1
|
Wang Y, Ma J, Liu Y, Cui W, Chu X, Lin Y, Wang L. Unraveling the complex role of tumor-associated neutrophils within solid tumors. Cancer Immunol Immunother 2025; 74:210. [PMID: 40387965 PMCID: PMC12089560 DOI: 10.1007/s00262-025-04049-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 04/10/2025] [Indexed: 05/20/2025]
Abstract
Neutrophils are integral to the frontline defense against pathogenic bacterial and fungal invasions. Beyond their traditional roles, these cells are increasingly recognized for their dualistic contributions to the pathology of autoimmune and inflammatory diseases, as well as their complex involvement in cancer progression. Neutrophils interact with different disease states, highlighting their potential as therapeutic targets. Within tumor microenvironment (TME), tumor-associated neutrophils (TANs) exhibit a functional dichotomy, capable of either fostering or impeding tumor growth and metastasis. This binary functional potential of TANs, under certain conditions, suggests a reversible state that could transition from tumor-promoting to tumor-eradicating phenotypes. Despite the critical implications of such functional plasticity, systematic studies of TAN behavioral shifts in the context of cancer immunotherapy remain scarce. Herein, we review recent advancements in the understanding of TANs within the TME, highlighting their binary regulatory effects on solid tumors. Leveraging the latest insights from experimental and clinical research, this review elucidates the complex roles of TANs in tumor development and explores their molecular interactions as potential therapeutic targets. The elucidation of these mechanisms holds promise for novel cancer treatment strategies, aiming to improve patient outcomes by manipulating the tumor-promoting or -suppressing functions of TANs.
Collapse
Affiliation(s)
- Yingxin Wang
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, and Minister of Education Key Laboratory of Tumor Molecular Biology, and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, Guangdong, China
| | - Jiakang Ma
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, and Minister of Education Key Laboratory of Tumor Molecular Biology, and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, Guangdong, China
| | - Yuhao Liu
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, and Minister of Education Key Laboratory of Tumor Molecular Biology, and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, Guangdong, China
| | - Weiheng Cui
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, and Minister of Education Key Laboratory of Tumor Molecular Biology, and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, Guangdong, China
| | - Xiaodong Chu
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Yusheng Lin
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, and Minister of Education Key Laboratory of Tumor Molecular Biology, and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, Guangdong, China.
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Lu Wang
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, and Minister of Education Key Laboratory of Tumor Molecular Biology, and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
2
|
Zhang Y, Li Z, Chen X, Huang Y, Zou B, Xu Y. Prognostic significance of FAT10 expression in malignant tumors: a systematic review and meta-analysis. Future Oncol 2024; 20:1505-1514. [PMID: 38864667 PMCID: PMC11441062 DOI: 10.1080/14796694.2024.2357531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 05/16/2024] [Indexed: 06/13/2024] Open
Abstract
Aim: FAT10, a ubiquitin-like modifier protein, influences apoptosis, DNA damage response and tumor growth, with unclear effects on cancer prognosis.Methods: We reviewed FAT10 expression's impact on malignancy prognosis through a systematic review and meta-analysis, including studies up to September 2023 from PubMed, EMBASE and Web of Science.Results: From 18 studies involving 2513 patients, FAT10 overexpression significantly reduced overall and disease-free survival across various tumors, indicating correlations with advanced disease stage, poor differentiation, lymph node metastasis and larger tumor size.Conclusion: FAT10's overexpression suggests a negative prognostic value in cancer, meriting further investigation.PROSPERO Registration Number: CRD42023431287.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Zheng Li
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Xi Chen
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Ying Huang
- College of Management, Sichuan Agricultural University, Chengdu, 611130, P.R. China
| | - Bingwen Zou
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yong Xu
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| |
Collapse
|
3
|
Vedunova M, Borysova O, Kozlov G, Zharova AM, Morgunov I, Moskalev A. Candidate molecular targets uncovered in mouse lifespan extension studies. Expert Opin Ther Targets 2024; 28:513-528. [PMID: 38656034 DOI: 10.1080/14728222.2024.2346597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
INTRODUCTION Multiple interventions have demonstrated an increase in mouse lifespan. However, non-standardized controls, sex or strain-specific factors, and insufficient focus on targets, hinder the translation of these findings into clinical applications. AREAS COVERED We examined the effects of genetic and drug-based interventions on mice from databases DrugAge, GenAge, the Mouse Phenome Database, and publications from PubMed that led to a lifespan extension of more than 10%, identifying specific molecular targets that were manipulated to achieve the maximum lifespan in mice. Subsequently, we characterized 10 molecular targets influenced by these interventions, with particular attention given to clinical trials and potential indications for each. EXPERT OPINION To increase the translational potential of mice life-extension studies to clinical research several factors are crucial: standardization of mice lifespan research approaches, the development of clear criteria for control and experimental groups, the establishment of criteria for potential geroprotectors, and focusing on targets and their clinical application. Pinpointing the targets affected by geroprotectors helps in understanding species-specific differences and identifying potential side effects, ensuring the safety and effectiveness of clinical trials. Additionally, target review facilitates the optimization of treatment protocols and the evaluation of the clinical feasibility of translating research findings into practical therapies for humans.
Collapse
Affiliation(s)
- Maria Vedunova
- Institute of Biomedicine, Institute of Biogerontology, National Research Lobachevsky State University of Nizhni Novgorod (Lobachevsky University), Nizhny Novgorod, Russia
| | | | - Grigory Kozlov
- Institute of Biomedicine, Institute of Biogerontology, National Research Lobachevsky State University of Nizhni Novgorod (Lobachevsky University), Nizhny Novgorod, Russia
| | - Anna-Maria Zharova
- Institute of Biomedicine, Institute of Biogerontology, National Research Lobachevsky State University of Nizhni Novgorod (Lobachevsky University), Nizhny Novgorod, Russia
| | | | - Alexey Moskalev
- Institute of Biomedicine, Institute of Biogerontology, National Research Lobachevsky State University of Nizhni Novgorod (Lobachevsky University), Nizhny Novgorod, Russia
- Longaevus Technologies LTD, London, United Kingdom
- Russian Gerontology Research and Clinical Centre, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
4
|
Clavreul L, Bernard L, Cotte AK, Hennuyer N, Bourouh C, Devos C, Helleboid A, Haas JT, Verrijken A, Gheeraert C, Derudas B, Guille L, Chevalier J, Eeckhoute J, Vallez E, Dorchies E, Van Gaal L, Lassailly G, Francque S, Staels B, Paumelle R. The ubiquitin-like modifier FAT10 is induced in MASLD and impairs the lipid-regulatory activity of PPARα. Metabolism 2024; 151:155720. [PMID: 37926201 DOI: 10.1016/j.metabol.2023.155720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND AND AIMS Peroxisome Proliferator-Activated Receptor α (PPARα) is a key regulator of hepatic lipid metabolism and therefore a promising therapeutic target against Metabolic-dysfunction Associated Steatotic Liver Diseases (MASLD). However, its expression and activity decrease during disease progression and several of its agonists did not achieve sufficient efficiency in clinical trials with, surprisingly, a lack of steatosis improvement. Here, we identified the Human leukocyte antigen-F Adjacent Transcript 10 (FAT10) as an inhibitor of PPARα lipid metabolic activity during MASLD progression. APPROACH AND RESULTS In vivo, the expression of FAT10 is upregulated in human and murine MASLD livers upon disease progression and correlates negatively with PPARα expression. The increase of FAT10 occurs in hepatocytes in which both proteins interact. FAT10 silencing in vitro in hepatocytes increases PPARα target gene expression, promotes fatty acid oxidation and decreases intra-cellular lipid droplet content. In line, FAT10 overexpression in hepatocytes in vivo inhibits the lipid regulatory activity of PPARα in response to fasting and agonist treatment in conditions of physiological and pathological hepatic lipid overload. CONCLUSIONS FAT10 is induced during MASLD development and interacts with PPARα resulting in a decreased lipid metabolic response of PPARα to fasting or agonist treatment. Inhibition of the FAT10-PPARα interaction may provide a means to design potential therapeutic strategies against MASLD.
Collapse
Affiliation(s)
- Ludivine Clavreul
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France
| | - Lucie Bernard
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France
| | - Alexia K Cotte
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France
| | - Nathalie Hennuyer
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France
| | - Cyril Bourouh
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France
| | - Claire Devos
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France
| | - Audrey Helleboid
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France
| | - Joel T Haas
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France
| | - An Verrijken
- Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 1 B-2610 Antwerp, Belgium; Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, 1 B-2610 Antwerp, Belgium
| | - Céline Gheeraert
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France
| | - Bruno Derudas
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France
| | - Loïc Guille
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France
| | - Julie Chevalier
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France
| | - Jérôme Eeckhoute
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France
| | - Emmanuelle Vallez
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France
| | - Emilie Dorchies
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France
| | - Luc Van Gaal
- Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 1 B-2610 Antwerp, Belgium; Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, 1 B-2610 Antwerp, Belgium
| | - Guillaume Lassailly
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, 1 place de Verdun, 59000 Lille, France
| | - Sven Francque
- Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 1 B-2610 Antwerp, Belgium; Department of Gastroenterology and Hepatology, Antwerp University Hospital, 1 B-2610 Antwerp, Belgium; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Germany
| | - Bart Staels
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France
| | - Réjane Paumelle
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France.
| |
Collapse
|
5
|
De Re V, Tornesello ML, Racanelli V, Prete M, Steffan A. Non-Classical HLA Class 1b and Hepatocellular Carcinoma. Biomedicines 2023; 11:1672. [PMID: 37371767 PMCID: PMC10296335 DOI: 10.3390/biomedicines11061672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
A number of studies are underway to gain a better understanding of the role of immunity in the pathogenesis of hepatocellular carcinoma and to identify subgroups of individuals who may benefit the most from systemic therapy according to the etiology of their tumor. Human leukocyte antigens play a key role in antigen presentation to T cells. This is fundamental to the host's defense against pathogens and tumor cells. In addition, HLA-specific interactions with innate lymphoid cell receptors, such those present on natural killer cells and innate lymphoid cell type 2, have been shown to be important activators of immune function in the context of several liver diseases. More recent studies have highlighted the key role of members of the non-classical HLA-Ib and the transcript adjacent to the HLA-F locus, FAT10, in hepatocarcinoma. The present review analyzes the major contribution of these molecules to hepatic viral infection and hepatocellular prognosis. Particular attention has been paid to the association of natural killer and Vδ2 T-cell activation, mediated by specific HLA class Ib molecules, with risk assessment and novel treatment strategies to improve immunotherapy in HCC.
Collapse
Affiliation(s)
- Valli De Re
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy;
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy;
| | - Vito Racanelli
- Department of Interdisciplinary Medicine, School of Medicine, ‘Aldo Moro’ University of Bari, 70124 Bari, Italy; (V.R.); (M.P.)
| | - Marcella Prete
- Department of Interdisciplinary Medicine, School of Medicine, ‘Aldo Moro’ University of Bari, 70124 Bari, Italy; (V.R.); (M.P.)
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy;
| |
Collapse
|
6
|
Hu P, Zong B, Chen Q, Shao R, Chen M, Yang Y, Shao G. Microtubule-associated protein 4 promotes epithelial mesenchymal transition in hepatocellular cancer cells via regulating GSK3β/β-catenin pathway. Heliyon 2023; 9:e14309. [PMID: 36938447 PMCID: PMC10020083 DOI: 10.1016/j.heliyon.2023.e14309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Metastasis is a major obstacle in the treatment of hepatocellular carcinoma (HCC). Microtubule-associated protein 4 (MAP4) plays an important role as a coordinator between microtubules and microfilaments. However, the role of MAP4 in HCC migration and epithelial mesenchymal transition (EMT) is unclear. We compared the protein and mRNA levels of MAP4 in human HCC and adjacent normal tissues using western blotting, immunohistochemistry and RT-qPCR. The migration and invasion abilities and the levels of EMT markers (E-Cadherin, N-Cadherin, Vimentin, and Snail) were compared between MAP4-knockdown and MAP4-overexpressed HCC cells. Finally, we examined whether β-catenin and glycogen synthase kinase 3β (GSK3β) are involved in the stimulatory effects of MAP4 on HCC migration, invasion and EMT. The results revealed that MAP4 levels were higher in the HCC tissues than in the normal hepatic tissues. More importantly, MAP4 knockdown suppressed migration and invasion abilities and EMT processes in HCC cells, which were confirmed by the stimulatory effects of MAP4 overexpression on EMT processes in HCC cells. Further evidence demonstrated that the up-regulation of β-catenin activity induced by the interaction between MAP4 and GSK3β possibly accounted for the pro-migration and pro-EMT effects of MAP4 on HCC cells. Taken together, these results suggest that MAP4 promotes migration, invasion, and EMT in HCC cells by regulating the GSK3β/β-catenin pathway.
Collapse
Affiliation(s)
- Pingping Hu
- Department of Pathology, Zhenjiang Hospital of Chinese Traditional and Western Medicine, Affiliated to Jiangsu University, Zhenjiang, China
- Corresponding author.
| | - Bin Zong
- Department of Rehabilitation Medicine, Zhenjiang Hospital of Chinese Traditional and Western Medicine, Affiliated to Jiangsu University, Zhenjiang, China
| | - Qian Chen
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Rui Shao
- Department of Pathology, Zhenjiang First People’s Hospital, Affiliated to Jiangsu University, Zhenjiang, China
| | - Miao Chen
- Department of Pathology, Zhenjiang First People’s Hospital, Affiliated to Jiangsu University, Zhenjiang, China
| | - Yujie Yang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Genbao Shao
- School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
7
|
Um H, Jeong H, Lee B, Kim Y, Lee J, Roh JS, Lee SG, Park HR, Robinson WH, Sohn DH. FAT10 Induces cancer cell migration by stabilizing phosphorylated ABI3/NESH. Anim Cells Syst (Seoul) 2023; 27:53-60. [PMID: 36926204 PMCID: PMC10013321 DOI: 10.1080/19768354.2023.2186486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The WAVE regulatory complex (WRC) is involved in various cellular processes by regulating actin polymerization. The dysregulation of WRC components is associated with cancer development. ABI family member 3 (ABI3)/new molecule including SH3 (NESH) is one of the WRC components and it has been reported that ABI3 phosphorylation can affect WRC function. Although several residues of ABI3 have been reported to be possible phosphorylation sites, it is still unclear which residues are important for the function of ABI3. Furthermore, it is unclear how the phosphorylated form of ABI3 is regulated. Here, we demonstrate that ABI3 is stabilized by its interaction with human leukocyte antigen-F adjacent transcript 10 (FAT10). Using phospho-dead or phospho-mimetic mutants of ABI3, we showed that serine 213 and 216 are important phosphorylation sites of ABI3. In particular, FAT10 has a higher affinity for the phosphorylated form of ABI3 than the non-phosphorylated form, and it stabilizes the phosphorylated form more than the non-phosphorylated form through this differential affinity. The interaction between FAT10 and the phosphorylated form of ABI3 promoted cancer cell migration. Therefore, our results suggest that FAT10 stabilizes the phosphorylated form of ABI3, which may lead to WRC activation, thereby promoting cancer cell migration.
Collapse
Affiliation(s)
- Hyojin Um
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Hoim Jeong
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Beomgu Lee
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Yerin Kim
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Jihyeon Lee
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Jong Seong Roh
- Department of Herbal Prescription, College of Korean Medicine, Daegu Haany University, Gyeongsan, Republic of Korea
| | - Seung-Geun Lee
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea.,Division of Rheumatology, Department of Internal Medicine, Pusan National University School of Medicine, Pusan National University Hospital, Busan, Republic of Korea
| | - Hae Ryoun Park
- Department of Oral Pathology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - William H Robinson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.,VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Dong Hyun Sohn
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| |
Collapse
|
8
|
Wimalarathne MM, Wilkerson-Vidal QC, Hunt EC, Love-Rutledge ST. The case for FAT10 as a novel target in fatty liver diseases. Front Pharmacol 2022; 13:972320. [PMID: 36386217 PMCID: PMC9665838 DOI: 10.3389/fphar.2022.972320] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/12/2022] [Indexed: 12/13/2022] Open
Abstract
Human leukocyte antigen F locus adjacent transcript 10 (FAT10) is a ubiquitin-like protein that targets proteins for degradation. TNFα and IFNγ upregulate FAT10, which increases susceptibility to inflammation-driven diseases like nonalcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), and hepatocellular carcinoma (HCC). It is well established that inflammation contributes to fatty liver disease, but how inflammation contributes to upregulation and what genes are involved is still poorly understood. New evidence shows that FAT10 plays a role in mitophagy, autophagy, insulin signaling, insulin resistance, and inflammation which may be directly associated with fatty liver disease development. This review will summarize the current literature regarding FAT10 role in developing liver diseases and potential therapeutic targets for nonalcoholic/alcoholic fatty liver disease and hepatocellular carcinoma.
Collapse
|