/j.issn.1673-4254.2024.10.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE To investigate the regulatory effects of LINC00467 on proliferation and metastasis of lung adenocarcinoma cells and the involvement of autophagy in its regulatory mechanism. METHODS LINC00467 expression levels in lung adenocarcinoma tissues and their correlation with the patients' survival outcomes were analyzed using data from TCGA database. LINC00467 expression was also examined using qRT-PCR in human bronchial epithelial cells 16HBE and lung adenocarcinoma cell lines A549 and H1299. In A549 and H1299 cells transfected with a short hairpin RNA targeting LINC00467 (shLINC00467), the effects of 3-methyladenine (3-MA, an autophagy inhibitor) and BML-275 (an AMPK inhibitor) treatment on cell proliferation, migration, and expressions of LC3 and the AMPK/mTOR pathway proteins were tested using colony formation assay, wound-healing and Transwell assays, immunofluorescence staining and Western blotting. GSEA enrichment analysis was conducted to analyze the correlation between LINC00467 and the autophagy pathway. RESULTS The expression level of LINC00467 was significantly higher in lung adenocarcinoma tissues than in the adjacent tissues (P < 0.001) and increased progressively with the clinical stage (P < 0.05), and its high expression was associated with a poor overall survival (P= 0.049) and a high first progression rate (P=0.026) of the patients. LINC00467 expression was also significantly higher in A549 and H1299 cells than in 16HBE cells. In A549 and H1299 cells, LINC00467 knockdown significantly decreased colony-forming, migration and invasion abilities of the cells, lowered p-mTOR/mTOR and p62 expressions, and increased p-AMPK/AMPK expressions and LC3Ⅱ/Ⅰ ratio, and these effects were strongly attenuated by application of either 3-MA or BML-275. GSEA analysis suggested an inhibitory effect on LINC00467 on the autophagy pathway (|NES| > 1, P < 0.05, FDR < 0.25). CONCLUSION High expressions of LINC00467 promote proliferation and metastasis of lung adenocarcinoma cells possibly by inhibiting cell autophagy mediated by the AMPK/mTOR signaling pathway.
Collapse
|
3
|
Erratum to lncRNA NFYC-AS1 promotes the development of lung adenocarcinomas through autophagy, apoptosis, and MET/c-Myc oncogenic proteins. ANNALS OF TRANSLATIONAL MEDICINE 2024; 12:105. [PMID: 39507439 PMCID: PMC11534751 DOI: 10.21037/atm-2024-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 11/08/2024]
Abstract
[This corrects the article DOI: 10.21037/atm-21-4995.].
Collapse
|
4
|
Pandini C, Pagani G, Tassinari M, Vitale E, Bezzecchi E, Saadeldin MK, Doldi V, Giannuzzi G, Mantovani R, Chiara M, Ciarrocchi A, Gandellini P. The pancancer overexpressed NFYC Antisense 1 controls cell cycle mitotic progression through in cis and in trans modes of action. Cell Death Dis 2024; 15:206. [PMID: 38467619 PMCID: PMC10928104 DOI: 10.1038/s41419-024-06576-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/13/2024]
Abstract
Antisense RNAs (asRNAs) represent an underappreciated yet crucial layer of gene expression regulation. Generally thought to modulate their sense genes in cis through sequence complementarity or their act of transcription, asRNAs can also regulate different molecular targets in trans, in the nucleus or in the cytoplasm. Here, we performed an in-depth molecular characterization of NFYC Antisense 1 (NFYC-AS1), the asRNA transcribed head-to-head to NFYC subunit of the proliferation-associated NF-Y transcription factor. Our results show that NFYC-AS1 is a prevalently nuclear asRNA peaking early in the cell cycle. Comparative genomics suggests a narrow phylogenetic distribution, with a probable origin in the common ancestor of mammalian lineages. NFYC-AS1 is overexpressed pancancer, preferentially in association with RB1 mutations. Knockdown of NFYC-AS1 by antisense oligonucleotides impairs cell growth in lung squamous cell carcinoma and small cell lung cancer cells, a phenotype recapitulated by CRISPR/Cas9-deletion of its transcription start site. Surprisingly, expression of the sense gene is affected only when endogenous transcription of NFYC-AS1 is manipulated. This suggests that regulation of cell proliferation is at least in part independent of the in cis transcription-mediated effect on NFYC and is possibly exerted by RNA-dependent in trans effects converging on the regulation of G2/M cell cycle phase genes. Accordingly, NFYC-AS1-depleted cells are stuck in mitosis, indicating defects in mitotic progression. Overall, NFYC-AS1 emerged as a cell cycle-regulating asRNA with dual action, holding therapeutic potential in different cancer types, including the very aggressive RB1-mutated tumors.
Collapse
Affiliation(s)
- Cecilia Pandini
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Giulia Pagani
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Martina Tassinari
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Emanuele Vitale
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Via Università 4, 41121, Modena, Italy
| | - Eugenia Bezzecchi
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Mona Kamal Saadeldin
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
- Biology Department, School of Science and Engineering, The American University in Cairo, New Cairo, 11835, Egypt
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Valentina Doldi
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCSS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Giuliana Giannuzzi
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Roberto Mantovani
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Matteo Chiara
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Paolo Gandellini
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
5
|
Jasim SA, Almajidi YQ, Al-Rashidi RR, Hjazi A, Ahmad I, Alawadi AHR, Alwaily ER, Alsaab HO, Haslany A, Hameed M. The interaction between lncRNAs and transcription factors regulating autophagy in human cancers: A comprehensive and therapeutical survey. Cell Biochem Funct 2024; 42:e3971. [PMID: 38509767 DOI: 10.1002/cbf.3971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/22/2024]
Abstract
Autophagy, as a highly conserved cellular process, participates in cellular homeostasis by degradation and recycling of damaged organelles and proteins. Besides, autophagy has been evidenced to play a dual role through cancer initiation and progression. In the early stage, it may have a tumor-suppressive function through inducing apoptosis and removing damaged cells and organelles. However, late stages promote tumor progression by maintaining stemness features and induction of chemoresistance. Therefore, identifying and targeting molecular mechanisms involved in autophagy is a potential therapeutic strategy for human cancers. Multiple transcription factors (TFs) are involved in the regulation of autophagy by modulating the expression of autophagy-related genes (ATGs). In addition, a wide array of long noncoding RNAs (lncRNAs), a group of regulatory ncRNAs, have been evidenced to regulate the function of these autophagy-related TFs through tumorigenesis. Subsequently, the lncRNAs/TFs/ATGs axis shows great potential as a therapeutic target for human cancers. Therefore, this review aimed to summarize new findings about the role of lncRNAs in regulating autophagy-related TFs with therapeutic perspectives.
Collapse
Affiliation(s)
| | - Yasir Qasim Almajidi
- Department of Pharmacy (Pharmaceutics), Baghdad College of Medical Sciences, Baghdad, Iraq
| | | | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Hussien Radie Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Enas R Alwaily
- Microbiology Research Group, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Hashem O Alsaab
- Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - Ali Haslany
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Mohamood Hameed
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
6
|
Sharma A, Wang Y, Ge F, Chen P, Dakal TC, Carro MS, Schmidt-Wolf IGH, Maciaczyk J. Systematic integration of m6A regulators and autophagy-related genes in combination with long non-coding RNAs predicts survival in glioblastoma multiforme. Sci Rep 2023; 13:17232. [PMID: 37821547 PMCID: PMC10567764 DOI: 10.1038/s41598-023-44087-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023] Open
Abstract
Glioblastoma multiforme (GBM) is probably the only tumor in which a unique epigenetic alteration, namely methylation of the MGMT gene, possesses direct clinical relevance. Now with the emergence of aberrant N6 methyladenosine (m6A) modifications (the most common epigenetic modification of mRNA, closely linked to the autophagy process) in cancer, the epi-transcriptomic landscape of GBM pathobiology has been expanded. Considering this, herein, we systematically analyzed m6A regulators, assessed their correlation with autophagy-related genes (ATG), and established a long non-coding RNAs (lncRNA)-dependent prognostic signature (m6A-autophagy-lncRNAs) for GBM. Our analysis identified a novel signature of five long non-coding RNAs (lncRNAs: ITGA6-AS1, AC124248.1, NFYC-AS1, AC025171.1, and AC005229.3) associated with survival of GBM patients, and four among them clearly showed cancer-associated potential. We further validated and confirmed the altered expression of two lncRNAs (AC124248.1, AC005229.3) in GBM associated clinical samples using RT-PCR. Concerning the prognostic ability, the obtained signature determined high-/low-risk groups in GBM patients and showed sensitivity to anticancer drugs. Collectively, the m6A-autophagy-lncRNAs signature presented in the study is clinically relevant and is the first attempt to systematically predict the potential interaction between the three key determinants (m6A, autophagy, lncRNA) in cancer, particularly in GBM.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Stereotacitc and Functional Neurosurgery, University Hospital of Bonn, 53127, Bonn, Germany
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of Bonn, 53127, Bonn, Germany
| | - Yulu Wang
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of Bonn, 53127, Bonn, Germany
| | - Fangfang Ge
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of Bonn, 53127, Bonn, Germany
| | - Peng Chen
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of Bonn, 53127, Bonn, Germany
| | - Tikam Chand Dakal
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, India
| | - Maria Stella Carro
- Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of Bonn, 53127, Bonn, Germany
| | - Jarek Maciaczyk
- Department of Stereotacitc and Functional Neurosurgery, University Hospital of Bonn, 53127, Bonn, Germany.
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand.
| |
Collapse
|
7
|
Li R, Lin Y, Hu F, Liao Y, Tang J, Shen Y, Li H, Guo J, Xie L. LncRNA TEX41 regulates autophagy by increasing Runx2 expression in lung adenocarcinoma bone metastasis. Am J Transl Res 2023; 15:949-966. [PMID: 36915748 PMCID: PMC10006796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/02/2023] [Indexed: 03/16/2023]
Abstract
OBJECTIVE To investigate the mechanism underlying the role of TEX41 in lung adenocarcinoma (LUAD) bone metastasis (BM). METHODS We analyzed the biological functions and molecular mechanisms of TEX41 using bioinformatics. TEX41 and Runx2 expressions were measured in clinical tissue samples and cell lines by quantitative PCR. The effects of TEX41 on LUAD cell proliferation, migration, invasion and metastasis as well as its mechanism of action were investigated. Fluorescence in-situ hybridization (FISH) was performed to determine TEX41 and Runx2 colocalization. Subcutaneous tumor growth and BM were evaluated in nude mice by X-ray and hematoxylin and eosin (HE) staining. RESULTS TEX41 was dramatically increased in LUAD BM tissue, indicating a poorer prognosis in patients with LUAD and BM. TEX41 knockdown suppressed the migration and metastasis of LUAD cells, whereas TEX41 overexpression promoted these processes. Data from X-ray and HE staining showed that TEX41 supported the BM in LUAD. TEX41 overexpression induced autophagy in LUAD cells, as demonstrated by changes in autophagy markers. Results of FISH showed that TEX41 and Runx2 colocalized in the nucleus, and Runx2 expression was regulated by TEX41. The effects of TEX41 on LUAD cell migration, invasion, metastasis and autophagy were counteracted by Runx2 inhibition. Moreover, the role of TEX41 in the metastasis was partially dependent on autophagy, and phosphoinositide 3-kinase (PI3K)-AKT might be the major signaling pathway involved in TEX41-regulated autophagy. CONCLUSION TEX41 promotes autophagy in LUAD cells by upregulating Runx2 to mediate LUAD migration, invasion and BM.
Collapse
Affiliation(s)
- Rong Li
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center Kunming, Yunnan, China
| | - Yanping Lin
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center Kunming, Yunnan, China
| | - Fengdi Hu
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center Kunming, Yunnan, China
| | - Yedan Liao
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center Kunming, Yunnan, China
| | - Jiadai Tang
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center Kunming, Yunnan, China
| | - Yan Shen
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center Kunming, Yunnan, China
| | - Heng Li
- 2nd Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center Kunming, Yunnan, China
| | - Jiangyan Guo
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center Kunming, Yunnan, China
| | - Lin Xie
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center Kunming, Yunnan, China
| |
Collapse
|
8
|
Yao J, Yan X, Xiao X, You X, Li Y, Yang Y, Zhang W, Li Y. Electroacupuncture induces weight loss by regulating tuberous sclerosis complex 1-mammalian target of rapamycin methylation and hypothalamic autophagy in high-fat diet-induced obese rats. Front Pharmacol 2022; 13:1015784. [PMID: 36313328 PMCID: PMC9596966 DOI: 10.3389/fphar.2022.1015784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Obesity can be caused by abnormalities of hypothalamic autophagy, which is closely regulated by the epigenetic modification of TSC1-mTOR. However, whether the weight-reducing effect of EA may relate to the modification of TSC1-mTOR methylation and hypothalamic autophagy remain unclear. This study was conducted to reveal the possible mechanism by which EA reduces BW by measuring the levels of TSC1-mTOR methylation and hypothalamic autophagy-related components.Methods: The weight-reducing effect of EA was investigated in high-fat diet (HFD)-induced obese (DIO) rats by monitoring the BW, food consumption, and epididymal white adipose tissue (eWAT)/BW ratio. Hematoxylin and eosin staining was performed for morphological evaluation of eWAT. Immunofluorescence was utilized to observe the localization of LC3 in the hypothalamus. The expressions of autophagy components (Beclin-1, LC3, and p62) and mTOR signaling (mTOR, p-mTOR, p70S6K, and p-p70S6K) were assessed by western blot. The methylation rate of the TSC1 promoter was detected by bisulfite genomic sequencing.Results: Treatment with EA significantly reduced the BW, food consumption, and eWAT/BW ratio; attenuated the morphological alternations in the adipocytes of DIO rats. While HFD downregulated the expression levels of Beclin-1 and LC3 and upregulated those of p62, these changes were normalized by EA treatment. EA markedly decreased the methylation rate of the TSC1 gene promoter and suppressed the protein expressions of mTOR, p-mTOR, p70S6K, and p-p70S6K in the hypothalamus.Conclusion: EA could reduce BW and fat accumulation in DIO rats. This ameliorative effect of EA may be associated with its demethylation effect on TSC1-mTOR and regulation of autophagy in the hypothalamus.
Collapse
Affiliation(s)
- Junpeng Yao
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiangyun Yan
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianjun Xiao
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xi You
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanqiu Li
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuqing Yang
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Zhang
- Academic Affairs Office, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Li
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Ying Li,
| |
Collapse
|
9
|
Long Noncoding RNAs and Circular RNAs Regulate AKT and Its Effectors to Control Cell Functions of Cancer Cells. Cells 2022; 11:cells11192940. [PMID: 36230902 PMCID: PMC9563963 DOI: 10.3390/cells11192940] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/06/2022] [Accepted: 09/17/2022] [Indexed: 11/29/2022] Open
Abstract
AKT serine-threonine kinase (AKT) and its effectors are essential for maintaining cell proliferation, apoptosis, autophagy, endoplasmic reticulum (ER) stress, mitochondrial morphogenesis (fission/fusion), ferroptosis, necroptosis, DNA damage response (damage and repair), senescence, and migration of cancer cells. Several lncRNAs and circRNAs also regulate the expression of these functions by numerous pathways. However, the impact on cell functions by lncRNAs and circRNAs regulating AKT and its effectors is poorly understood. This review provides comprehensive information about the relationship of lncRNAs and circRNAs with AKT on the cell functions of cancer cells. the roles of several lncRNAs and circRNAs acting on AKT effectors, such as FOXO, mTORC1/2, S6K1/2, 4EBP1, SREBP, and HIF are explored. To further validate the relationship between AKT, AKT effectors, lncRNAs, and circRNAs, more predicted AKT- and AKT effector-targeting lncRNAs and circRNAs were retrieved from the LncTarD and circBase databases. Consistently, using an in-depth literature survey, these AKT- and AKT effector-targeting database lncRNAs and circRNAs were related to cell functions. Therefore, some lncRNAs and circRNAs can regulate several cell functions through modulating AKT and AKT effectors. This review provides insights into a comprehensive network of AKT and AKT effectors connecting to lncRNAs and circRNAs in the regulation of cancer cell functions.
Collapse
|
10
|
Tong F, Xu L, Xu S, Zhang M. Identification of an autophagy-related 12-lncRNA signature and evaluation of NFYC-AS1 as a pro-cancer factor in lung adenocarcinoma. Front Genet 2022; 13:834935. [PMID: 36105077 PMCID: PMC9466988 DOI: 10.3389/fgene.2022.834935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: To develop an autophagy-related lncRNA-based risk signature and corresponding nomogram to predict overall survival (OS) for LUAD patients and investigate the possible meaning of screened factors.Methods: Differentially expressed lncRNAs and autophagy genes were screened between normal and LUAD tumor samples from the TCGA LUAD dataset. Univariate and multivariate Cox regression analyses were performed to construct the lncRNA-based risk signature and nomogram incorporating clinical information. Then, the accuracy and sensitivity were confirmed by the AUC of ROC curves in both training and validation cohorts. qPCR, immunoblot, shRNA, and ectopic expression were used to verify the positive regulation of NFYC-AS1 on BIRC6. CCK-8, immunofluorescence, and flow cytometry were used to confirm the influence of NFYC-AS1 on cell proliferation, autophagy, and apoptosis via BIRC6.Results: A 12-lncRNA risk signature and a nomogram combining related clinical information were constructed. Furthermore, the abnormal increase of NFYC-AS1 may promote LUAD progression through the autophagy-related gene BIRC6.Conclusion: 12-lncRNA signature may function as a predictive marker for LUAD patients, and NFYC-AS1 along with BIRC6 may function as carcinogenic factors in a combinatorial manner.
Collapse
Affiliation(s)
- Fang Tong
- Department of Medical Immunology, School of Medicine, Anhui University of Science and Technology, Anhui, China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Anhui, China
| | - Lifa Xu
- Department of Medical Immunology, School of Medicine, Anhui University of Science and Technology, Anhui, China
| | - Sheng Xu
- The First Affiliated Hospital, Anhui University of Science and Technology, Anhui, China
| | - Mingming Zhang
- Department of Medical Immunology, School of Medicine, Anhui University of Science and Technology, Anhui, China
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- *Correspondence: Mingming Zhang,
| |
Collapse
|