1
|
Alam MS, Anwar MJ, Maity MK, Azam F, Jaremko M, Emwas AH. The Dynamic Role of Curcumin in Mitigating Human Illnesses: Recent Advances in Therapeutic Applications. Pharmaceuticals (Basel) 2024; 17:1674. [PMID: 39770516 PMCID: PMC11679877 DOI: 10.3390/ph17121674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/02/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Herbal medicine, particularly in developing regions, remains highly popular due to its cost-effectiveness, accessibility, and minimal risk of adverse effects. Curcuma longa L., commonly known as turmeric, exemplifies such herbal remedies with its extensive history of culinary and medicinal applications across Asia for thousands of years. Traditionally utilized as a dye, flavoring, and in cultural rituals, turmeric has also been employed to treat a spectrum of medical conditions, including inflammatory, bacterial, and fungal infections, jaundice, tumors, and ulcers. Building on this longstanding use, contemporary biochemical and clinical research has identified curcumin-the primary active compound in turmeric-as possessing significant therapeutic potential. This review hypothesizes that curcumin's antioxidant properties are pivotal in preventing and treating chronic inflammatory diseases, which are often precursors to more severe conditions, such as cancer, and neurological disorders, like Parkinson's and Alzheimer's disease. Additionally, while curcumin demonstrates a favorable safety profile, its anticoagulant effects warrant cautious application. This article synthesizes recent studies to elucidate the molecular mechanisms underlying curcumin's actions and evaluates its therapeutic efficacy in various human illnesses, including cancer, inflammatory bowel disease, osteoarthritis, atherosclerosis, peptic ulcers, COVID-19, psoriasis, vitiligo, and depression. By integrating diverse research findings, this review aims to provide a comprehensive perspective on curcumin's role in modern medicine and its potential as a multifaceted therapeutic agent.
Collapse
Affiliation(s)
- Md Shamshir Alam
- Department of Pharmacy Practice, College of Pharmacy, National University of Science and Technology, P.O. Box 620, Bosher, Muscat 130, Oman
| | - Md Jamir Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Manish Kumar Maity
- Department of Pharmacy Practice, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India
| | - Faizul Azam
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
2
|
Boyanova L, Medeiros J, Yordanov D, Gergova R, Markovska R. Turmeric and curcumin as adjuncts in controlling Helicobacter pylori-associated diseases: a narrative review. Lett Appl Microbiol 2024; 77:ovae049. [PMID: 38794899 DOI: 10.1093/lambio/ovae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 05/26/2024]
Abstract
Non-antibiotic adjuncts may improve Helicobacter pylori infection control. Our aim was to emphasize curcumin benefits in controlling H. pylori infection. We discussed publications in English mostly published since 2020 using keyword search. Curcumin is the main bioactive substance in turmeric. Curcumin inhibited H. pylori growth, urease activity, three cag genes, and biofilms through dose- and strain-dependent activities. Curcumin also displayed numerous anticancer activities such as apoptosis induction, anti-inflammatory and anti-angiogenic effects, caspase-3 upregulation, Bax protein enhancement, p53 gene activation, and chemosensitization. Supplementing triple regimens, the agent increased H. pylori eradication success in three Iranian studies. Bioavailability was improved by liposomal preparations, lipid conjugates, electrospray-encapsulation, and nano-complexation with proteins. The agent was safe at doses of 0.5->4 g daily, the most common (in 16% of the users) adverse effect being gastrointestinal upset. Notably, curcumin favorably influences the intestinal microbiota and inhibits Clostridioides difficile. Previous reports showed the inhibitory effect of curcumin on H pylori growth. Curcumin may become an additive in the therapy of H. pylori infection, an adjunct for gastric cancer control, and an agent beneficial to the intestinal microbiota. Further examination is necessary to determine its optimal dosage, synergy with antibiotics, supplementation to various eradication regimens, and prophylactic potential.
Collapse
Affiliation(s)
- Lyudmila Boyanova
- Department of Medical Microbiology, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - José Medeiros
- Gastroenterology Clinic, Rua do Carmo, 75-1º AA,, 3000 Coimbra, Portugal
| | - Daniel Yordanov
- Department of Medical Microbiology, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Raina Gergova
- Department of Medical Microbiology, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Rumyana Markovska
- Department of Medical Microbiology, Medical University of Sofia, 1431 Sofia, Bulgaria
| |
Collapse
|
3
|
Siripruekpong W, Praparatana R, Issarachot O, Wiwattanapatapee R. Simultaneous Delivery of Curcumin and Resveratrol via In Situ Gelling, Raft-Forming, Gastroretentive Formulations. Pharmaceutics 2024; 16:641. [PMID: 38794303 PMCID: PMC11124977 DOI: 10.3390/pharmaceutics16050641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Curcumin and resveratrol are polyphenolic compounds that have been shown to exhibit synergistic therapeutic properties including anti-inflammatory, anticancer, and antiulcer activities, which may be exploited for the treatment of gastric diseases. However, both compounds have poor aqueous solubility and rapid metabolism, resulting in a low oral bioavailability. In situ gelling, liquid formulations were developed to produce a gastroretentive, raft-forming delivery vehicle to improve bioavailability. Solid dispersions containing a mixture of curcumin and resveratrol with Eudragit® EPO (Cur/Res-SD) were first prepared using solvent evaporation, to improve the solubility and dissolution of the compounds. Solid dispersions of a weight ratio of 1:10 curcumin/resveratrol to Eudragit® EPO were subsequently incorporated into in situ gelling, liquid formulations based on the gelling polymers, sodium alginate (low viscosity and medium viscosity), pectin, and gellan gum, respectively. Calcium carbonate and sodium bicarbonate were included to produce carbon dioxide bubbles in the gel matrix, on exposure to gastric fluid, and to achieve flotation. Moreover, the calcium ions acted as a crosslinking agent for the hydrogels. Optimized formulations floated rapidly (<60 s) in simulated gastric fluid (pH = 1.2) and remained buoyant, resulting in the gradual release of more than 80% of the curcumin and resveratrol content within 8 h. The optimized formulation based on medium-viscosity sodium alginate exhibited enhanced cytotoxic activity toward human gastric adenocarcinoma cell lines (AGS), compared with unformulated curcumin and resveratrol compounds, and increased anti-inflammatory activity against RAW 264.7 macrophage cells compared with the NSAID, indomethacin. These findings demonstrate that in situ gelling, liquid formulations, loaded with a combination of curcumin and resveratrol in the form of solid dispersions, show potential as gastroretentive delivery systems for local and systemic effects.
Collapse
Affiliation(s)
- Worrawee Siripruekpong
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hatyai, Songkhla 90112, Thailand;
- Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hatyai, Songkhla 90112, Thailand
| | - Rachanida Praparatana
- Faculty of Medical Technology, Prince of Songkla University, Hatyai, Songkhla 90112, Thailand;
| | - Ousanee Issarachot
- Department of Pharmacy Technician, Faculty of Public Health and Allied Health Sciences, Sirindhorn College of Public Health Trang, Praboromarajchanok Institute, Kantang, Trang 92110, Thailand;
| | - Ruedeekorn Wiwattanapatapee
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hatyai, Songkhla 90112, Thailand;
- Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hatyai, Songkhla 90112, Thailand
| |
Collapse
|
4
|
Hidalgo A, Bravo D, Soto C, Maturana G, Cordero-Machuca J, Zúñiga-López MC, Oyarzun-Ampuero F, Quest AFG. The Anti-Oxidant Curcumin Solubilized as Oil-in-Water Nanoemulsions or Chitosan Nanocapsules Effectively Reduces Helicobacter pylori Growth, Bacterial Biofilm Formation, Gastric Cell Adhesion and Internalization. Antioxidants (Basel) 2023; 12:1866. [PMID: 37891945 PMCID: PMC10603959 DOI: 10.3390/antiox12101866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
The bacterium Helicobacter pylori (H. pylori) represents a major risk factor associated with the development of gastric cancer. The anti-oxidant curcumin has been ascribed many benefits to human health, including bactericidal effects. However, these effects are poorly reproducible because the molecule is extremely unstable and water insoluble. Here we solubilized curcumin as either nanoemulsions or chitosan nanocapsules and tested the effects on H. pylori. The nanoemulsions were on average 200 nm in diameter with a PdI ≤ 0.16 and a negative zeta potential (-54 mV), while the nanocapsules were 305 nm in diameter with a PdI ≤ 0.29 and a positive zeta potential (+68 mV). Nanocapsules were safer than nanoemulsions when testing effects on the viability of GES-1 gastric cells. Also, nanocapsules were more efficient than nanoemulsions at inhibiting H. pylori growth (minimal inhibitory concentration: 50 and 75 μM, respectively), whereby chitosan contributed to this activity. Importantly, both formulations effectively diminished H. pylori's adherence to and internalization by GES-1 cells, as well as biofilm formation. In summary, the demonstrated activity of the curcumin nanoformulations described here against H. pylori posit them as having great potential to treat or complement other therapies currently in use against H. pylori infection.
Collapse
Affiliation(s)
- Antonio Hidalgo
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (A.H.); (C.S.)
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile; (D.B.); (J.C.-M.)
| | - Denisse Bravo
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile; (D.B.); (J.C.-M.)
- Cellular Interactions Laboratory, Faculty of Dentistry, Universidad Andrés Bello, Santiago 8370133, Chile
| | - Cristopher Soto
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (A.H.); (C.S.)
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile; (D.B.); (J.C.-M.)
- Cellular Interactions Laboratory, Faculty of Dentistry, Universidad Andrés Bello, Santiago 8370133, Chile
| | - Gabriela Maturana
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago 8380494, Chile; (G.M.); (M.C.Z.-L.)
| | - Jimena Cordero-Machuca
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile; (D.B.); (J.C.-M.)
- Departament of Sciences and Pharmaceutical Technology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago 8380494, Chile
| | - María Carolina Zúñiga-López
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago 8380494, Chile; (G.M.); (M.C.Z.-L.)
| | - Felipe Oyarzun-Ampuero
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile; (D.B.); (J.C.-M.)
- Departament of Sciences and Pharmaceutical Technology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago 8380494, Chile
| | - Andrew F. G. Quest
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (A.H.); (C.S.)
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile; (D.B.); (J.C.-M.)
| |
Collapse
|
5
|
Mosallam FM, Bendary MM, Elshimy R, El-Batal AI. Curcumin clarithromycin nano-form a promising agent to fight Helicobacter pylori infections. World J Microbiol Biotechnol 2023; 39:324. [PMID: 37773301 PMCID: PMC10541836 DOI: 10.1007/s11274-023-03745-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/28/2023] [Indexed: 10/01/2023]
Abstract
Helicobacter pylori (H. pylori) is the main cause of gastric diseases. However, the traditional antibiotic treatment of H. pylori is limited due to increased antibiotic resistance, low efficacy, and low drug concentration in the stomach. This study developed a Nano-emulsion system with ability to carry Curcumin and Clarithromycin to protect them against stomach acidity and increase their efficacy against H. pylori. We used oil in water emulsion system to prepare a novel Curcumin Clarithromycin Nano-Emulsion (Cur-CLR-NE). The nano-emulsion was validated by dynamic light scattering (DLS) technique, zeta potential; transmission electron microscopy (mean particle size 48 nm), UV-visible scanning and Fourier transform infrared spectroscopy (FT-IR). The in vitro assay of Cur-CLR-NE against H. pylori was evaluated by minimum inhibitory concentration (12.5 to 6.26 µg/mL), minimum bactericidal concentration (MBC) and anti-biofilm that showed a higher inhibitory effect of Cur-CLR-NE in compere with, free curcumin and clarithromycin against H. pylori. The in vivo results indicated that Cur-CLR-NE showed higher H. pylori clearance effect than free clarithromycin or curcumin under the same administration frequency and the same dose regimen. Histological analysis clearly showed that curcumin is highly effective in repairing damaged tissue. In addition, a potent synergistic effect was obvious between clarithromycin and curcumin in nano-emulsion system. The inflammation, superficial damage, the symptoms of gastritis including erosion in the mouse gastric mucosa, necrosis of the gastric epithelium gastric glands and interstitial oedema of tunica muscularis were observed in the positive control infected mice and absent from treated mice with Cur-CLR-NE.
Collapse
Affiliation(s)
- Farag M Mosallam
- Drug Radiation Research Department, Microbiology Lab, Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Mahmoud M Bendary
- Microbiology and Immunology Department, Faculty of pharmacy, Port-Said University, Port Fuad, Egypt
| | - Rana Elshimy
- Microbiology and immunology, Faculty of pharmacy, AL-Aharm Canadian University (ACU), Giza, Egypt
- Egyptian Drug Authority, EDA, Cairo, Egypt
| | - Ahmed I El-Batal
- Drug Radiation Research Department, Microbiology Lab, Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
6
|
Sah DK, Arjunan A, Lee B, Jung YD. Reactive Oxygen Species and H. pylori Infection: A Comprehensive Review of Their Roles in Gastric Cancer Development. Antioxidants (Basel) 2023; 12:1712. [PMID: 37760015 PMCID: PMC10525271 DOI: 10.3390/antiox12091712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/14/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Gastric cancer (GC) is the fifth most common cancer worldwide and makes up a significant component of the global cancer burden. Helicobacter pylori (H. pylori) is the most influential risk factor for GC, with the International Agency for Research on Cancer classifying it as a Class I carcinogen for GC. H. pylori has been shown to persist in stomach acid for decades, causing damage to the stomach's mucosal lining, altering gastric hormone release patterns, and potentially altering gastric function. Epidemiological studies have shown that eliminating H. pylori reduces metachronous cancer. Evidence shows that various molecular alterations are present in gastric cancer and precancerous lesions associated with an H. pylori infection. However, although H. pylori can cause oxidative stress-induced gastric cancer, with antioxidants potentially being a treatment for GC, the exact mechanism underlying GC etiology is not fully understood. This review provides an overview of recent research exploring the pathophysiology of H. pylori-induced oxidative stress that can cause cancer and the antioxidant supplements that can reduce or even eliminate GC occurrence.
Collapse
Affiliation(s)
| | | | - Bora Lee
- Department of Biochemistry, Chonnam National University Medical School, Seoyang Ro 264, Jeonnam, Hwasun 58128, Republic of Korea; (D.K.S.); (A.A.)
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University Medical School, Seoyang Ro 264, Jeonnam, Hwasun 58128, Republic of Korea; (D.K.S.); (A.A.)
| |
Collapse
|
7
|
Khatri P, Rani A, Hameed S, Chandra S, Chang CM, Pandey RP. Current Understanding of the Molecular Basis of Spices for the Development of Potential Antimicrobial Medicine. Antibiotics (Basel) 2023; 12:270. [PMID: 36830181 PMCID: PMC9952367 DOI: 10.3390/antibiotics12020270] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Antimicrobial resistance increases day by day around the world. To overcome this situation new antimicrobial agents are needed. Spices such as clove, ginger, coriander, garlic, and turmeric have the potential to fight resistant microbes. Due to their therapeutic properties, medicinal herbs and spices have been utilized as herbal medicines since antiquity. They are important sources of organic antibacterial substances that are employed in treating infectious disorders caused by pathogens such as bacteria. The main focus of the study is the bioactivity of the active ingredients present in different kinds of naturally available spices. We conducted a thorough search of PubMed, Google Scholar, and Research Gate for this review. We have read many kinds of available literature, and in this paper, we conclude that many different kinds of naturally available spices perform some form of bioactivity. After reading several papers, we found that some spices have good antimicrobial and antifungal properties, which may help in controlling the emerging antimicrobial resistance and improving human health. Spices have many phytochemicals, which show good antimicrobial and antifungal effects. This review of the literature concludes that the natural bioactivate compounds present in spices can be used as a drug to overcome antimicrobial resistance in human beings.
Collapse
Affiliation(s)
- Purnima Khatri
- Centre for Drug Design Discovery and Development (C4D), SRM University, Sonepat 131029, India
- Department of Microbiology, SRM University, Sonepat 131029, India
| | - Asha Rani
- Centre for Drug Design Discovery and Development (C4D), SRM University, Sonepat 131029, India
- Department of Microbiology, SRM University, Sonepat 131029, India
| | - Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India
| | - Subhash Chandra
- Computational Biology & Biotechnology Laboratory, Department of Botany, SSJ Campus, Soban Singh Jeena University, Almora 263601, India
| | - Chung-Ming Chang
- Master & Ph.D. Program in Biotechnology Industry, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan
| | - Ramendra Pati Pandey
- Centre for Drug Design Discovery and Development (C4D), SRM University, Sonepat 131029, India
- Department of Microbiology, SRM University, Sonepat 131029, India
| |
Collapse
|
8
|
Siripruekpong W, Issarachot O, Kaewkroek K, Wiwattanapatapee R. Development of Gastroretentive Carriers for Curcumin-Loaded Solid Dispersion Based on Expandable Starch/Chitosan Films. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010361. [PMID: 36615555 PMCID: PMC9822339 DOI: 10.3390/molecules28010361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023]
Abstract
Curcumin, a polyphenolic extract from the rhizomes of turmeric, exhibits antioxidant, anti-inflammatory, and anticancer activities, which are beneficial for the treatment of gastric diseases. However, curcumin's therapeutic usefulness is restricted by its low aqueous solubility and short gastric residence time. In this study, curcumin-loaded solid dispersion (ratio 1:5) was prepared using Eudragit® EPO (Cur EPO-SD), resulting in an approximately 12,000-fold increase in solubility to 6.38 mg/mL. Expandable films incorporating Cur EPO-SD were subsequently prepared by solvent casting using different types of starch (banana, corn, pregelatinized, and mung bean starch) in combination with chitosan. Films produced from banana, corn, pregelatinized and mung bean starch unfolded and expanded upon exposure to simulated gastric medium, resulting in sustained release of 80% of the curcumin content within 8 h, whereas films based on pregelatinized starch showed immediate release characteristics. Curcumin-loaded expandable films based on different types of starch exhibited similar cytotoxic effects toward AGS cells and more activity than unformulated curcumin. Furthermore, the films resulted in increased anti-inflammatory activity against RAW 264.7 macrophage cells compared with the NSAID, indomethacin. These findings demonstrate the potential of expandable curcumin-loaded films as gastroretentive dosage forms for the treatment of gastric diseases and to improve oral bioavailability.
Collapse
Affiliation(s)
- Worrawee Siripruekpong
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hatyai 90112, Songkhla, Thailand
- Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hatyai 90112, Songkhla, Thailand
| | - Ousanee Issarachot
- Pharmacy Technician Department, Sirindhron College of Public Health of Suphanburi, Mueang Suphan Buri District 72000, Suphan Buri, Thailand
| | - Kanidta Kaewkroek
- Faculty of Integrative Medicine, Rajamangala University of Technology Thanyaburi, Thanyaburi, Khlong Luang 12130, Pathum Thani, Thailand
| | - Ruedeekorn Wiwattanapatapee
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hatyai 90112, Songkhla, Thailand
- Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hatyai 90112, Songkhla, Thailand
- Correspondence: ; Tel.: +66-0897328989 or +66-074288801
| |
Collapse
|
9
|
A rapid anti-Helicobacter pylori biofilm drug screening biosensor based on AlpB outer membrane protein and colloidal gold/nanoporous gold framework. Biosens Bioelectron 2022; 215:114599. [DOI: 10.1016/j.bios.2022.114599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/23/2022] [Accepted: 07/23/2022] [Indexed: 12/26/2022]
|
10
|
A new approach against Helicobacter pylori using plants and its constituents: A review study. Microb Pathog 2022; 168:105594. [PMID: 35605740 DOI: 10.1016/j.micpath.2022.105594] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 05/11/2022] [Accepted: 05/15/2022] [Indexed: 02/07/2023]
|
11
|
Ejaz S, Ejaz S, Shahid R, Noor T, Shabbir S, Imran M. Chitosan-curcumin complexation to develop functionalized nanosystems with enhanced antimicrobial activity against hetero-resistant gastric pathogen. Int J Biol Macromol 2022; 204:540-554. [PMID: 35157901 DOI: 10.1016/j.ijbiomac.2022.02.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022]
Abstract
With the apparent stagnation in the antibiotic discovery and the propagation of multidrug resistance, Helicobacter pylori associated gastric infections are hard to eradicate. In pursuance of alternative medicines, in this study, covalent modification of chitosan (CS) polymer with curcumin (Cur) was accomplished. Proton Nuclear Magnetic Resonance and Fourier Transform Infrared spectroscopy elucidated the covalent interaction between Cur and CS with characteristic peak of imine functional group (C=N). Scanning Electron Microscopy provided visual proof for surface topology, while size and zeta potential values further affirmed the development of curcumin functionalized chitosan nanosystems (Cur-FCNS). The complexation efficiency of CS with Cur was found as 70 ± 3% at an optimal ratio of 5:1 for CS and Cur, respectively. Cur-FCNS developed with ionic gelation and ultrasonication method demonstrated synergistic anti-H. pylori activity in growth-kinetics and anti-biofilm assays, which was superior to free Cur and even chitosan nanosystems. Under simulated gastric conditions, Cur-FCNS revealed cumulative-release of only 16 ± 0.8% till 40 h, which indicated its improved stability to interact with H. pylori. In silico findings affirmed high binding affinity of Cur-FCNS with multiple bacterial virulence factors. Thus, our results affirmed the exceptional potential of Cur-FCNS as next-generation alternative-medicine to treat resistant H. pylori.
Collapse
Affiliation(s)
- Sadaf Ejaz
- Department of Biosciences, Faculty of Sciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan
| | - Saima Ejaz
- Research Centre for Modelling and Simulation (RCMS), National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Ramla Shahid
- Department of Biosciences, Faculty of Sciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Saima Shabbir
- Department of Materials Science and Engineering, Institute of Space Technology (IST), Islamabad 44000, Pakistan
| | - Muhammad Imran
- Department of Biosciences, Faculty of Sciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan.
| |
Collapse
|
12
|
Hou C, Yin F, Wang S, Zhao A, Li Y, Liu Y. Helicobacter pylori Biofilm-Related Drug Resistance and New Developments in Its Anti-Biofilm Agents. Infect Drug Resist 2022; 15:1561-1571. [PMID: 35411160 PMCID: PMC8994595 DOI: 10.2147/idr.s357473] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/05/2022] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori is one of the most common pathogenic bacterium worldwide, infecting about 50% of the world's population. It is a major cause of several upper gastrointestinal diseases, including peptic ulcers and gastric cancer. The emergence of H. pylori resistance to antibiotics has been a major clinical challenge in the field of gastroenterology. In the course of H. pylori infection, some bacteria invade the gastric epithelium and are encapsulated into a self-produced matrix to form biofilms that protect the bacteria from external threats. Bacteria with biofilm structures can be up to 1000 times more resistant to antibiotics than planktonic bacteria. This implies that targeting biofilms might be an effective strategy to alleviate H. pylori drug resistance. Therefore, it is important to develop drugs that can eliminate or disperse biofilms. In recent years, anti-biofilm agents have been investigated as alternative or complementary therapies to antibiotics to reduce the rate of drug resistance. This article discusses the formation of H. pylori biofilms, the relationship between biofilms and drug resistance in H. pylori, and the recent developments in the research of anti-biofilm agents targeting H. pylori drug resistance.
Collapse
Affiliation(s)
- Chong Hou
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, 264100, People’s Republic of China
| | - Fangxu Yin
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, People’s Republic of China
| | - Song Wang
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, People’s Republic of China
| | - Ailing Zhao
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, 264100, People’s Republic of China
| | - Yingzi Li
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, 264100, People’s Republic of China
| | - Yipin Liu
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, 264100, People’s Republic of China
| |
Collapse
|
13
|
Mohammadi A, Khanbabaei H, Zandi F, Ahmadi A, Haftcheshmeh SM, Johnston TP, Sahebkar A. Curcumin: A therapeutic strategy for targeting the Helicobacter pylori-related diseases. Microb Pathog 2022; 166:105552. [DOI: 10.1016/j.micpath.2022.105552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022]
|
14
|
Zhang W, Cui N, Ye J, Yang B, Sun Y, Kuang H. Curcumin's prevention of inflammation-driven early gastric cancer and its molecular mechanism. CHINESE HERBAL MEDICINES 2022; 14:244-253. [PMID: 36117672 PMCID: PMC9476644 DOI: 10.1016/j.chmed.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/29/2021] [Accepted: 11/27/2021] [Indexed: 02/07/2023] Open
|
15
|
Abstract
Current strategies of combating bacterial infections are limited and involve the use of antibiotics and preservatives. Each of these agents has generally inadequate efficacy and a number of serious adverse effects. Thus, there is an urgent need for new antimicrobial drugs and food preservatives with higher efficacy and lower toxicity. Edible plants have been used in medicine since ancient times and are well known for their successful antimicrobial activity. Often photosensitizers are present in many edible plants; they could be a promising source for a new generation of drugs and food preservatives. The use of photodynamic therapy allows enhancement of antimicrobial properties in plant photosensitizers. The purpose of this review is to present the verified data on the antimicrobial activities of photodynamic phytochemicals in edible species of the world’s flora, including the various mechanisms of their actions.
Collapse
|
16
|
Cardos IA, Zaha DC, Sindhu RK, Cavalu S. Revisiting Therapeutic Strategies for H. pylori Treatment in the Context of Antibiotic Resistance: Focus on Alternative and Complementary Therapies. Molecules 2021; 26:molecules26196078. [PMID: 34641620 PMCID: PMC8512130 DOI: 10.3390/molecules26196078] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 12/15/2022] Open
Abstract
The prevalence of Helicobacter pylori infection remains significant worldwide and it depends on many factors: gender, age, socio-economic status, geographic area, diet, and lifestyle. All successful infectious diseases treatments use antibiotic-susceptibility testing, but this strategy is not currently practical for H. pylori and the usual cure rates of H. pylori are lower than other bacterial infections. Actually, there is no treatment that ensures complete eradication of this pathogen. In the context of an alarming increase in resistance to antibiotics (especially to clarithromycin and metronidazole), alternative and complementary options and strategies are taken into consideration. As the success of antibacterial therapy depends not only on the susceptibility to given drugs, but also on the specific doses, formulations, use of adjuvants, treatment duration, and reinfection rates, this review discusses the current therapies for H. pylori treatment along with their advantages and limitations. As an alternative option, this work offers an extensively referenced approach on natural medicines against H. pylori, including the significance of nanotechnology in developing new strategies for treatment of H. pylori infection.
Collapse
Affiliation(s)
- Ioana Alexandra Cardos
- Faculty of Medicine and Pharmacy, Doctoral School of Biomedical Sciences, University of Oradea, 1 University Street, 410087 Oradea, Romania;
| | - Dana Carmen Zaha
- Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 1 University Street, 410087 Oradea, Romania
- Correspondence: (D.C.Z.); (R.K.S.); (S.C.)
| | - Rakesh K. Sindhu
- Chitkara College of Pharmacy, Chitkara University, Chandigarh 140401, India
- Correspondence: (D.C.Z.); (R.K.S.); (S.C.)
| | - Simona Cavalu
- Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 1 University Street, 410087 Oradea, Romania
- Correspondence: (D.C.Z.); (R.K.S.); (S.C.)
| |
Collapse
|
17
|
Lahiri D, Nag M, Garai S, Ray RR. The Chemistry of Antibiofilm Phytocompounds. Mini Rev Med Chem 2021; 21:1034-1047. [PMID: 32767942 DOI: 10.2174/1389557520666200807135243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/20/2020] [Accepted: 06/23/2020] [Indexed: 11/22/2022]
Abstract
Phytocompounds are long known for their therapeutic uses due to their competence as antimicrobial agents. The antimicrobial activity of these bioactive compounds manifests their ability as an antibiofilm agent and is thereby proved to be competent to treat the widespread biofilm-associated chronic infections. The rapid development of antibiotic resistance in bacteria has made the treatment of these infections almost impossible by conventional antibiotic therapy, which forced a switch-over to the use of phytocompounds. The present overview deals with the classification of a huge array of phytocompounds according to their chemical nature, detection of their target pathogen, and elucidation of their mode of action.
Collapse
Affiliation(s)
- Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Sayantani Garai
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, India
| |
Collapse
|
18
|
Hakeem MJ, Lu X. Survival and Control of Campylobacter in Poultry Production Environment. Front Cell Infect Microbiol 2021; 10:615049. [PMID: 33585282 PMCID: PMC7879573 DOI: 10.3389/fcimb.2020.615049] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022] Open
Abstract
Campylobacter species are Gram-negative, motile, and non-spore-forming bacteria with a unique helical shape that changes to filamentous or coccoid as an adaptive response to environmental stresses. The relatively small genome (1.6 Mbp) of Campylobacter with unique cellular and molecular physiology is only understood to a limited extent. The overall strict requirement of this fastidious microorganism to be either isolated or cultivated in the laboratory settings make itself to appear as a weak survivor and/or an easy target to be inactivated in the surrounding environment of poultry farms, such as soil, water source, dust, surfaces and air. The survival of this obligate microaerobic bacterium from poultry farms to slaughterhouses and the final poultry products indicates that Campylobacter has several adaptive responses and/or environmental niches throughout the poultry production chain. Many of these adaptive responses remain puzzles. No single control method is yet known to fully address Campylobacter contamination in the poultry industry and new intervention strategies are required. The aim of this review article is to discuss the transmission, survival, and adaptation of Campylobacter species in the poultry production environments. Some approved and novel control methods against Campylobacter species throughout the poultry production chain will also be discussed.
Collapse
Affiliation(s)
- Mohammed J Hakeem
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada.,Department of Food Science and Human Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Xiaonan Lu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada.,Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Ste Anne de Bellevue, QC, Canada
| |
Collapse
|
19
|
Panahi Y, Karbasi A, Valizadegan G, Ostadzadeh N, Soflaei SS, Jamialahmadi T, Majeed M, Sahebkar A. Effect of Curcumin on Severity of Functional Dyspepsia: a Triple Blinded Clinical Trial. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:119-126. [PMID: 33861441 DOI: 10.1007/978-3-030-64872-5_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BackgroundFunctional dyspepsia is the main cause of upper abdominal discomfort affecting 5-10% of the world population. Despite various therapeutic approaches, up to 50% of patients with functional dyspepsia seek alternative treatments. In the present study we evaluated the effect of curcumin supplementation along with famotidine therapy on severity of functional dyspepsia. A total of 75 patients with functional dyspepsia according to Rome III criteria were allocated into intervention (N = 39) or control (N = 36) groups. The intervention group was treated with a combination of 500 mg curcumin and 40 mg famotidine daily for 1 month. The control group received placebo and 40 mg famotidine. Severity of dyspepsia symptoms was determined using the Hong Kong questionnaire at baseline, after the 1 month treatment and after a 1 month follow-up. The presence of H. pylori antigens in the stool samples was also investigated in all subjects. No significant difference was observed between intervention and control groups in biochemical indices, severity of dyspepsia and rate of H. pylori infection. A significant decrease was observed in severity of dyspepsia (p < 0.001) and rate of H. pylori infection (p = 0.004) immediately after the treatment and follow-up in the curcumin intervention group. This study indicated that curcumin therapy could be a favorable supplementation in the symptom management of functional dyspepsia. Moreover, curcumin could help efficient eradication of H. pylori in these patients.
Collapse
Affiliation(s)
- Yunes Panahi
- Pharmacotherapy Department, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ashraf Karbasi
- Gastroenterology and Hepatology Department, Baqiyatallah Research Center for Gastroenterology and Liver Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Ghasem Valizadegan
- Baqiyatallah Research Center for Gastroenterology and Liver Disease, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | | | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| |
Collapse
|
20
|
Gopalakrishnan V, Masanam E, Ramkumar VS, Baskaraligam V, Selvaraj G. Influence of N-acylhomoserine lactonase silver nanoparticles on the quorum sensing system of Helicobacter pylori: A potential strategy to combat biofilm formation. J Basic Microbiol 2020; 60:207-215. [PMID: 31960983 DOI: 10.1002/jobm.201900537] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/19/2019] [Accepted: 12/27/2019] [Indexed: 12/24/2022]
Abstract
The treatment of Helicobacter pylori usually fails due to their ability to form biofilms and resistance to antibiotics. This might potentially lead to gastric carcinoma and mucosa-associated lymphoid tissue lymphoma. In the present study, we elucidate the potential role of N-acylhomoserine lactonase stabilized silver nanoparticles (AiiA-AgNPs) in treating biofilms produced by H. pylori. AiiA-AgNPs inhibited quorum sensing (QS) by degradation of QS molecules, thereby reducing biofilm formation, urease production, and altering cell surface hydrophobicity of H. pylori. AiiA-AgNPs showed no cytotoxic effects on RAW 264.7 macrophages at the effective concentration (1-5 µM) of antibiofilm activity. In addition, AiiA-AgNP in high concentration (80-100 µM) exhibited cytotoxicity against HCT-15 carcinoma cells, depicting its therapeutic role in treating cancer.
Collapse
Affiliation(s)
- Vinoj Gopalakrishnan
- Central Inter-Disciplinary Research Facility, Mahatma Gandhi Medical College and Hospital, Sri Balaji Vidyapeeth University, Pondicherry, India.,Department of Plant Pathology and Microbiology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Esakkirajan Masanam
- Department of Animal Health and Management, Alagappa University, Karaikudi, India
| | - Vijayan S Ramkumar
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | | | - Gopinath Selvaraj
- Department of Microbiology, Agricultural Research Organization, Newe Ya'ar, Israel
| |
Collapse
|
21
|
Chen X, Li P, Shen Y, Zou Y, Yuan G, Hu H. Rhamnolipid-involved antibiotics combinations improve the eradication of Helicobacter pylori biofilm in vitro: A comparison with conventional triple therapy. Microb Pathog 2019; 131:112-119. [DOI: 10.1016/j.micpath.2019.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 02/07/2023]
|
22
|
Kwiecien S, Magierowski M, Majka J, Ptak-Belowska A, Wojcik D, Sliwowski Z, Magierowska K, Brzozowski T. Curcumin: A Potent Protectant against Esophageal and Gastric Disorders. Int J Mol Sci 2019; 20:1477. [PMID: 30909623 PMCID: PMC6471759 DOI: 10.3390/ijms20061477] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023] Open
Abstract
Turmeric obtained from the rhizomes of Curcuma longa has been used in the prevention and treatment of many diseases since the ancient times. Curcumin is the principal polyphenol isolated from turmeric, which exhibits anti-inflammatory, antioxidant, antiapoptotic, antitumor, and antimetastatic activities. The existing evidence indicates that curcumin can exert a wide range of beneficial pleiotropic properties in the gastrointestinal tract, such as protection against reflux esophagitis, Barrett's esophagus, and gastric mucosal damage induced by nonsteroidal anti-inflammatory drugs (NSAIDs) and necrotizing agents. The role of curcumin as an adjuvant in the treatment of a Helicobacter pylori infection in experimental animals and humans has recently been proposed. The evidence that this turmeric derivative inhibits the invasion and proliferation of gastric cancer cells is encouraging and warrants further experimental and clinical studies with newer formulations to support the inclusion of curcumin in cancer therapy regimens. This review was designed to analyze the existing data from in vitro and in vivo animal and human studies in order to highlight the mechanisms of therapeutic efficacy of curcumin in the protection and ulcer healing of the upper gastrointestinal tract, with a major focus on addressing the protection of the esophagus and stomach by this emerging compound.
Collapse
Affiliation(s)
- Slawomir Kwiecien
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland.
| | - Marcin Magierowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland.
| | - Jolanta Majka
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland.
| | - Agata Ptak-Belowska
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland.
| | - Dagmara Wojcik
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland.
| | - Zbigniew Sliwowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland.
| | - Katarzyna Magierowska
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland.
| | - Tomasz Brzozowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland.
| |
Collapse
|
23
|
Lesouhaitier O, Clamens T, Rosay T, Desriac F, Louis M, Rodrigues S, Gannesen A, Plakunov VK, Bouffartigues E, Tahrioui A, Bazire A, Dufour A, Cornelis P, Chevalier S, Feuilloley MGJ. Host Peptidic Hormones Affecting Bacterial Biofilm Formation and Virulence. J Innate Immun 2018; 11:227-241. [PMID: 30396172 PMCID: PMC6738206 DOI: 10.1159/000493926] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 12/25/2022] Open
Abstract
Bacterial biofilms constitute a critical problem in hospitals, especially in resuscitation units or for immunocompromised patients, since bacteria embedded in their own matrix are not only protected against antibiotics but also develop resistant variant strains. In the last decade, an original approach to prevent biofilm formation has consisted of studying the antibacterial potential of host communication molecules. Thus, some of these compounds have been identified for their ability to modify the biofilm formation of both Gram-negative and Gram-positive bacteria. In addition to their effect on biofilm production, a detailed study of the mechanism of action of these human hormones on bacterial physiology has allowed the identification of new bacterial pathways involved in biofilm formation. In this review, we focus on the impact of neuropeptidic hormones on bacteria, address some future therapeutic issues, and provide a new view of inter-kingdom communication.
Collapse
Affiliation(s)
- Olivier Lesouhaitier
- Laboratory of Microbiology Signals and Microenvironment, LMSM EA 4312, Normandy University, University of Rouen Normandy, Evreux, France,
| | - Thomas Clamens
- Laboratory of Microbiology Signals and Microenvironment, LMSM EA 4312, Normandy University, University of Rouen Normandy, Evreux, France
| | - Thibaut Rosay
- Laboratory of Microbiology Signals and Microenvironment, LMSM EA 4312, Normandy University, University of Rouen Normandy, Evreux, France
| | - Florie Desriac
- Laboratory of Microbiology Signals and Microenvironment, LMSM EA 4312, Normandy University, University of Rouen Normandy, Evreux, France
| | - Mélissande Louis
- Laboratory of Microbiology Signals and Microenvironment, LMSM EA 4312, Normandy University, University of Rouen Normandy, Evreux, France
| | - Sophie Rodrigues
- Laboratory of Microbiology Signals and Microenvironment, LMSM EA 4312, Normandy University, University of Rouen Normandy, Evreux, France
| | - Andrei Gannesen
- Laboratory of Microbiology Signals and Microenvironment, LMSM EA 4312, Normandy University, University of Rouen Normandy, Evreux, France
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of RAS, Moscow, Russian Federation
- Lomonosov Moscow State University, Moscow, Russian Federation
| | - Vladimir K Plakunov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of RAS, Moscow, Russian Federation
| | - Emeline Bouffartigues
- Laboratory of Microbiology Signals and Microenvironment, LMSM EA 4312, Normandy University, University of Rouen Normandy, Evreux, France
| | - Ali Tahrioui
- Laboratory of Microbiology Signals and Microenvironment, LMSM EA 4312, Normandy University, University of Rouen Normandy, Evreux, France
| | - Alexis Bazire
- Laboratoire de Biotechnologie et Chimie Marines EA 3884, IUEM, Université de Bretagne-Sud (UBL), Lorient, France
| | - Alain Dufour
- Laboratoire de Biotechnologie et Chimie Marines EA 3884, IUEM, Université de Bretagne-Sud (UBL), Lorient, France
| | - Pierre Cornelis
- Laboratory of Microbiology Signals and Microenvironment, LMSM EA 4312, Normandy University, University of Rouen Normandy, Evreux, France
| | - Sylvie Chevalier
- Laboratory of Microbiology Signals and Microenvironment, LMSM EA 4312, Normandy University, University of Rouen Normandy, Evreux, France
| | - Marc G J Feuilloley
- Laboratory of Microbiology Signals and Microenvironment, LMSM EA 4312, Normandy University, University of Rouen Normandy, Evreux, France
| |
Collapse
|
24
|
Inhibitory Effects of Curcumin on the Expression of NorA Efflux Pump and Reduce Antibiotic Resistance in Staphylococcus aureus. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.1.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
25
|
Li M, Zhang T, Zhu L, Wang R, Jin Y. Liposomal andrographolide dry powder inhalers for treatment of bacterial pneumonia via anti-inflammatory pathway. Int J Pharm 2017; 528:163-171. [DOI: 10.1016/j.ijpharm.2017.06.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/18/2017] [Accepted: 06/01/2017] [Indexed: 12/14/2022]
|