1
|
Safdar A, Wang P, Muhaymin A, Nie G, Li S. From bench to bedside: Platelet biomimetic nanoparticles as a promising carriers for personalized drug delivery. J Control Release 2024; 373:128-144. [PMID: 38977134 DOI: 10.1016/j.jconrel.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
In recent decades, there has been a burgeoning interest in cell membrane coating strategies as innovative approach for targeted delivery systems in biomedical applications. Platelet membrane-coated nanoparticles (PNPs), in particular, are gaining interest as a new route for targeted therapy due to their advantages over conventional drug therapies. Their stepwise approach blends the capabilities of the natural platelet membrane (PM) with the adaptable nature of manufactured nanomaterials, resulting in a synergistic combination that enhances drug delivery and enables the development of innovative therapeutics. In this context, we present an overview of the latest advancements in designing PNPs with various structures tailored for precise drug delivery. Initially, we describe the types, preparation methods, delivery mechanisms, and specific advantages of PNPs. Next, we focus on three critical applications of PNPs in diseases: vascular disease therapy, cancer treatment, and management of infectious diseases. This review presents our knowledge of PNPs, summarizes their advancements in targeted therapies and discusses the promising potential for clinical translation of PNPs.
Collapse
Affiliation(s)
- Ammara Safdar
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Peina Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; Department of Histology and Embryology, College of Basic Medical Sciences, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China.
| | - Abdul Muhaymin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Suping Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| |
Collapse
|
2
|
Gan C, Hu H, Meng Z, Zhu X, Gu R, Wu Z, Sun W, Han P, Wang H, Dou G, Gan H. Local Clays from China as Alternative Hemostatic Agents. Molecules 2023; 28:7756. [PMID: 38067486 PMCID: PMC10708434 DOI: 10.3390/molecules28237756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
In recent years, the coagulation properties of inorganic minerals such as kaolin and zeolite have been demonstrated. This study aimed to assess the hemostatic properties of three local clays from China: natural kaolin from Hainan, natural halloysite from Yunnan, and zeolite synthesized by our group. The physical and chemical properties, blood coagulation performance, and cell biocompatibility of the three materials were tested. The studied materials were characterized by using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). All three clays showed different morphologies and particle size, and exhibited negative potentials between pH 6 and 8. The TGA and DSC curves for kaolin and halloysite were highly similar. Kaolin showed the highest water absorption capacity (approximately 93.8% ± 0.8%). All three clays were noncytotoxic toward L929 mouse fibroblasts. Kaolin and halloysite showed blood coagulation effects similar to that exhibited by zeolite, indicating that kaolin and halloysite are promising alternative hemostatic materials.
Collapse
Affiliation(s)
- Changjiao Gan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.G.)
- National Medical Products Administration Institute of Executive Development, 16 Xi Zhan Nan Road, Beijing 100073, China
| | - Hongjie Hu
- Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Zhengzhou 450006, China
| | - Zhiyun Meng
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.G.)
| | - Xiaoxia Zhu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.G.)
| | - Ruolan Gu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.G.)
| | - Zhuona Wu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.G.)
| | - Wenzhong Sun
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.G.)
| | - Peng Han
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.G.)
| | - Hongliang Wang
- Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Zhengzhou 450006, China
| | - Guifang Dou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.G.)
| | - Hui Gan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.G.)
| |
Collapse
|
3
|
Nepal A, Tran HD, Nguyen NT, Ta HT. Advances in haemostatic sponges: Characteristics and the underlying mechanisms for rapid haemostasis. Bioact Mater 2023; 27:231-256. [PMID: 37122895 PMCID: PMC10130630 DOI: 10.1016/j.bioactmat.2023.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 05/02/2023] Open
Abstract
In traumatized patients, the primary cause of mortality is uncontrollable continuous bleeding and unexpected intraoperative bleeding which is likely to increase the risk of complications and surgical failure. High expansion sponges are effective clinical practice for the treatment of wound bleeding (irregular/deep/narrow) that are caused by capillaries, veins and even arterioles as they possess a high liquid absorption ratio so can absorb blood platelets easily in comparison with traditional haemostasis treatments, which involve compression, ligation, or electrical coagulation etc. When in contact with blood, haemostatic sponges can cause platelet adhesion, aggregation, and thrombosis, preventing blood from flowing out from wounds, triggering the release of coagulation factors, causing the blood to form a stable polymerized fibre protein, forming blood clots, and achieving the goal of wound bleeding control. Haemostatic sponges are found in a variety of shapes and sizes. The aim of this review is to facilitate an overview of recent research around haemostatic sponge materials, products, and technology. This paper reviews the synthesis, properties, and characteristics of haemostatic sponges, together with the haemostasis mechanisms of haemostatic sponges (composite materials), such as chitosan, cellulose, gelatin, starch, graphene oxide, hyaluronic acid, alginate, polyethylene glycol, silk fibroin, synthetic polymers silver nanoparticles, zinc oxide nanoparticles, mesoporous silica nanoparticles, and silica nanoparticles. Also, this paper reviews commercial sponges and their properties. In addition to this, we discuss various in-vitro/in-vivo approaches for the evaluation of the effect of sponges on haemostasis.
Collapse
Affiliation(s)
- Akriti Nepal
- Queensland Micro-and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Huong D.N. Tran
- Queensland Micro-and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Nam-Trung Nguyen
- Queensland Micro-and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Hang Thu Ta
- Queensland Micro-and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, 4072, Australia
- Bioscience Discipline, School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
- Corresponding author. Bioscience Department, School of Environment and Science, Griffith University, Nathan Campus, Brisbane, QLD, 4111, Australia..
| |
Collapse
|
4
|
Du J, Wang J, Xu T, Yao H, Yu L, Huang D. Hemostasis Strategies and Recent Advances in Nanomaterials for Hemostasis. Molecules 2023; 28:5264. [PMID: 37446923 DOI: 10.3390/molecules28135264] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/25/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
The development of materials that effectively stop bleeding and prevent wound adhesion is essential in both military and medical fields. However, traditional hemostasis methods, such as cautery, tourniquets, and gauze, have limitations. In recent years, new nanomaterials have gained popularity in medical and health fields due to their unique microstructural advantages. Compared to traditional materials, nanomaterials offer better adhesion, versatility, and improved bioavailability of traditional medicines. Nanomaterials also possess advantages such as a high degree and stability, self-degradation, fewer side effects, and improved wound healing, which make them ideal for the development of new hemostatic materials. Our review provides an overview of the currently used hemostatic strategies and materials, followed by a review of the cutting-edge nanomaterials for hemostasis, including nanoparticles and nanocomposite hydrogels. The paper also briefly describes the challenges faced by the application of nanomaterials for hemostasis and the prospects for their future development.
Collapse
Affiliation(s)
- Jian Du
- Suining Municipal Hospital of Traditional Chinese Medicine, Suining 629000, China
| | - Jingzhong Wang
- Suining Municipal Hospital of Traditional Chinese Medicine, Suining 629000, China
| | - Tao Xu
- Suining Municipal Hospital of Traditional Chinese Medicine, Suining 629000, China
| | - Hai Yao
- Center For Peak of Excellence on Biological Science and Food Engineering, National University of Singapore (Suzhou) Research Institute, Suzhou 215004, China
| | - Lili Yu
- Center For Peak of Excellence on Biological Science and Food Engineering, National University of Singapore (Suzhou) Research Institute, Suzhou 215004, China
| | - Da Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
5
|
Zhang X, Khan S, Wei R, Zhang Y, Liu Y, Wee Yong V, Xue M. Application of nanomaterials in the treatment of intracerebral hemorrhage. J Tissue Eng 2023; 14:20417314231157004. [PMID: 37032735 PMCID: PMC10074624 DOI: 10.1177/20417314231157004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/28/2023] [Indexed: 04/05/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a non-traumatic hemorrhage caused by the rupture of blood vessels in the brain parenchyma, with an acute mortality rate of 30%‒40%. Currently, available treatment options that include surgery are not promising, and new approaches are urgently needed. Nanotechnology offers new prospects in ICH because of its unique benefits. In this review, we summarize the applications of various nanomaterials in ICH. Nanomaterials not only enhance the therapeutic effects of drugs as delivery carriers but also contribute to several facets after ICH such as repressing detrimental neuroinflammation, resisting oxidative stress, reducing cell death, and improving functional deficits.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Suliman Khan
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Ruixue Wei
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Voon Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
6
|
Lu X, Li X, Yu J, Ding B. Nanofibrous hemostatic materials: Structural design, fabrication methods, and hemostatic mechanisms. Acta Biomater 2022; 154:49-62. [PMID: 36265792 DOI: 10.1016/j.actbio.2022.10.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/16/2022] [Accepted: 10/12/2022] [Indexed: 12/14/2022]
Abstract
Development of rapid and effective hemostatic materials has always been the focus of research in the healthcare field. Nanofibrous materials which recapitulate the delicate nano-topography feature of fibrin fibers produced during natural hemostatic process, offer large length-to-diameter ratio and surface area, tunable porous structure, and precise control in architecture, showing great potential for staunching bleeding. Here we present a comprehensive review of advances in nanofibrous hemostatic materials, focusing on the following three important parts: structural design, fabrication methods, and hemostatic mechanisms. This review begins with an introduction to the physiological hemostatic mechanism and current commercial hemostatic agents. Then, it focuses on recent progress in electrospun nanofibrous hemostatic materials in terms of composition and structure control, surface modification, and in-situ deposition. The article emphasizes the development of three-dimensional (3D) electrospun nanofibrous materials and their emerging evolution for improving hemostatic function. Next, it discusses the fabrication of self-assembling peptide or protein-mimetic peptide nanofibers, co-assembling supramolecular nanofibers, as well as other nanofibrous hemostatic agents. Further, the article highlights the external and intracavitary hemostatic management based on various nanofiber aggregates. In the end, this review concludes with the current challenges and future perspectives of nanofibrous hemostatic materials. STATEMENT OF SIGNIFICANCE: This article reviews recent advances in nanofibrous hemostatic materials including fabrication methods, composition and structural control, performance improvement, and hemostatic mechanisms. A variety of methods including electrospinning, self-assembly, grinding and refining, template synthesis, and chemical vapor deposition, have been developed to prepare nanofibrous materials. These methods provide robustness in control of the nanofiber architecture in the forms of hydrogels, two-dimensional (2D) membranes, 3D sponges, or composites, showing promising potential in the external and intracavitary hemostasis and wound healing applications. This review will be of great interest to the broad readers in the field of hemostatic materials and multifunctional biomaterials.
Collapse
Affiliation(s)
- Xuyan Lu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xiaoran Li
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China.
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China.
| |
Collapse
|
7
|
Xiao X, Wu Z. A Narrative Review of Different Hemostatic Materials in Emergency Treatment of Trauma. Emerg Med Int 2022; 2022:6023261. [PMID: 36311483 PMCID: PMC9616665 DOI: 10.1155/2022/6023261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/06/2022] [Accepted: 10/15/2022] [Indexed: 11/23/2022] Open
Abstract
Hemostatic materials are very important for the treatment of a large number of bleeding trauma patients in battlefield and disaster environments. Different types of hemostatic materials need to be used for emergency hemostasis according to different injury parts and severity. At present, the first-aid hemostatic materials have been well applied to the bleeding of body surface wounds, limbs, and junctions, but there are still no ideal hemostatic materials in the early treatment of first aid for the deep and incompressible bleeding of thoracoabdominal cavity and visceral organs. This paper reviews the classification and mechanism of hemostatic materials, as well as the application and research progress in trauma emergency, so as to provide reference for the application of hemostatic materials in early first-aid emergency.
Collapse
Affiliation(s)
- Xiaoxiao Xiao
- West China Hospital Operation Room West China School of Nursing, Ichuan University, 37 GuoXue Alley, Chengdu 610041, Sichuan, China
| | - Zhoupeng Wu
- Department of Vascular Surgery, West China Hospital, Sichuan University, 37 GuoXue Alley, Chengdu 610041, Sichuan, China
| |
Collapse
|
8
|
The effect of ethyl acetate mediated silver nanoparticles from Urtica diocia on hemostasis; in-vitro and in-vivo study. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
dos Santos MCF, dos Santos Cavalcante LP, de Andrade KF, da Silva AF, de Araújo Ferreira Muniz I, de Lima JM, Aguiar RT, Tavares JF, Castellano LRC, da Silva SD, Bonan PRF. Chitosan sponges and polycaprolactone nanoparticles carrying tranexamic acid as hemostatic agent: Synthesis, characterization and bioapplication. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Maria Carolina Fernandes dos Santos
- Laboratory for Cell Culture and Analysis Federal University of Paraiba, Health Sciences Center—Campus I, Technical School of Health João Pessoa Paraíba Brazil
| | - Luiza Peixoto dos Santos Cavalcante
- Laboratory for Cell Culture and Analysis Federal University of Paraiba, Health Sciences Center—Campus I, Technical School of Health João Pessoa Paraíba Brazil
| | - Karlivânia Ferreira de Andrade
- Laboratory for Cell Culture and Analysis Federal University of Paraiba, Health Sciences Center—Campus I, Technical School of Health João Pessoa Paraíba Brazil
| | - Alan Frazão da Silva
- Laboratory for Cell Culture and Analysis Federal University of Paraiba, Health Sciences Center—Campus I, Technical School of Health João Pessoa Paraíba Brazil
| | | | - Jefferson Muniz de Lima
- Post Graduate Program in Dentistry Federal University of Pernambuco, Health Sciences Center Recife Prince Edward Island Brazil
| | - Rebeca Tibau Aguiar
- Integrated Laboratory of Biomaterials Federal University of Paraíba, Health Sciences Center João Pessoa Paraíba Brazil
| | - Josean Fechine Tavares
- Laboratory of Pharmaceutical Technology Federal University of Paraíba João Pessoa Paraíba Brazil
| | - Lúcio Roberto Cançado Castellano
- Laboratory for Cell Culture and Analysis Federal University of Paraiba, Health Sciences Center—Campus I, Technical School of Health João Pessoa Paraíba Brazil
| | | | - Paulo Rogério Ferreti Bonan
- Department of Clinical and Social Dentistry Federal University of Paraíba, Health Sciences Center João Pessoa Paraíba Brazil
| |
Collapse
|
10
|
Moldovan H, Antoniac I, Gheorghiță D, Safta MS, Preda S, Broască M, Badilă E, Fronea O, Scafa-Udrişte A, Cacoveanu M, Molnar A, Costache VS, Zaharia O. Biomaterials as Haemostatic Agents in Cardiovascular Surgery: Review of Current Situation and Future Trends. Polymers (Basel) 2022; 14:1189. [PMID: 35335519 PMCID: PMC8955858 DOI: 10.3390/polym14061189] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Intraoperative haemostasis is of paramount importance in the practice of cardiovascular surgery. Over the past 70 years, topical haemostatic methods have advanced significantly and today we deal with various haemostatic agents with different properties and different mechanisms of action. The particularity of coagulation mechanisms after extracorporeal circulation, has encouraged the introduction of new types of topic agents to achieve haemostasis, where conventional methods prove their limits. These products have an important role in cardiac, as well as in vascular, surgery, mainly in major vascular procedures, like aortic dissections and aortic aneurysms. This article presents those agents used for topical application and the mechanism of haemostasis and offers general recommendations for their use in the operating room.
Collapse
Affiliation(s)
- Horațiu Moldovan
- Department of Cardiovascular Surgery, Bucharest Clinical Emergency Hospital, 014461 Bucharest, Romania; (M.S.S.); (S.P.); (M.B.); (A.S.-U.); (M.C.)
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (E.B.); (O.F.); (O.Z.)
| | - Iulian Antoniac
- Faculty of Materials Science and Engineering, Politehnica University of Bucharest, 060042 Bucharest, Romania;
| | - Daniela Gheorghiță
- Faculty of Materials Science and Engineering, Politehnica University of Bucharest, 060042 Bucharest, Romania;
| | - Maria Sabina Safta
- Department of Cardiovascular Surgery, Bucharest Clinical Emergency Hospital, 014461 Bucharest, Romania; (M.S.S.); (S.P.); (M.B.); (A.S.-U.); (M.C.)
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (E.B.); (O.F.); (O.Z.)
| | - Silvia Preda
- Department of Cardiovascular Surgery, Bucharest Clinical Emergency Hospital, 014461 Bucharest, Romania; (M.S.S.); (S.P.); (M.B.); (A.S.-U.); (M.C.)
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (E.B.); (O.F.); (O.Z.)
| | - Marian Broască
- Department of Cardiovascular Surgery, Bucharest Clinical Emergency Hospital, 014461 Bucharest, Romania; (M.S.S.); (S.P.); (M.B.); (A.S.-U.); (M.C.)
| | - Elisabeta Badilă
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (E.B.); (O.F.); (O.Z.)
| | - Oana Fronea
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (E.B.); (O.F.); (O.Z.)
| | - Alexandru Scafa-Udrişte
- Department of Cardiovascular Surgery, Bucharest Clinical Emergency Hospital, 014461 Bucharest, Romania; (M.S.S.); (S.P.); (M.B.); (A.S.-U.); (M.C.)
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (E.B.); (O.F.); (O.Z.)
| | - Mihai Cacoveanu
- Department of Cardiovascular Surgery, Bucharest Clinical Emergency Hospital, 014461 Bucharest, Romania; (M.S.S.); (S.P.); (M.B.); (A.S.-U.); (M.C.)
| | - Adrian Molnar
- Faculty of Medicine, Iuliu Hateganu University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania;
- Heart Institute, 400001 Cluj-Napoca, Romania
| | - Victor Sebastian Costache
- Sf. Constantin Hospital, 500388 Brasov, Romania;
- Faculty of Medicine, Titu Maiorescu University, 040441 Bucharest, Romania
| | - Ondin Zaharia
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (E.B.); (O.F.); (O.Z.)
- Prof.Dr. Theodor Burghele Clinical Hospital, 050659 Bucharest, Romania
| |
Collapse
|
11
|
Bhadauria SS, Malviya R. Advancement in Nanoformulations for the Management of Diabetic Wound Healing. Endocr Metab Immune Disord Drug Targets 2022; 22:911-926. [PMID: 35249512 DOI: 10.2174/1871530322666220304214106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/01/2021] [Accepted: 01/07/2022] [Indexed: 11/22/2022]
Abstract
People with diabetes have a very slow tendency for wound healing. Wound healing is a vast process where several factors inhibit the sequence of healing. Nano formulation plays a major role during acute and chronic wound healing. The present manuscript aims to discuss the role of nanoformulation in the treatment of diabetic wound healing. Diabetes is a common disease that has harmful consequences which lead to bad health. During the literature survey, it was observed that nanotechnology has significant advantages in the treatment of diabetic wound healing. The present manuscript summarized the role of nanomaterials in wound healing, challenges in diabetic wound healing, physiology of wound healing, a limitation that comes during wound repair, and treatments available for wound healing. After a comprehensive literature survey, it can be concluded that health worker needs more focus on the area of wound healing in diabetic patients. Medical practitioners, pharmaceutical and biomedical researchers need more attention towards the utilization of nanoformulations for the treatment of wound healing, specifically in the case of diabetes.
Collapse
Affiliation(s)
- Shailendra Singh Bhadauria
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
12
|
|
13
|
Liu J, Zhou X, Zhang Y, Wang A, Zhu W, Xu M, Zhuang S. Rapid hemostasis and high bioactivity cerium-containing mesoporous bioglass for hemostatic materials. J Biomed Mater Res B Appl Biomater 2021; 110:1255-1264. [PMID: 34910359 DOI: 10.1002/jbm.b.34996] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/25/2021] [Accepted: 12/05/2021] [Indexed: 11/05/2022]
Abstract
A two-step-acid-catalyzed-self-assembly method was used to prepare cerium-containing mesoporous bioactive glass with P123 as a template. The results showed that MBG without cerium and MBG with cerium slightly affected its surface area, and its water absorption rate was significantly higher. In vitro coagulation experiments showed that Ce-MBG significantly reduces prothrombin time (PT) and activated partial thromboplastin time (APTT), indicating that MBG containing Ce could promote coagulation and platelet adhesion compared with MBG. These suggested that Ce-MBG may be a good dressing with hemostatic properties, which could shorten the bleeding time of the wound and control the bleeding.
Collapse
Affiliation(s)
- Jiaxi Liu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, China
| | - Xiang Zhou
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, China
| | - Yin Zhang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, China.,Nanjing Haoqi Advanced Materials Co., Ltd., Nanjing, China
| | - Anping Wang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, China
| | - Wei Zhu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, China
| | - Meijia Xu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, China
| | - Shuxian Zhuang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|
14
|
Tran HDN, Moonshi SS, Xu ZP, Ta HT. Influence of nanoparticles on the haemostatic balance: between thrombosis and haemorrhage. Biomater Sci 2021; 10:10-50. [PMID: 34775503 DOI: 10.1039/d1bm01351c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Maintenance of a delicate haemostatic balance or a balance between clotting and bleeding is critical to human health. Irrespective of administration route, nanoparticles can reach the bloodstream and might interrupt the haemostatic balance by interfering with one or more components of the coagulation, anticoagulation, and fibrinolytic systems, which potentially lead to thrombosis or haemorrhage. However, inadequate understanding of their effects on the haemostatic balance, along with the fact that most studies mainly focus on the functionality of nanoparticles while forgetting or leaving behind their risk to the body's haemostatic balance, is a major concern. Hence, our review aims to provide a comprehensive depiction of nanoparticle-haemostatic balance interactions, which has not yet been covered. The synergistic roles of cells and plasma factors participating in haemostatic balance are presented. Possible interactions and interference of each type of nanoparticle with the haemostatic balance are comprehensively discussed, particularly focusing on the underlying mechanisms. Interactions of nanoparticles with innate immunity potentially linked to haemostasis are mentioned. Various physicochemical characteristics that influence the nanoparticle-haemostatic balance are detailed. Challenges and future directions are also proposed. This insight would be valuable for the establishment of nanoparticles that can either avoid unintended interference with the haemostatic balance or purposely downregulate/upregulate its key components in a controlled manner.
Collapse
Affiliation(s)
- Huong D N Tran
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia. .,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | | | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Hang Thu Ta
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia. .,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia.,School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
15
|
Shen S, Chen X, Shen Z, Chen H. Marine Polysaccharides for Wound Dressings Application: An Overview. Pharmaceutics 2021; 13:1666. [PMID: 34683959 PMCID: PMC8541487 DOI: 10.3390/pharmaceutics13101666] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 01/11/2023] Open
Abstract
Wound dressings have become a crucial treatment for wound healing due to their convenience, low cost, and prolonged wound management. As cutting-edge biomaterials, marine polysaccharides are divided from most marine organisms. It possesses various bioactivities, which allowing them to be processed into various forms of wound dressings. Therefore, a comprehensive understanding of the application of marine polysaccharides in wound dressings is particularly important for the studies of wound therapy. In this review, we first introduce the wound healing process and describe the characteristics of modern commonly used dressings. Then, the properties of various marine polysaccharides and their application in wound dressing development are outlined. Finally, strategies for developing and enhancing marine polysaccharide wound dressings are described, and an outlook of these dressings is given. The diverse bioactivities of marine polysaccharides including antibacterial, anti-inflammatory, haemostatic properties, etc., providing excellent wound management and accelerate wound healing. Meanwhile, these biomaterials have higher biocompatibility and biodegradability compared to synthetic ones. On the other hand, marine polysaccharides can be combined with copolymers and active substances to prepare various forms of dressings. Among them, emerging types of dressings such as nanofibers, smart hydrogels and injectable hydrogels are at the research frontier of their development. Therefore, marine polysaccharides are essential materials in wound dressings fabrication and have a promising future.
Collapse
Affiliation(s)
- Shenghai Shen
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; (S.S.); (X.C.)
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China
| | - Xiaowen Chen
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; (S.S.); (X.C.)
| | - Zhewen Shen
- School of Humanities, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang 43900, Selangor, Malaysia;
| | - Hao Chen
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China
| |
Collapse
|
16
|
Jamal L, Saini A, Quencer K, Altun I, Albadawi H, Khurana A, Naidu S, Patel I, Alzubaidi S, Oklu R. Emerging approaches to pre-hospital hemorrhage control: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1192. [PMID: 34430633 PMCID: PMC8350651 DOI: 10.21037/atm-20-5452] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 06/18/2021] [Indexed: 12/18/2022]
Abstract
In the United States, trauma claims the lives of over 150,000 civilians each year. In military settings, trauma and exsanguination result in 50% of combat related deaths. The majority of these deaths result from uncontrolled non-compressible hemorrhage. Non-compressible hemorrhage often results from deep vascular injuries within the torso, however can also occur secondary to penetrating injuries that involve the extremities. Given the high mortality rates for non-compressible hemorrhage, rapid and effective management of patients suffering from hemorrhage is essential to good patient outcomes. Consequently, there has been increasing interest in solutions for point-of-injury hemorrhage control in trauma and military medicine. Undoubtedly there is a great need for prehospital hemostatic interventions that can be deployed by trained and untrained personnel. Since 2001, various hemostatic agents have been developed, each with its advantages based upon the type and severity of injury, wound size, wound location, accessibility to injury site, and the coagulation status of the patient. These agents are often used in the military setting as a temporizing measure prior to definitive therapy and include techniques such as resuscitative endovascular balloon occlusion of the aorta (REBOA) and bioengineered agents including ResQFoam, RevMedx’s XSTAT, Tranexamic acid (TXA), and QuikClot Combat Gauze (QCG). Here, we review the indications, composition, technique, efficacy, and outcomes of these hemostatic agents.
Collapse
Affiliation(s)
- Leila Jamal
- Division of Vascular & Interventional Radiology, Laboratory for Patient Inspired Engineering, Mayo Clinic, Phoenix, AZ, USA
| | - Aman Saini
- Department of Radiology, University of Missouri Kansas City, Kansas City, Missouri, USA
| | - Keith Quencer
- Department of Radiology, University of Utah, Salt Lake City, Utah, USA
| | - Izzet Altun
- Division of Vascular & Interventional Radiology, Laboratory for Patient Inspired Engineering, Mayo Clinic, Phoenix, AZ, USA
| | - Hassan Albadawi
- Division of Vascular & Interventional Radiology, Laboratory for Patient Inspired Engineering, Mayo Clinic, Phoenix, AZ, USA
| | - Aditya Khurana
- Mayo Clinic Alix School of Medicine, Scottsdale, AZ, USA
| | - Sailendra Naidu
- Division of Vascular & Interventional Radiology, Laboratory for Patient Inspired Engineering, Mayo Clinic, Phoenix, AZ, USA
| | - Indravadan Patel
- Division of Vascular & Interventional Radiology, Laboratory for Patient Inspired Engineering, Mayo Clinic, Phoenix, AZ, USA
| | - Sadeer Alzubaidi
- Division of Vascular & Interventional Radiology, Laboratory for Patient Inspired Engineering, Mayo Clinic, Phoenix, AZ, USA
| | - Rahmi Oklu
- Division of Vascular & Interventional Radiology, Laboratory for Patient Inspired Engineering, Mayo Clinic, Phoenix, AZ, USA
| |
Collapse
|
17
|
Song M, Fitch ZW, Samy KP, Martin BM, Gao Q, Patrick Davis R, Leopardi FV, Huffman N, Schmitz R, Devi GR, Collins BH, Kirk AD. Coagulation, inflammation, and CD46 transgene expression in neonatal porcine islet xenotransplantation. Xenotransplantation 2021; 28:e12680. [PMID: 33619844 DOI: 10.1111/xen.12680] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/17/2020] [Accepted: 02/12/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Thrombosis is a known consequence of intraportal islet transplantation, particularly for xenogeneic islets. To define the origins of thrombosis after islet xenotransplantation and relate it to early inflammation, we examined porcine islets transplanted into non-human primates using a dual-transplant model to directly compare islet characteristics. METHODS α1,3-Galactosyltransferase gene-knockout (GTKO) islets with and without expression of the human complement regulatory transgene CD46 (hCD46) were studied. Biologically inert polyethylene microspheres were used to examine the generic pro-thrombotic effects of particle embolization. Immunohistochemistry was performed 1 and 24 hours after transplantation. RESULTS Xeno-islet transplantation activated both extrinsic and intrinsic coagulation pathways. The intrinsic pathway was also initiated by microsphere embolization, while extrinsic pathway tissue factor (TF) and platelet aggregation were more specific to engrafted islets. hCD46 expression significantly reduced TF, platelet, fibrin, and factor XIIIa accumulation in and around islets but did not alter intrinsic factor activation. Layers of TF+ cells emerged around islets within 24 hours, particularly co-localized with vimentin, and identified as CD3+ and CD68+ cells inflammatory cells. CONCLUSIONS These findings detail the origins of thrombosis following islet xenotransplantation, relate it to early immune activation, and suggest a role for transgenic hCD46 expression in its mitigation. Layers of TF-positive inflammatory cells and fibroblasts around islets at 24 hours may have important roles in the progressive events of thrombosis, inflammatory cell recruitment, rejection, and the ultimate outcome of transplanted grafts. These suggest that the strategies targeting these elements could yield more progress toward successful xenogeneic islet engraftment and survival.
Collapse
Affiliation(s)
- Mingqing Song
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Zachary W Fitch
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Kannan P Samy
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Benjamin M Martin
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Qimeng Gao
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | | | - Francis V Leopardi
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Niki Huffman
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Robin Schmitz
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Gayathri R Devi
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Bradley H Collins
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Allan D Kirk
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
18
|
Malik A, Rehman FU, Shah KU, Naz SS, Qaisar S. Hemostatic strategies for uncontrolled bleeding: A comprehensive update. J Biomed Mater Res B Appl Biomater 2021; 109:1465-1477. [PMID: 33511753 DOI: 10.1002/jbm.b.34806] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/31/2020] [Accepted: 01/14/2021] [Indexed: 11/10/2022]
Abstract
Uncontrolled bleeding remains the leading cause of morbidity and mortality across the entire macrocosm. It refers to excessive loss of blood that occurs inside of body, due to unsuccessful platelet plug formation at the injury site. It is not only limited to the battlefield, but remains the second leading cause of death amongst the civilians, as a result of traumatic injury. Startlingly, there are no effective treatments currently available, to cater the issue of internal bleeding, even though early intervention is of utmost significance in minimizing the mortality rates associated with it. The fatal issue of uncontrolled bleeding is ineffectively being dealt with the use of pressure dressings, tourniquet, and surgical procedures. This is not a practical approach in combat arenas or in emergency situations, where the traumatic injury inflicted is deep inside the body, and cannot be addressed externally, by the application of topical dressings. This review focuses on the traditional hemostatic agents that are used to augment the process of hemostasis, such as mineral zeolites, chitosan based products, biologically active agents, anti-fibrinolytics, absorbable agents, and albumin and glutaraldehyde, as well as the micro- and nano-based hemostatic agents such as synthocytes, thromboerythrocytes, thrombosomes, and the synthetic platelets.
Collapse
Affiliation(s)
- Annum Malik
- Nanosciences and Technology Department, National Centre for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan.,Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fiza Ur Rehman
- Nanosciences and Technology Department, National Centre for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan.,Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Syeda Sohaila Naz
- Nanosciences and Technology Department, National Centre for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan
| | - Sara Qaisar
- Nanosciences and Technology Department, National Centre for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan
| |
Collapse
|
19
|
An anti-inflammatory gelatin hemostatic agent with biodegradable polyurethane nanoparticles for vulnerable brain tissue. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 121:111799. [PMID: 33579446 DOI: 10.1016/j.msec.2020.111799] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/15/2020] [Accepted: 12/05/2020] [Indexed: 11/23/2022]
Abstract
Hemostasis plays a fundamental and critical role in all surgical procedures. However, the currently used topical hemostatic agents may at times undesirably induce inflammation, infection, and foreign body reaction and hamper the healing process. This may be serious in the central nervous system (CNS), especially for some neurosurgical diseases which have ongoing inflammation causing secondary brain injury. This study was aimed to develop a hemostatic agent with anti-inflammatory property by incorporating carboxyl-functionalized biodegradable polyurethane nanoparticles (PU NPs) and to evaluate its functionality using a rat neurosurgical model. PU NPs are specially-designed anti-inflammatory nanoparticles and absorbed by a commercially available hemostatic gelatin powder (Spongostan™). Then, the gelatin was implanted to the injured rat cortex and released anti-inflammatory PU NPs. The time to hemostasis, the cerebral edema formation, and the brain's immune responses were examined. The outcomes showed that PU NP-contained gelatin attenuated the brain edema, suppressed the gene expression levels of pro-inflammatory M1 biomarkers (e.g., IL-1β level to be about 25%), elevated the gene expression levels of anti-inflammatory M2 biomarkers (e.g., IL-10 level to be about 220%), and reduced the activation of inflammatory cells in the implanted site, compared with the conventional gelatin. Moreover, PU NP-contained gelatin increased the gene expression level of neurotrophic factor BDNF by nearly 3-folds. We concluded that the PU NP-contained hemostatic agents are anti-inflammatory with neuroprotective potential in vivo. This new hemostatic agent will be useful for surgery involving vulnerable tissue or organ (e.g., CNS) and also for diseases such as stroke, traumatic brain injury, and neurodegenerative diseases.
Collapse
|
20
|
Wang L, You X, Dai C, Tong T, Wu J. Hemostatic nanotechnologies for external and internal hemorrhage management. Biomater Sci 2020; 8:4396-4412. [PMID: 32658944 DOI: 10.1039/d0bm00781a] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An uncontrolled hemorrhage can easily lead to death during surgery and military operations. Despite the significant advances in hemostatic research, there is still an urgent and increasing need for safer and more effective hemostatic materials. Recently, nanotechnologies have been receiving increasing interest owing to their unique advantages and have been propelling the developement of hemostatic materials. This review summarizes the fundamentals of hemostasis and emphasizes the recent developments regarding hemorrhage-related hemostatic nanotechnologies. In terms of external accessible hemorrhage management, natural and synthetic polymers and inorganic components that have been used in traditional hemostats provide novel nanoscale solutions. Regarding internal noncompressible hemorrhage management, current research endeavors are dedicated to the development of substitutes for blood components, and nanoformulated hemostatic drugs. This review also briefly discusses the main and persistent problems of hemostatic nanomaterials, including safety concerns and clinical translation challenges. This review is hoped to provide critical insight into hemostatic nanomaterial development.
Collapse
Affiliation(s)
- Liying Wang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, PR China.
| | | | | | | | | |
Collapse
|
21
|
Chen X, Yuk H, Wu J, Nabzdyk CS, Zhao X. Instant tough bioadhesive with triggerable benign detachment. Proc Natl Acad Sci U S A 2020; 117:15497-15503. [PMID: 32576692 PMCID: PMC7376570 DOI: 10.1073/pnas.2006389117] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023] Open
Abstract
Bioadhesives such as tissue adhesives, hemostatic agents, and tissue sealants have potential advantages over sutures and staples for wound closure, hemostasis, and integration of implantable devices onto wet tissues. However, existing bioadhesives display several limitations including slow adhesion formation, weak bonding, low biocompatibility, poor mechanical match with tissues, and/or lack of triggerable benign detachment. Here, we report a bioadhesive that can form instant tough adhesion on various wet dynamic tissues and can be benignly detached from the adhered tissues on demand with a biocompatible triggering solution. The adhesion of the bioadhesive relies on the removal of interfacial water from the tissue surface, followed by physical and covalent cross-linking with the tissue surface. The triggerable detachment of the bioadhesive results from the cleavage of bioadhesive's cross-links with the tissue surface by the triggering solution. After it is adhered to wet tissues, the bioadhesive becomes a tough hydrogel with mechanical compliance and stretchability comparable with those of soft tissues. We validate in vivo biocompatibility of the bioadhesive and the triggering solution in a rat model and demonstrate potential applications of the bioadhesive with triggerable benign detachment in ex vivo porcine models.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Hyunwoo Yuk
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jingjing Wu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Christoph S Nabzdyk
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55905
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139;
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
22
|
Abstract
Hemorrhage is the leading cause of preventable death in combat trauma and the secondary cause of death in civilian trauma. A significant number of deaths due to hemorrhage occur before and in the first hour after hospital arrival. A literature search was performed through PubMed, Scopus, and Institute of Scientific Information databases for English language articles using terms relating to hemostatic agents, prehospital, battlefield or combat dressings, and prehospital hemostatic resuscitation, followed by cross-reference searching. Abstracts were screened to determine relevance and whether appropriate further review of the original articles was warranted. Based on these findings, this paper provides a review of a variety of hemostatic agents ranging from clinically approved products for human use to newly developed concepts with great potential for use in prehospital settings. These hemostatic agents can be administered either systemically or locally to stop bleeding through different mechanisms of action. Comparisons of current hemostatic products and further directions for prehospital hemorrhage control are also discussed.
Collapse
Affiliation(s)
- Henry T Peng
- Defence Research and Development Canada, Toronto Research Centre, 1133 Sheppard Avenue West, Toronto, ON, M3K 2C9, Canada.
| |
Collapse
|
23
|
Wang CY, Hu J, Sheth RA, Oklu R. Emerging Embolic Agents in Endovascular Embolization: An Overview. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2020; 2:012003. [PMID: 34553126 PMCID: PMC8455112 DOI: 10.1088/2516-1091/ab6c7d] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Courtney Y. Wang
- The University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin St., Hourson, TX 77030, USA
| | - Jingjie Hu
- Division of Vascular and Interventional Radiology, Minimally Invasive Therapeutics Laboratory, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, AZ 85259, USA
| | - Rahul A. Sheth
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Rahmi Oklu
- Division of Vascular and Interventional Radiology, Minimally Invasive Therapeutics Laboratory, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, AZ 85259, USA
| |
Collapse
|
24
|
Krishnadoss V, Melillo A, Kanjilal B, Hannah T, Ellis E, Kapetanakis A, Hazelton J, San Roman J, Masoumi A, Leijten J, Noshadi I. Bioionic Liquid Conjugation as Universal Approach To Engineer Hemostatic Bioadhesives. ACS APPLIED MATERIALS & INTERFACES 2019; 11:38373-38384. [PMID: 31523968 DOI: 10.1021/acsami.9b08757] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Adhesion to wet and dynamic surfaces is vital for many biomedical applications. However, the development of effective tissue adhesives has been challenged by the required combination of properties, which includes mechanical similarity to the native tissue, high adhesion to wet surfaces, hemostatic properties, biodegradability, high biocompatibility, and ease of use. In this study, we report a novel bioinspired design with bioionic liquid (BIL) conjugated polymers to engineer multifunctional highly sticky, biodegradable, biocompatible, and hemostatic adhesives. Choline-based BIL is a structural precursor of the phospholipid bilayer in the cell membrane. We show that the conjugation of choline molecules to naturally derived polymers (i.e., gelatin) and synthetic polymers (i.e., polyethylene glycol) significantly increases their adhesive strength and hemostatic properties. Synthetic or natural polymers and BILs were mixed at room temperature and cross-linked via visible light photopolymerization to make hydrogels with tunable mechanical, physical, adhesive, and hemostatic properties. The hydrogel adhesive exhibits a close to 50% decrease in the total blood volume loss in tail cut and liver laceration rat animal models compared to the control. This technology platform for adhesives is expected to have further reaching application vistas from tissue repair to wound dressings and the attachment of flexible electronics.
Collapse
Affiliation(s)
| | - Atlee Melillo
- Cooper Medical School of Rowan University , Camden , New Jersey 08103-1211 , United States
| | | | | | | | | | - Joshua Hazelton
- Cooper Medical School of Rowan University , Camden , New Jersey 08103-1211 , United States
| | - Janika San Roman
- Cooper Medical School of Rowan University , Camden , New Jersey 08103-1211 , United States
| | | | - Jeroen Leijten
- Developmental BioEngineering (DBE) , The University of Twente , 7522 NB Enschede , Netherlands
| | | |
Collapse
|
25
|
Haseeb A, Freeman ML, Amateau SK. Alternative approach to hemostatic particle spraying for treatment of GI bleeding by the use of cross-platform devices. VideoGIE 2019; 4:386-388. [PMID: 31388620 PMCID: PMC6675922 DOI: 10.1016/j.vgie.2019.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Background and Aims Method Results Conclusions
Collapse
|
26
|
Vakilian S, Jamshidi-adegani F, Al-Shidhani S, Anwar MU, Al-Harrasi R, Al-Wahaibi N, Qureshi A, Alyaqoobi S, Al-Amri I, Al-Harrasi A, Al-Hashmi S. A Keratin-based biomaterial as a promising dresser for skin wound healing. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.wndm.2019.100155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
27
|
Bonnard T, Gauberti M, Martinez de Lizarrondo S, Campos F, Vivien D. Recent Advances in Nanomedicine for Ischemic and Hemorrhagic Stroke. Stroke 2019; 50:1318-1324. [DOI: 10.1161/strokeaha.118.022744] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Thomas Bonnard
- From the Normandie University, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders PhIND, Caen, France (T.B., M.G., S.M.d.L., D.V.)
| | - Maxime Gauberti
- From the Normandie University, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders PhIND, Caen, France (T.B., M.G., S.M.d.L., D.V.)
| | - Sara Martinez de Lizarrondo
- From the Normandie University, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders PhIND, Caen, France (T.B., M.G., S.M.d.L., D.V.)
| | - Francisco Campos
- Clinical Neurosciences Research Laboratory, Department of Neurology, Clinical University Hospital, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain (F.C.)
| | - Denis Vivien
- From the Normandie University, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders PhIND, Caen, France (T.B., M.G., S.M.d.L., D.V.)
- CHU Caen, Department of Clinical Research, CHU Caen Côte de Nacre, Caen, France (D.V.)
| |
Collapse
|
28
|
Udangawa RN, Mikael PE, Mancinelli C, Chapman C, Willard CF, Simmons TJ, Linhardt RJ. Novel Cellulose-Halloysite Hemostatic Nanocomposite Fibers with a Dramatic Reduction in Human Plasma Coagulation Time. ACS APPLIED MATERIALS & INTERFACES 2019; 11:15447-15456. [PMID: 30977359 DOI: 10.1021/acsami.9b04615] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
High-performance cellulose-halloysite hemostatic nanocomposite fibers (CHNFs) are fabricated using a one-step wet-wet electrospinning process and evaluated for human plasma coagulation by activated partial thromboplastin time. These novel biocompatible CHNFs exhibit 2.4 times faster plasma coagulation time compared with the industry gold standard QuikClot Combat Gauze (QCG). The CHNFs have superior antileaching property of clay with 3 times higher post-wetting clotting activity compared to QCG. The CHNFs also coagulate whole blood 1.3 times faster than the QCG and retain twice the clotting performance after washing. Halloysite clay is also more effective in plasma coagulation than commercial kaolin clay. The physical and thermal properties of the CHNFs were evaluated using scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, Brunauer-Emmett-Teller surface area analysis, and thermogravimetric analysis. CHNFs show a 7-fold greater clay loading than QCG and their small average diameter of 450 ± 260 nm affords a greater specific surface area (33.6 m2 g-1) compared with the larger average diameter of 12.6 ± 0.9 μm for QCG with a specific surface area of 1.6 m2 g-1. The CHNFs were shown to be noncytotoxic and human primary fibroblasts proliferated on the composite material. The drastic reduction in coagulation time makes this novel nanocomposite a potential lifesaving material for victims of rapid blood loss such as military personnel and patients undergoing major surgical procedures or to aid in the treatment of unexpected bleeding episodes of patients suffering from hereditary blood clotting disorders. Since a person can die within minutes of heavy bleeding, every second counts for stopping traumatic hemorrhaging.
Collapse
|