1
|
Zhu R, Yan S, Zhao R, Zhang R, Shao M, Yu H, Fu Y. Effectiveness of different traditional Chinese medicine injections in patients with diabetic lower extremity arterial disease: A Bayesian network meta-analysis. Complement Ther Clin Pract 2025; 59:101936. [PMID: 39805184 DOI: 10.1016/j.ctcp.2025.101936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 01/02/2025] [Accepted: 01/02/2025] [Indexed: 01/16/2025]
Abstract
BACKGROUND AND PURPOSE Numerous studies have demonstrated the effectiveness of Chinese medicine injections (CMIs) in treating diabetic lower extremity arterial disease (Dia-LEAD). However, with the variety of CMIs available, it has become challenging to determine the optimal choice for Dia-LEAD patients. This study aims to compare and rank the efficacy of CMIs for Dia-LEAD to provide references and evidence for clinicians in optimising drug selection. METHODS We conducted a comprehensive search for randomised controlled trials (RCTs) of CMIs for treating Dia-LEAD, which included the China National Knowledge Infrastructure (CNKI), Wanfang, China Weipu Science and Technology Journal Database (VIP), Chinese Biomedical Literature Database (CBM), PubMed, the Cochrane Library, Embase, and Web of Science, covering inception to 15 October 2023. We used the Cochrane Risk of Bias Tool 2.0 to assess bias risk, and RevMan 5.4.1, GeMTC, STATA 13.0, and R 4.2.1 for statistical analysis and visualization of the network meta-analysis. RESULTS We analysed 38 studies with 12 CMIs. Compared with other interventions, Shuxuening injection (SXN) + conventional treatment (CT) was superior in terms of the total effective rate (surface under the cumulative ranking (SUCRA) 86.2 %). Danshen injection (DS) + CT ranked first in improving the ankle-brachial index (ABI) (SUCRA 95.1 %) and dorsalis pedis artery blood flow (DPABF) (SUCRA 88.8 %). Danhong injection (DH) + CT showed the highest probability of effectiveness in improving the plasma viscosity (SUCRA 91.6 %). Chuanxiongqin injection (CXQ) + CT yielded favourable results in regulating fibrinogen levels (SUCRA 77.1 %). Furthermore, no significant differences in adverse reactions were detected between the treatment and control groups. CONCLUSION The study demonstrated that CMIs have potential as a complementary therapy for treating Dia-LEAD, and it supports the positive effects of combining CMIs with CT on a number of outcome indicators. Especially when it comes to improving the haemodynamics indices and the haemorheology indices, DS in combination with CT may be a more effective intervention. However, further confirmation in more rigorous, high-quality, and multicentre RCTs is needed to strengthen the validity and generalisability of the results.
Collapse
Affiliation(s)
- Rong Zhu
- Department of Endocrinology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China; School of the First Clinical, Henan University of Chinese Medicine, Zhengzhou, China
| | - Shuxun Yan
- Department of Endocrinology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Ruixia Zhao
- Henan Provincial Center for Evidence-based Medicine of Traditional Chinese Medicine, Zhengzhou, China
| | - Rongrong Zhang
- School of the First Clinical, Henan University of Chinese Medicine, Zhengzhou, China
| | - Mingyi Shao
- Department of Gastroenterology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Haibin Yu
- Department of Science and Technology, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yu Fu
- Department of Endocrinology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China.
| |
Collapse
|
2
|
Wang X, Sun H, Cheng G, Ge J. Reduction of oxidative stress response and protection of liver and renal cell functions by reduced glutathione in lower limb arterial ischemia-reperfusion in New Zealand white rabbits with high triglyceride levels. Heliyon 2024; 10:e33258. [PMID: 39022000 PMCID: PMC11252971 DOI: 10.1016/j.heliyon.2024.e33258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/21/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Objective Acute liver and kidney injury is the most common complication after aortic surgery, which seriously affects the survival and safety of perioperative patients. The presence of chronic preoperative liver and renal insufficiency, presence of preoperative blood inflammation indicators, duration of intraoperative extracorporeal circulation, and volume of red blood cell transfusion are the main influencing factors for acute postoperative liver and kidney injuries. In recent years, with the research progress on oxidative stress, a growing body of evidence has demonstrated that oxidative stress may cause tissue damage after ischemia-reperfusion (IR). However, the impact of the oxidative stress of distal tissues caused by IR on liver and renal cells after arterial surgeries has not yet been elucidated. Methods New Zealand white rabbits were used for the experiments and were divided into three groups. Among them, two groups were fed high-fat feed to establish a white rabbit model of hypertriglyceridemia, whereas the control group was provided with ordinary feed. In the experiment, white rabbits were subjected to occlusion of the infrarenal aorta abdominalis to simulate IR of the lower limbs. The effects of high triglyceride levels after the arterial IR of the lower limbs were investigated using the contents of reactive oxygen species (ROS) and malondialdehyde (MDA), a fat metabolite, in ischemic muscle tissues and blood tissues. One of the groups receiving high-fat feed received intervention with reduced glutathione (GSH) before IR of the lower limbs. Pathological studies were performed to identify the expression levels of inflammatory factors and inflammatory cells in liver and renal cells as well as cell apoptosis. The effects of GSH administration before IR on reducing the oxidative stress in adipose tissues and alleviating liver and kidney damage after stress response were investigated. Results After IR, the increases in ROS and MDA in ischemic muscle tissues and blood tissues were higher in white rabbits with high triglyceride levels than in those that only received ordinary feed or received intervention with GSH. In addition, for white rabbits with high triglyceride levels, the TNF-α expression levels in the liver increased after IR. Moreover, a considerable increase in the expression of TNF-α, IL-6, macrophages, and T lymphocytes were observed in renal cells. A large number of inflammatory cells and the formation of immune complexes were also noted in the glomeruli; in addition, cell apoptosis was promoted. Conclusion This study showed that high triglyceride levels enhanced the oxidative stress response and increased ROS production in New Zealand white rabbits after arterial IR of the lower limbs. High ROS levels activated the expression of inflammatory factors and inflammatory cells in the liver and kidney, which affected cell functions and promoted apoptosis. At high triglyceride levels, GSH downregulated ROS production in oxidative stress after IR, thereby protecting liver and kidney functions.
Collapse
Affiliation(s)
- Xiaochen Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, Anhui, 230001, PR China
| | - Hailei Sun
- Department of Cardiovascular Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, Anhui, 230001, PR China
| | - Guangcun Cheng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, Anhui, 230001, PR China
| | - Jianjun Ge
- Department of Cardiovascular Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, Anhui, 230001, PR China
| |
Collapse
|
3
|
Yue TT, Cao YJ, Cao YX, Li WX, Wang XY, Si CY, Xia H, Zhu MJ, Tang JF, Wang H. Shuxuening Injection Inhibits Apoptosis and Reduces Myocardial Ischemia-Reperfusion Injury in Rats through PI3K/AKT Pathway. Chin J Integr Med 2024; 30:421-432. [PMID: 38153596 DOI: 10.1007/s11655-023-3650-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2023] [Indexed: 12/29/2023]
Abstract
OBJECTIVE To investigate the main components and potential mechanism of Shuxuening Injection (SXNI) in the treatment of myocardial ischemia-reperfusion injury (MIRI) through network pharmacology and in vivo research. METHODS The Traditional Chinese Medicine Systems Pharmacology (TCMSP) and PharmMapper databases were used to extract and evaluate the effective components of Ginkgo biloba leaves, the main component of SXNI. The Online Mendelian Inheritance in Man (OMIM) and GeneCards databases were searched for disease targets and obtain the drug target and disease target intersections. The active ingredient-target network was built using Cytoscape 3.9.1 software. The STRING database, Metascape online platform, and R language were used to obtain the key targets and signaling pathways of the anti-MIRI effects of SXNI. In order to verify the therapeutic effect of different concentrations of SXNI on MIRI in rats, 60 rats were first divided into 5 groups according to random number table method: the sham operation group, the model group, SXNI low-dose (3.68 mg/kg), medium-dose (7.35 mg/kg), and high-dose (14.7 mg/kg) groups, with 12 rats in each group. Then, another 60 rats were randomly divided into 5 groups: the sham operation group, the model group, SXNI group (14.7 mg/kg), SXNI+LY294002 group, and LY294002 group, with 12 rats in each group. The drug was then administered intraperitoneally at body weight for 14 days. The main biological processes were validated using in vivo testing. Evans blue/triphenyltetrazolium chloride (TTC) double staining, hematoxylin-eosin (HE) staining, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, enzyme-linked immunosorbent assay (ELISA), and Western blot analysis were used to investigate the efficacy and mechanism of SXNI in MIRI rats. RESULTS Eleven core targets and 30 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were selected. Among these, the phosphoinositide 3-kinase (PI3K)/ protein kinase B (AKT) pathway was closely related to SXNI treatment of MIRI. In vivo experiments showed that SXNI reduced the myocardial infarction area in the model group, improved rat heart pathological damage, and reduced the cardiomyocyte apoptosis rate (all P<0.01). After SXNI treatment, the p-PI3K/PI3K and p-AKT/AKT ratios as well as B-cell lymphoma-2 (Bcl-2) protein expression in cardiomyocytes were increased, while the Bax and cleaved caspase 3 protein expression levels were decreased (all P<0.05). LY294002 partially reversed the protective effect of SXNI on MIRI. CONCLUSION SXNI protects against MIRI by activating the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Tong-Tong Yue
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Ying-Jie Cao
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 451200, China
| | - Ya-Xuan Cao
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Wei-Xia Li
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 451200, China
| | - Xiao-Yan Wang
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 451200, China
| | - Chun-Ying Si
- Department of Cardiovascular Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 451200, China
| | - Han Xia
- Department of Cardiovascular Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 451200, China
| | - Ming-Jun Zhu
- Department of Cardiovascular Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 451200, China
| | - Jin-Fa Tang
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 451200, China
| | - He Wang
- Department of Cardiovascular Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 451200, China.
| |
Collapse
|
4
|
Deng RM, Zhou J. The role of PI3K/AKT signaling pathway in myocardial ischemia-reperfusion injury. Int Immunopharmacol 2023; 123:110714. [PMID: 37523969 DOI: 10.1016/j.intimp.2023.110714] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 07/09/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
Myocardial ischemia has a high incidence and mortality rate, and reperfusion is currently the standard intervention. However, reperfusion may lead to further myocardial damage, known as myocardial ischemia/reperfusion injury (MIRI). There are currently no effective clinical treatments for MIRI. The PI3K/Akt signaling pathway is involved in cardiovascular health and disease and plays an important role in reducing myocardial infarct size and restoring cardiac function after MIRI. Activation of the PI3K/Akt pathway provides myocardial protection through synergistic upregulation of antioxidant, anti-inflammatory, and autophagy activities and inhibition of mitochondrial dysfunction and cardiomyocyte apoptosis. Many studies have shown that PI3K/Akt has a significant protective effect against MIRI. Here, we reviewed the molecular regulation of PI3K/Akt in MIRI and summarized the molecular mechanism by which PI3K/Akt affects MIRI, the effects of ischemic preconditioning and ischemic postconditioning, and the role of related drugs or activators targeting PI3K/Akt in MIRI, providing novel insights for the formulation of myocardial protection strategies. This review provides evidence of the role of PI3K/Akt activation in MIRI and supports its use as a therapeutic target.
Collapse
Affiliation(s)
- Rui-Ming Deng
- Department of Anesthesiology, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; The Affiliated Ganzhou Hospital of Nanchang University, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China
| | - Juan Zhou
- Department of thyroid and Breast Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; The Affiliated Ganzhou Hospital of Nanchang University, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| |
Collapse
|
5
|
Shi M, Sun T, Ji Z, Ma Y, Zhao M, Yang F, Zhang J. Effectiveness of Shuxuening injection in coronary heart disease: a systematic review and meta-analysis. Front Pharmacol 2023; 14:1265603. [PMID: 37790809 PMCID: PMC10544985 DOI: 10.3389/fphar.2023.1265603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/05/2023] [Indexed: 10/05/2023] Open
Abstract
Background: Coronary heart disease (CHD) poses a serious threat to public health, and the current medical management still faces significant challenges. Reliable evidence on the efficacy of Shuxuening injection (SXNI) in CHD is still lacking, even though it is widely used in China. Purpose: To evaluate the efficacy of SXNI combination therapy in treating CHD. Methods: A systematic search of eight databases was conducted to identify relevant randomized controlled trials (RCTs) from the inception of each database until June 2023. ROB 2.0, RevMan 5.4, and Stata 15.1 were used for quality evaluation and data analysis. The Grading of Recommendation, Assessment, Development, and Evaluation (GRADE) approach was used to evaluate the quality of evidence. Results: A total of 3,779 participants from 39 studies were included. The results showed SXNI combination therapy increased the clinical efficacy and decreased the frequency and duration of angina. Furthermore, SXNI combination therapy improved cardiac function of patients by decreasing LVEDD, and increased CI, CO, and LVEF. It also improved blood lipid profiles by increasing HDL, decreasing TC, TG, and LDL. The thrombosis factors of patients were also improved by decreasing FIB, PV, HCT, and HS. Moreover, SXNI combination therapy was superior to the conventional treatment in improving CRP levels, increasing ECG efficacy and BNP. However, due to the limited safety information, reliable safety conclusions could not be drawn. Furthermore, the levels of evidence ranged from very low to moderate due to publication bias and heterogeneity. Conclusion: SXNI can effectively improve angina symptoms, clinical efficacy, cardiac function, blood lipid indicators, and thrombosis factors of patients with CHD. However, more multi-center and large-sample studies are needed to confirm the conclusions due to the limitations of this study. Registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=399606; Identifier: CRD42023433292.
Collapse
Affiliation(s)
- Menglong Shi
- State Key Laboratory of Component-Based Chinese Medicine, College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Evidence-Based Medicine Center, College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tianye Sun
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhaochen Ji
- State Key Laboratory of Component-Based Chinese Medicine, College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Evidence-Based Medicine Center, College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yucong Ma
- State Key Laboratory of Component-Based Chinese Medicine, College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Evidence-Based Medicine Center, College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Min Zhao
- The First Affiliated Hospital of Henan University of CM, Zhengzhou, China
| | - Fengwen Yang
- State Key Laboratory of Component-Based Chinese Medicine, College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Evidence-Based Medicine Center, College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junhua Zhang
- State Key Laboratory of Component-Based Chinese Medicine, College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Evidence-Based Medicine Center, College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
6
|
Li L, Liu B, Wang M, Ye J, Sun G. Protective effect of Guanxin Danshen formula on myocardial ischemiareperfusion injury in rats. Acta Cir Bras 2023; 38:e380123. [PMID: 37098925 PMCID: PMC10129295 DOI: 10.1590/acb380123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/04/2022] [Indexed: 04/27/2023] Open
Abstract
PURPOSE Myocardial ischemia/reperfusion injury (MIRI) leads to myocardial tissue necrosis, which will increase the size of myocardial infarction. The study examined the protective effect and mechanism of the Guanxin Danshen formula (GXDSF) on MIRI in rats. METHODS MIRI model was performed in rats; rat H9C2 cardiomyocytes were hypoxia-reoxygenated to establish a cell injury model. RESULTS The GXDSF significantly reduced myocardial ischemia area, reduced myocardial structural injury, decreased the levels of interleukin (IL-1β, IL-6) in serum, decreased the activity of myocardial enzymes, increased the activity of superoxide dismutase (SOD), and reduced glutathione in rats with MIRI. The GXDSF can reduce the expression of nucleotide- binding oligomerization domain, leucine-rich repeat and pyrin domain containing nod-like receptor family protein 3 (NLRP3), IL-1β, caspase-1, and gasdermin D (GSDMD) in myocardial tissue cells. Salvianolic acid B and notoginsenoside R1 protected H9C2 cardiomyocytes from hypoxia and reoxygenation injury and reduced the levels of tumor necrosis factor α (TNF-α) and IL-6 in the cell supernatant, decreasing the NLRP3, IL-18, IL-1β, caspase-1, and GSDMD expression in H9C2 cardiomyocytes. GXDSF can reduce the myocardial infarction area and alleviate the damage to myocardial structure in rats with MIRI, which may be related to the regulation of the NLRP3. CONCLUSIONS GXDSF reduces MIRI in rat myocardial infarction injury, improves structural damage in myocardial ischemia injury, and reduces myocardial tissue inflammation and oxidative stress by lowering inflammatory factors and controlling focal cell death signaling pathways.
Collapse
Affiliation(s)
- Lanfang Li
- Institute of Medicinal Plant Development – Peking Union Medical College and Chinese Academy of Medical Sciences - Beijing, China
| | - Bo Liu
- Institute of Medicinal Plant Development – Peking Union Medical College and Chinese Academy of Medical Sciences - Beijing, China
| | - Min Wang
- Institute of Medicinal Plant Development – Peking Union Medical College and Chinese Academy of Medical Sciences - Beijing, China
| | - Jingxue Ye
- Institute of Medicinal Plant Development – Peking Union Medical College and Chinese Academy of Medical Sciences - Beijing, China
| | - Guibo Sun
- Institute of Medicinal Plant Development – Peking Union Medical College and Chinese Academy of Medical Sciences - Beijing, China
| |
Collapse
|
7
|
Mohammed Abdulsalam T, Hasanin AH, Hussein Mohamed R, Khairy E, Mahmoud D, Habib EK, Badawy AES. A comparative study between angiotensin receptor neprilysin inhibitor (thiorphan/irbesartan) with each of nitrate and carvedilol in a rat model of myocardial ischemic reperfusion injury. Fundam Clin Pharmacol 2023. [PMID: 36868872 DOI: 10.1111/fcp.12886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/02/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023]
Abstract
The combined angiotensin receptor neprilysin inhibitor is a promising cardioprotective pharmacological agent. This study investigated the beneficial effects of thiorphan (TH)/irbesartan (IRB), in myocardial ischemia-reperfusion (IR) injury, compared to each of nitroglycerin and carvedilol. Male Wistar rats were divided into five groups (10 rats/group): Sham, untreated I/R, TH/IRB + IR (0.1/10 mg/kg), nitroglycerin + IR (0.2 mg/kg), and carvedilol + IR (10 mg/kg). Mean arterial blood pressure, cardiac functions and arrhythmia incidence, duration and score were assessed. Cardiac levels of creatine kinase-MB (CK-MB), oxidative stress, endothelin-1, ATP, Na+ /K+ ATPase pump activity and mitochondria complexes activities were measured. Histopathological examination, Bcl/Bax immunohistochemistry studies and electron microscopy examination of left ventricle were performed. TH/IRB preserved the cardiac functions and mitochondrial complexes activities, mitigated cardiac damage, reduced oxidative stress and arrhythmia severity, improved the histopathological changes and decreased cardiac apoptosis. TH/IRB showed a comparable effect to each of nitroglycerin and carvedilol in alleviating the IR injury consequences. TH/IRB showed significant preservation of mitochondrial complexes activity I and II compared to nitroglycerin. TH/IRB significantly increased LVdP/dtmax and decreased oxidative stress, cardiac damage and endothelin-1 along with increasing the ATP content, Na+ /K+ ATPase pump activity and mitochondrial complexes activity when compared to carvedilol. TH/IRB showed a cardioprotective effect in reducing IR injury that is comparable to each of nitroglycerin and carvedilol that could be explained in part by its ability to preserve mitochondrial function, increase ATP, decrease oxidative stress as well as endothelin 1.
Collapse
Affiliation(s)
| | - Amany H Hasanin
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Reham Hussein Mohamed
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Eman Khairy
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Dalia Mahmoud
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Eman K Habib
- Department of Anatomy and Embryology, Faculty of Medicine, Galala University, Al Galala, Egypt
| | - Ahmed El Sayed Badawy
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
8
|
Huajuan J, Xulong H, Bin X, Yue W, Yongfeng Z, Chaoxiang R, Jin P. Chinese herbal injection for cardio-cerebrovascular disease: Overview and challenges. Front Pharmacol 2023; 14:1038906. [PMID: 36909150 PMCID: PMC9998719 DOI: 10.3389/fphar.2023.1038906] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/13/2023] [Indexed: 03/14/2023] Open
Abstract
Cardio-cerebrovascular diseases are the leading cause of death worldwide and there is currently no optimal treatment plan. Chinese herbal medicine injection (CHI) is obtained by combining traditional Chinese medicine (TCM) theory and modern production technology. It retains some characteristics of TCM while adding injection characteristics. CHI has played an important role in the treatment of critical diseases, especially cardio-cerebrovascular diseases, and has shown unique therapeutic advantages. TCMs that promote blood circulation and remove blood stasis, such as Salvia miltiorrhiza, Carthami flos, Panax notoginseng, and Chuanxiong rhizoma, account for a large proportion of CHIs of cardio-cerebrovascular disease. CHI is used to treat cardio-cerebrovascular diseases and has potential pharmacological activities such as anti-platelet aggregation, anti-inflammatory, anti-fibrosis, and anti-apoptosis. However, CHIs have changed the traditional method of administering TCMs, and the drugs directly enter the bloodstream, which may produce new pharmacological effects or adverse reactions. This article summarizes the clinical application, pharmacological effects, and mechanism of action of different varieties of CHIs commonly used in the treatment of cardio-cerebrovascular diseases, analyzes the causes of adverse reactions, and proposes suggestions for rational drug use and pharmaceutical care methods to provide a reference for the rational application of CHIs for cardio-cerebrovascular diseases.
Collapse
Affiliation(s)
- Jiang Huajuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huang Xulong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xian Bin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wang Yue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhou Yongfeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ren Chaoxiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pei Jin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Xue Y, Zhang L, Zhang L, Sun W, Fang Z, Leng Y, Li M, Ren X, Zhang R, Zhang Y, Chen L, Wang H. Danshensu prevents thrombosis by inhibiting platelet activation via SIRT1/ROS/mtDNA pathways without increasing bleeding risk. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154271. [PMID: 35777120 DOI: 10.1016/j.phymed.2022.154271] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/01/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Coronary thrombosis and its correlated disorders are main healthcare problems globally. The therapeutic effects of current treatments involving antiplatelet drugs are not fully satisfactory. Danshensu (DSS) is an important monomer obtained from Salvia miltiorrhiza roots that have been widely employed for vascular diseases in medicinal practices. Nonetheless, the underlying mechanisms of DSS are not fully unraveled. PURPOSE The objective of this study was to penetrate the antithrombotic and antiplatelet mechanisms of DSS. METHODS Network pharmacology assay was used to forecast the cellular mechanisms of DSS for treating thrombosis. The work focused the impacts of DSS on platelet activation by analyzing aggregation and adhesion in vitro. Flow cytometry, western blotting, CM-H2DCFDA staining and mitochondrial function assays were performed to reveal the molecular mechanisms. The model of common carotid artery thrombus induced by ferric chloride was established. The wet weight of thrombus was measured, and the thrombosis was observed by hematoxylin and eosin (H&E) staining, in order to support the inhibitory effect of DSS on thrombosis. RESULTS Data mining found the antithrombotic effect of DSS is related to platelet activation and the core target is silent information regulator 1 (SIRT1). We confirmed that DSS dose-dependently inhibited platelet activation in vitro. DSS was further demonstrated to induce the expression of SIRT1 and decreased reactive oxygen species (ROS) burden and thereby prevented mitochondrial dysfunction. Mitochondrial function tests further indicated that DSS prevented mitochondrial DNA (mtDNA) release, which induced activation of platelet in a dendritic cell specific intercellular-adhesion-molecule-3 grabbing non-integrin (DC-SIGN)-dependent manner. In carotid artery injury model induced by ferric chloride, DSS inhibited the development of carotid arterial thrombosis. More encouragingly, in tail bleeding time assay, DSS did not augment bleeding risk. CONCLUSION These findings indicated that DSS effectively inhibited platelet activation by depressing the collection of ROS and the release of platelet mtDNA without arousing hemorrhage risk. DSS might represent a promising candidate drug for thrombosis and cardiovascular disease therapeutics.
Collapse
Affiliation(s)
- Yuejin Xue
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China
| | - Liyuan Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China
| | - Lusha Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China
| | - Wei Sun
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China
| | - Zhirui Fang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China
| | - Yuze Leng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China
| | - Mengyao Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China
| | - Xiuyun Ren
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China
| | - Rui Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China
| | - Yingxue Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China
| | - Lu Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China; Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, 301617 Tianjin, China; Tianjin State Key Laboratory of Modern Chinese Medicine, 301617 Tianjin, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China.
| | - Hong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China; Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, 301617 Tianjin, China; Tianjin State Key Laboratory of Modern Chinese Medicine, 301617 Tianjin, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China.
| |
Collapse
|
10
|
Chen YY, Nan JY, Li HX, Liu Q, Li B, Liu J, Wei PL, Zhang YY, Wang Z, Wang J. Deciphering potential pharmacological mechanisms of Danhong injection to treat chronic stable angina based on drug response-related modules and genes. JOURNAL OF ETHNOPHARMACOLOGY 2022; 291:115125. [PMID: 35202715 DOI: 10.1016/j.jep.2022.115125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danhong injection (DHI), a traditional Chinese medicine (TCM) injection that has been widely used to treat coronary heart disease and angina pectoris. However, its underlying pharmacological mechanisms have not been fully elucidated. Not all patients benefit from DHI to the same extent. We attempted to explore the characteristics of potential therapeutic targets in different responsive populations. AIM OF THE STUDY This study aimed to reveal the potential molecular mechanisms of DHI in treating chronic stable angina and identify potential therapeutic targets for DHI. MATERIALS AND METHODS Based on a previous phase IV clinical trial of DHI in treating chronic stable angina, drug response modules were identified through structural entropy and similarity. Drug response-related genes were screened out based on the correlations between drug response module/module-related genes and clinical features and were assessed using a random forest model. Further validation was conducted using a hypoxia/reoxygenation (H/R) model. RESULTS Seven DHI-related response modules were identified. Eight drug response-related genes were screened out, and principal component analysis showed that DHI responders were distinguished from responders in the control group based on their expression values. The combination of the two most important genes, SHC4 and PIP5K1P1, discriminated between responders and nonresponders with an area under the receiver operating characteristic curve (AUC) of 0.714; however, no significant difference was found in the AUC between the combination and a single gene. Reverse transcription-polymerase chain reaction showed that middle-dose DHI treatment significantly decreased SHC4 mRNA expression compared with that in the H/R group (P = 0.026), a finding consistent with our previous analysis of differentially expressed genes. CONCLUSIONS DHI comprehensively exerted a therapeutic effect by acting on multiple response modules related to angina pectoris and drug response-related genes. Our findings indicate that the dimensionality reduction strategy based on the target network-drug response module-therapeutic targets can contribute to revealing the mechanism of action of TCM compounds and guiding precise clinical medication.
Collapse
Affiliation(s)
- Yin-Ying Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing-Yi Nan
- Shananxi Buchang Pharmaceutical Co., Ltd., Xianyang, China
| | - Hai-Xia Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiong Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bing Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peng-Lu Wei
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Ying-Ying Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhong Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
11
|
Signaling pathways of inflammation in myocardial ischemia/reperfusion injury. CARDIOLOGY PLUS 2022. [DOI: 10.1097/cp9.0000000000000008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
12
|
Wang X, Su J, Lin Z, Liu K, Zhuang Y. PINCH1 knockout aggravates myocardial infarction in mice via mediating the NF-κB signaling pathway. Exp Ther Med 2021; 23:62. [PMID: 34934433 PMCID: PMC8649883 DOI: 10.3892/etm.2021.10984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/12/2021] [Indexed: 11/09/2022] Open
Abstract
Myocardial infarction (MI), the leading cause of death among patients with cardiovascular diseases, is characterized by acute cardiac muscle injury due to severe impairment of the coronary blood supply, which may lead to cardiogenic shock and cardiac arrest. Particularly interesting new cysteine histidine rich 1 (PINCH1) protein, a key component of the integrin signaling pathway, interacts with several proteins and serves a vital role in numerous cellular processes, including cytoskeleton remodeling, cell proliferation and cell migration. To investigate the role of PINCH1 in heart injury in the present study, PINCH1 was knocked out in the myocardial tissue of mice (age, 18 weeks) to induce MI. In addition, cell viability, migration and apoptosis, as well as the expression levels of NF-κB-associated proteins were determined in murine HL1 cardiomyocytes with a conditional PINCH1 shRNA using Cell Counting Kit-8, Transwell, flow cytometry and western blot assays, respectively. Furthermore, the cardiac expansion and myocardial fibrosis in PINCH1 knockout mice was investigated in vivo by performing morphological and histological examinations. Additionally, the murine ventricular myocardial ultrastructure was evaluated using an electron microscope, and the cardiomyocyte apoptotic rate and expression levels of NF-κB-related proteins were determined using TUNEL and western blot assays, respectively. The results showed that the apoptotic rate in the in vivo PINCH1 knockdown group was significantly increased. In addition, the protein expression levels of NF-κB signaling pathway-related proteins, including NF-κB, myeloid differentiation factor 88, TNF-α and caspase-3, were significantly increased in the in vivo PINCH1 knockdown group compared with the wild-type group, but the protein expression of MMP2 and MMP9 were the opposite. Overall, the in vitro and in vivo results revealed that PINCH1 knockout in mice significantly aggravated MI via the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xuejun Wang
- Department of Cardiology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, P.R. China
| | - Jinwen Su
- Department of Cardiology, Shanghai Ninth People's Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200011, P.R. China
| | - Zhikang Lin
- Department of Cardiology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, P.R. China
| | - Kangyong Liu
- Department of Neurology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, P.R. China
| | - Yu Zhuang
- Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| |
Collapse
|
13
|
Chinese Herbal Medicine Alleviates Myocardial Ischemia/Reperfusion Injury by Regulating Endoplasmic Reticulum Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:4963346. [PMID: 34917158 PMCID: PMC8670943 DOI: 10.1155/2021/4963346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023]
Abstract
Myocardial ischemia/reperfusion injury is the main cause of increased mortality and disability in cardiovascular diseases. The injury involves many pathological processes, such as oxidative stress, calcium homeostasis imbalance, inflammation, and energy metabolism disorders, and these pathological stimuli can activate endoplasmic reticulum stress. In the early stage of ischemia, endoplasmic reticulum stress alleviates the injury as an adaptive survival response, but the long-term stress on endoplasmic reticulum amplifies oxidative stress, inflammation, and calcium overload to accelerate cell damage and apoptosis. Therefore, regulation of endoplasmic reticulum stress may be a mechanism to improve ischemia/reperfusion injury. Chinese herbal medicine has a long history of clinical application and unique advantages in the treatment of ischemic heart diseases. This review focuses on the effect of Chinese herbal medicine on myocardial ischemia/reperfusion injury from the perspective of regulation of endoplasmic reticulum stress.
Collapse
|
14
|
Qiu L, Liu X, Li W, Liu Z, Xu C, Xia H. Downregulation of p300/CBP-associated factor inhibits cardiomyocyte apoptosis via suppression of NF-κB pathway in ischaemia/reperfusion injury rats. J Cell Mol Med 2021; 25:10224-10235. [PMID: 34601814 PMCID: PMC8572777 DOI: 10.1111/jcmm.16959] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/11/2021] [Accepted: 09/19/2021] [Indexed: 12/20/2022] Open
Abstract
Cardiomyocyte apoptosis is the main reason of cardiac injury after myocardial ischaemia-reperfusion (I/R) injury (MIRI), but the role of p300/CBP-associated factor (PCAF) on myocardial apoptosis in MIRI is unknown. The aim of this study was to investigate the main mechanism of PCAF modulating cardiomyocyte apoptosis in MIRI. The MIRI model was constructed by ligation of the rat left anterior descending coronary vessel for 30 min and reperfusion for 24 h in vivo. H9c2 cells were harvested after induced by hypoxia for 6 h and then reoxygenation for 24 h (H/R) in vitro. The RNA interference PCAF expression adenovirus was transfected into rat myocardium and H9c2 cells. The area of myocardial infarction, cardiac function, myocardial injury marker levels, apoptosis, inflammation and oxidative stress were detected respectively. Both I/R and H/R remarkably upregulated the expression of PCAF, and downregulation of PCAF significantly attenuated myocardial apoptosis, inflammation and oxidative stress caused by I/R and H/R. In addition, downregulation of PCAF inhibited the activation of NF-κB signalling pathway in cardiomyocytes undergoing H/R. Pretreatment of lipopolysaccharide, a NF-κB pathway activator, could blunt these protective effects of PCAF downregulation on myocardial apoptosis in MIRI. These results highlight that downregulation of PCAF could reduce cardiomyocyte apoptosis by inhibiting the NF-κB pathway, thereby providing protection for MIRI. Therefore, PCAF might be a promising target for protecting against cardiac dysfunction induced by MIRI.
Collapse
Affiliation(s)
- Liqiang Qiu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xiaoxiong Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wenjing Li
- Department of Integrated Traditional Chinese and Western Medicine, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Zhebo Liu
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changwu Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Hao Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
15
|
Demir M, Altinoz E, Elbe H, Bicer Y, Yigitturk G, Karayakali M, Ballur AFH. Effects of pinealectomy and crocin treatment on rats with isoproterenol-induced myocardial infarction. Drug Chem Toxicol 2021; 45:2576-2585. [PMID: 34538161 DOI: 10.1080/01480545.2021.1977025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The present study aimed to analyze the effects of pinealectomy and crocin treatment in isoproterenol-induced myocardial damage. Seventy rats were divided into seven groups: control, sham control, pinealectomy (PNX), isoproterenol (ISO; 85 mg/kg on the 29th and 30th days of the experiment, subcutaneous injection), PNX + ISO, PNX + crocin (50 mg/kg/day for 30 days, intragastric administration), and PNX + ISO + crocin. PNX procedure was performed on the first day of the study. A significant increase was observed in serum cardiac damage markers (CK-MB, Troponin I) after ISO administration. ISO administration led to a significant increase in cardiac oxidative stress parameters, such as malondialdehyde (MDA) and total oxidant status (TOS), while it led to a decrease in antioxidant defense system parameters, such as reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT) and total antioxidant status (TAS) when compared to control groups. Elevated MDA and TOS levels were observed, while reduced SOD and CAT activities, and decreased GSH and TAS levels were observed in the group that underwent PNX and ISO administration when compared to the PNX group. Furthermore, in the PNX + ISO + Crocin group, SOD and CAT activities, and GSH and TAS levels ameliorated and MDA and TOS levels were reduced with the crocin treatment when compared to the PNX + ISO group. Also, marked increases were observed in serum cardiac markers, histopathological and immunohistochemical findings after the crocin treatment. All findings demonstrated that crocin could be employed as a cardioprotective agent due to its antioxidant, anti-inflammatory, and anti-apoptotic properties.
Collapse
Affiliation(s)
- Mehmet Demir
- Department of Physiology, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Eyup Altinoz
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Hulya Elbe
- Department of Histology and Embryology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - Yasemin Bicer
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Gurkan Yigitturk
- Department of Histology and Embryology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - Melike Karayakali
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Arwa Fadıl Haqi Ballur
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| |
Collapse
|
16
|
Ji Y, Lang X, Wang W, Li S, Zhao C, Shen X, Zhang T, Ye H. Lactobacillus paracasei ameliorates cognitive impairment in high-fat induced obese mice via insulin signaling and neuroinflammation pathways. Food Funct 2021; 12:8728-8737. [PMID: 34365497 DOI: 10.1039/d1fo01320c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Long-term consumption of a high-fat diet (HFD) can cause glucose and lipid metabolism disorders, damage the brain and nervous system and result in cognitive impairment. The objective of this study was to investigate the preventative effects of Lactobacillus paracasei (Jlus66, a probiotic extracted from cheese in Northeast China) on cognitive impairment associated with HFD. The water maze was used to compare memory changes in mice fed HFD with or without Jlus66. Hippocampal tissue morphology was examined using H&E staining. The expression of neurotrophic factors BDNF, PSD95 and SNAP25, insulin resistance related proteins IRS-1, AKT and GSK3β, and inflammatory related proteins JNK and p38 were detected using western blotting. The results showed that Jlus66 significantly increased the expression of BDNF, PSD95 and SNAP25 (p < 0.01, respectively), increased expression of p-AKT (p < 0.05), p-IRS-1Y612 and p-GSK3β (p < 0.01, respectively), and reduced the expression of p-IRS-1S307, p-JNK and p-p38 (p < 0.05) compared with the HFD group. We conclude that Jlus66 can ameliorate cognitive impairment via insulin signaling and neuroinflammation pathways.
Collapse
Affiliation(s)
- Yaoyao Ji
- College of Food Science and Engineering, Jilin University, Changchun, China.
| | - Xinsong Lang
- College of Food Science and Engineering, Jilin University, Changchun, China.
| | - Wei Wang
- College of Food Science and Engineering, Jilin University, Changchun, China. and Jilin Provincial People's Hospital, Changchun, China
| | - Shengnan Li
- College of Food Science and Engineering, Jilin University, Changchun, China.
| | - Changhui Zhao
- College of Food Science and Engineering, Jilin University, Changchun, China.
| | - Xue Shen
- College of Food Science and Engineering, Jilin University, Changchun, China.
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China.
| | - Haiqing Ye
- College of Food Science and Engineering, Jilin University, Changchun, China.
| |
Collapse
|
17
|
Role of Oxidative Stress in Reperfusion following Myocardial Ischemia and Its Treatments. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6614009. [PMID: 34055195 PMCID: PMC8149218 DOI: 10.1155/2021/6614009] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/21/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022]
Abstract
Myocardial ischemia is a disease with high morbidity and mortality, for which reperfusion is currently the standard intervention. However, the reperfusion may lead to further myocardial damage, known as myocardial ischemia/reperfusion injury (MI/RI). Oxidative stress is one of the most important pathological mechanisms in reperfusion injury, which causes apoptosis, autophagy, inflammation, and some other damage in cardiomyocytes through multiple pathways, thus causing irreversible cardiomyocyte damage and cardiac dysfunction. This article reviews the pathological mechanisms of oxidative stress involved in reperfusion injury and the interventions for different pathways and targets, so as to form systematic treatments for oxidative stress-induced myocardial reperfusion injury and make up for the lack of monotherapy.
Collapse
|
18
|
Ji Y, Lang X, Wang W, Li S, Zhao C, Shen X, Zhang T, Ye H. Lactobacillus paracasei ameliorates cognitive impairment in high-fat induced obese mice via insulin signaling and neuroinflammation pathways. Food Funct 2021. [DOI: 10.1039/d1fo01320c 10.1039/d1fo01320c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Long-term consumption of a high-fat diet (HFD) can cause glucose and lipid metabolism disorders, damage the brain and nervous system and result in cognitive impairment.
Collapse
Affiliation(s)
- Yaoyao Ji
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Xinsong Lang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Wei Wang
- College of Food Science and Engineering, Jilin University, Changchun, China
- Jilin Provincial People's Hospital, Changchun, China
| | - Shengnan Li
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Changhui Zhao
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Xue Shen
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Haiqing Ye
- College of Food Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
19
|
Wang L, Tian J, Liu S, Zhang Y, Liu J, Yi Y, Li C, Zhao Y, Zhang Y, Han J, Pan C, Li G, Xian Z, Liang A. Shuxuening injection, derived from Ginkgo biloba leaf, induced pseudo-allergic reactions through hyperactivation of mTOR. PHARMACEUTICAL BIOLOGY 2020; 58:581-589. [PMID: 32615844 PMCID: PMC8641670 DOI: 10.1080/13880209.2020.1784238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
Context: Shuxuening injection (SXNI), derived from the leaf of Ginkgo biloba L. (Ginkgoaceae), is widely used to treat cardio-cerebral vascular system related disease due to the efficacy of dilating the blood vessels and improving the function of microcirculation. Nevertheless, SXNI induces immediate hypersensitivity reactions in clinics and the molecular mechanisms are unknown.Objective: The present study investigates the molecular mechanism of SXNI mediated hypersensitivity reactions.Materials and methods: Naive male ICR mice (n = 10) were administered (i.v.) with negative control combined with Evans blue (EB) (CTL-EB), SXNI (14 or 70 mg/kg) combined with EB (SXNI/1-EB or SXNI/4-EB), vascular leakage was evaluated, ears and lungs were collected for histopathological analysis. In vitro, TSC1 was knockdown in human umbilical vein endothelial cells (HUVECs). HUVECs were incubated with SXNI, and the alterations of endothelial cell permeability were observed. Rapamycin (mTOR inbibitor) was used to investigate SXNI-induced hypersensitivity reactions both in mice and HUVECs.Results: SXNI (70 mg/kg) induced vascular leakage in mice. Slight oedema and microvascular dilation in the ears, and broaden of alveolar septal and monocyte infiltration in the lungs were observed in SXNI (70 mg/kg) treated mice. mTOR inhibitor alleviates SXNI mediated vascular endothelial hyperpermeability both in vitro and in vivo.Discussion and conclusions: SXNI stimulates pseudo-allergic reactions through hyperactivation of mTOR signalling pathway. Our work provides the new molecular mechanism of drug related pseudo-allergic reactions, and a potential drug to prevent and treat SXNI mediated hypersensitivity reactions.
Collapse
Affiliation(s)
- Lianmei Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingzhuo Tian
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Suyan Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanyan Zhang
- Traditional Chinese Medicine Injection Innovation Center, Shijiazhuang, Hebei Province, China
| | - Jing Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan Yi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunying Li
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yong Zhao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yushi Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiayin Han
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chen Pan
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guiqin Li
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhong Xian
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aihua Liang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
20
|
Ye J, Lu S, Wang M, Ge W, Liu H, Qi Y, Fu J, Zhang Q, Zhang B, Sun G, Sun X. Hydroxysafflor Yellow A Protects Against Myocardial Ischemia/Reperfusion Injury via Suppressing NLRP3 Inflammasome and Activating Autophagy. Front Pharmacol 2020; 11:1170. [PMID: 32848777 PMCID: PMC7406911 DOI: 10.3389/fphar.2020.01170] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/17/2020] [Indexed: 12/24/2022] Open
Abstract
Myocardial ischemia/reperfusion (MI/R) injury is a serious threat to human health. Hydroxysafflor yellow A (HSYA), the main water-soluble ingredient extracted from Carthami flos (Carthamus tinctorius L.), has therapeutic potential for treating MI/R injury. However, the mechanisms of HSYA−mediated protection from MI/R injury are incompletely understood. In the present study, we investigated the effects and the underlying mechanisms of HSYA during MI/R. Adult Sprague-Dawley rats were subjected to left anterior descending artery ligation for 30 min followed by 24 h of reperfusion with or without HSYA treatment. The protective effect of HSYA was detected by 2,3,5-triphenyl tetrazolium chloride (TTC) staining, hematoxylin eosin (HE) staining, and myocardial enzymes detections. Serum levels of inflammatory factors such as TNF-α, interleukin (IL)-1β, and IL-18, were detected using ELISA kits. The expression of NLRP3 and other related proteins in the myocardium was detected by western blot and immunohistochemistry. The expression of autophagy-related proteins, including Atg5, BECN1, P62, and LC3B, was detected by western blot to evaluate the effect of HSYA on autophagy. Results showed that HSYA decreased the myocardial infarct size and attenuated the cardiac dysfunction in rats after I/R. In addition, HSYA inhibited myocardial apoptosis compared with the I/R group, decreased the levels of inflammatory cytokines in rat serum, reduced NLRP3 inflammasome expression, and induced autophagy. Mechanistically, our results demonstrated that HSYA can activate AMPK to improve autophagy and inhibit NLRP3 inflammasome by inhibiting the mTOR pathway. This work provides strong data supporting for the clinical applications of HSYA in MI/R injury.
Collapse
Affiliation(s)
- Jingxue Ye
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shan Lu
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wenxiu Ge
- College of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Haitao Liu
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yaodong Qi
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianhua Fu
- Pneumology Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiong Zhang
- Pneumology Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bengang Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
21
|
Zhang DQ, Mu YP, Xu Y, Chen JM, Liu P, Liu W. Research Progress in Chinese Medicine Preparations for Promoting Blood Circulation and Removing Blood Stasis for Cirrhotic Patients with Portal Vein Thrombosis Following Splenectomy. Chin J Integr Med 2020; 28:855-863. [PMID: 32691285 DOI: 10.1007/s11655-020-3271-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2020] [Indexed: 02/07/2023]
Abstract
This article presented an overview of the therapeutic effects of Chinese medicine (CM) preparations for promoting blood circulation and removing blood stasis for patients with portal vein thrombosis (PVT) after splenectomy. Based on published clinical researches of CM preparations for PVT after splenectomy in patients with cirrhotic portal hypertension (CPH), this paper evaluated the incidence of PVT, and explored potential active components and mechanisms of CM preparations. Safflower Yellow Injection, Danshen Injection () Danhong Injection (), and Compound Danshen Dropping Pill () achieved good curative effect alone or combined with anticoagulant therapy. In addition, Compound Biejia Ruangan Tablet () and Anluo Huaxian Pill () can also significantly improve the hemodynamic disorders of portal vein system in patients with cirrhosis. Considering the role of CM preparations in ameliorating the incidence of PVT after splenectomy in patients with CPH, we suggested that future research should provide more attention to CM alone or CM combined with anticoagulant for cirrhosis with PVT.
Collapse
Affiliation(s)
- Ding-Qi Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, 201203, China
| | - Yong-Ping Mu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, 201203, China
| | - Ying Xu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, 201203, China
| | - Jia-Mei Chen
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, 201203, China
| | - Ping Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, 201203, China
- Institute of Interdisciplinary Complex Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wei Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, 201203, China.
| |
Collapse
|
22
|
Xu L, Cai Y, Wang Y, Xu C. Meteorin-Like (METRNL) Attenuates Myocardial Ischemia/Reperfusion Injury-Induced Cardiomyocytes Apoptosis by Alleviating Endoplasmic Reticulum Stress via Activation of AMPK-PAK2 Signaling in H9C2 Cells. Med Sci Monit 2020; 26:e924564. [PMID: 32594095 PMCID: PMC7343023 DOI: 10.12659/msm.924564] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Myocardial ischemia mediates the progression of multiple cardiovascular diseases and leads to serious damage to the morphology, function, and metabolism of cardiomyocytes. The serum level of the hormone Meteorin-like (METRNL) was lower in patients with coronary artery disease and was negatively correlated with inflammatory cytokines. The aim of the present study was to determine the relationship between METRNL and myocardial ischemia/reperfusion (MI/R) injury, and investigate the molecular mechanisms implicated the pathogenesis of myocardial ischemia. MATERIAL AND METHODS In the present study, H9C2 cells underwent oxygen-glucose deprivation and reperfusion (OGD/R) treatment to establish a MI/R cell model. Quantitative real-time polymerase chain reaction was performed to analyze the expression of target gene. Western blot was used to evaluate the protein expression. Cell Counting Kit-8 assay was employed to detect the cell viability. Enzyme-linked immunosorbent assay was carried out to determine the levels of inflammatory cytokines. Finally, flow cytometry and TUNEL staining were used to detect the apoptotic levels of cardiomyocytes. RESULTS The results showed that the expression of METRNL was downregulated in H9C2 cells during OGD/R. Interestingly, METRNL overexpression inhibited the inflammation, apoptosis and endoplasmic reticulum stress in H9C2 cells during OGD/R, which were totally reversed by PAK2 silencing. In addition, METRNL overexpression induced activation of AMPK-PAK2 signaling cascade. CONCLUSIONS METRNL attenuates MI/R injury-induced cardiomyocytes apoptosis by alleviating endoplasmic reticulum stress via activation of AMPK-PAK2 signaling in H9C2 cells. Our findings support that METRNL might be a promising target for treatment of myocardial ischemia in the future.
Collapse
Affiliation(s)
- Ling Xu
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China (mainland)
| | - Yinlian Cai
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China (mainland)
| | - Yaoguo Wang
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China (mainland)
| | - Chaoxiang Xu
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China (mainland)
| |
Collapse
|